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WHY A PURE PRIMAL NEWTON BARRIER STEP
MAY BE INFEASIBLE*

MARGARET H. WRIGHTt

Abstract. Modern barrier methods for constrained optimization are sometimes portrayed con-
ceptually as a sequence of inexact minimizations, with only a very few Newton iterations (perhaps
just one) for each value of the barrier parameter. Unfortunately, this rosy image does not accurately
reflect reality when the barrier parameter is reduced at a reasonable rate, as in a practical (long-step)
method. Local analysis is presented indicating why a pure Newton step in a typical long-step bar-
rier method for nonlinearly constrained optimization may be seriously infeasible, even when taken
from an apparently favorable point; hence accurate calculation of the Newton direction does not
guarantee an effective algorithm. The features described are illustrated numerically and connected
to known theoretical results for well-behaved convex problems satisfying common assumptions such
as self-concordancy. The contrasting nature of an approximate step to the desired minimizer of the
barrier function is also discussed.

Key words, interior method, logarithmic barrier function, primal method, primal Newton step

AMS subject classifications. 65K05, 90C30

1. Introduction.

1.1. Background. Interior methods, most commonly based on barrier func-
tions, have been applied with great practical success in recent years to many con-
strained optimization problems, especially linear and quadratic programming, and
their popularity continues to grow. See, for example, the recent surveys [GON92] and
[WR92]. For general nonlinearly constrained problems, an obvious approach is to use
Newton’s method for unconstrained minimization of the classical logarithmic barrier
function.

For some special problem classes, various authors have proved that a pure New-
ton step is guaranteed to remain feasible and to produce a reduction in the barrier
function when a distance measure for the current point--usually, a particular norm
of the Newton step--is small enough. Such a characterization was given for linear
programming problems in [GON91] and [RV89]. Similar criteria for the Newton step
in quadratic and certain convex nonlinear programs are developed in, for example,
INN94], [ADRT], [JAR92], [DRT92], and [DH92]. The results in these papers do
not, however, explain why the pure Newton step is unacceptable when the given norm
is not sufficiently small.

Most barrier methods used in practice are "long-step" methods, meaning that
the controlling barrier parameter is reduced toward zero at a "reasonable" rate (see
2.2). This paper analyzes why a pure Newton step for a typical long-step primal
barrier subproblem, i.e., an unconstrained minimization subproblem expressed in the
original problem variables, is likely to be infeasible, even under circumstances that
appear at first to be favorable--in particular, when the current point lies on the barrier
trajectory (the path of minimizers of the barrier function; see 1.2). Broadly speaking,
infeasibility of the pure Newton step arises because of two factors: the asymptotic
role of the active constraint Jacobian matrix in the barrier gradient and Hessian; and
the relationship among the optimal multipliers, the active constraint values, and the
barrier parameter.
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1.2. Notation and assumptions. The problem of interest is

(1) minimize f(x) subject to cj(x) >_ 0, j- 1,...,rn,
x

where f and {cj } are smooth.
Much of our notation is standard. A local solution of (1) is denoted by x*; g(x) is

the gradient of f(x), and H(x) its (symmetric) Hessian; aj(x) and Hj(x) are the gradi-
ent and Hessian of cj(x); A(x) is the rnn Jacobian matrix of the constraints, with jth
row aj(x)T. The Lagrangian function associated with (1) is L(x, )) f(x) iTc(x).
The Hessian of the Lagrangian with respect to x is 72L(x, ) H- Ej=I AjHj(x).

We let denote the number of constraints active at x*, and Jt the set containing
the indices of the active constraints. (It will usually be assumed that rh > 0.) Our
discussion will consider only strictly feasible points, so that "active" and "inactive"
refer to properties of constraints at x*, and A is fixed for any given problem. At the
point x, ft.(x) (the "Jacobian of the active constraints") is the n matrix whose jth
row is the gradient of the jth active constraint evaluated at x. The matrix Z(x) refers
to a matrix whose columns form an orthonormal basis for the null space of A(x), so
that fi(x)Z(x) 0 and Z(x)TZ(x) I.

Standard sufficient optimality conditions are assumed to hold at x*:
(i) g(x*) AT(x*))*, where A* is called the Lagrange multiplier vector;
(ii) .jcj(x*) -0 for j 1, m;.(iii) Aj > 0 if j E A, i.e., strict complementarity holds at x*;
(iv) .d(x*) has full row rank;
(v) z*Tw*z* is positive definite, where Z* denotes Z(x*) and W* denotes

VL(x*, A*).
Under these conditions, x* is an isolated local constrained minimizer of (1) and A* is
unique; see, for example, [FM68] or [FLE87].

The logarithmic barrier function associated with (1) is

m

(2) B(x, #) f(x) #E In cy(x),
j=l

where # is a positive scalar called the barrier parameter. This barrier function is
defined only at strictly feasible points; it will be assumed that at least one point 2
exists where c(2) > O.

The gradient of the barrier function (2), denoted by g., is

jl # aj(x) g(x) #AT(x)C-l(x)e(x, ,) (x)

where e (1, 1,..., 1)T. The final form in (3) uses the convention that an upper-
case version of a letter denoting a vector means the diagonal matrix whose diagonal
elements are those of the vector. The barrier Hessian, denoted by HB, has the form

(4)
m

H,(x, it) H(x)
: ciix Hj(x) + #AT(x)C-2(x)A(x).

Assumptions (i)-(v) are well known to imply that, for sufficiently small #:
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(a) an isolated local unconstrained minimizer, denoted by either x(#) or x, of
the barrier function (2) exists, at which

(5) gz (xg, it) 0, so that P a (x,);
j=l

(b) HB(x,,it) is positive definite, and its smallest eigenvalue is bounded away
from zero;

(c) if it is regarded as a continuous parameter, x, defines a smooth trajectory
converging to x* as it -, 0. The points {x,} are said to lie on the barrier
trajectory.

For proofs and additional details about the logarithmic barrier function, see, for ex-
ample, [FM68], [GON921, and [WR92].

We use the following standard notation; see [PS82]. Let be a function of a
positive variable h, with p fixed. If there exists a constant > 0 such that I1 -< auhp
for all sufficiently small h, then O(h’). If there exists a constant > 0 such that

Il >- al hp for all sufficiently small h, then f(hP). If there exist constants at > 0
and a > 0 such that athp < I1 <- ahp for all sufficiently small h, then O(hP).

2. The primal Newton barrier direction.

2.1. Newton’s method applied to barrier functions. Suppose that we wish
to minimize the barrier function (2) using Newton’s method, and that the barrier
Hessian is positive definite. Let x be the current iterate; the next iterate is then
defined as

(6) x + cpN, where HBpN -g,,

with H. and g evaluated at x. The vector p is called the (primal) Newton direction;
the modifier "primal" is used to emphasize that only the x variables are treated as
independent.

In unconstrained minimization, the positive step c in (6) is chosen using a line
search to produce a sufficient decrease in the function being minimized. For the
barrier function (2), c must also retain strict feasibility in the next iterate, so that
c(x + p) > o.

An iteration for which c 1 in (6) is said to involve a pure Newton step. When
the Hessian at the solution is positive definite, a successful application of Newton’s
method near the solution typically takes only pure Newton steps; choosing c 1 in
this region is known to produce quadratic convergence as well as a sufficient decrease
(see, for example, [DSS3], [FLEST]).

Despite the favorable behavior of Newton’s method for general problems, New-
ton’s method has been known for many years to be problematical when applied to
barrier functions because of inherent ill-conditioning in the Hessian. In [MuR71,
LOOT69], it was shown that, when 0 < rh < n, the barrier Hessian is ill-conditioned
at points on the barrier trajectory for sufficiently small it, and is asymptotically singu-
lar. (This ill-conditioning is one of the factors that led to the decline in popularity of
barrier methods in the 1970s.) Recently, it was proved in [WR94] that the barrier Hes-
sian is ill-conditioned in an entire neighborhood of x*. Although this property might
appear to imply that the Newton direction cannot be computed without substantial
numerical error, it is also shown in [WR94] how a highly accurate approximation
of the Newton step can be calculated near x*. Active-set strategies for overcoming
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the ill-conditioning for nonlinearly constrained problems are discussed in [WR76] and
[NS93]; see [GMPS91] for a technique designed for linear and quadratic programs in
standard form. Unfortunately, accurate calculation of the Newton direction does not
guarantee an effective algorithm, as we shall show in the remainder of this paper.

2.2. Long- and short-step methods. A classical barrier algorithm (see, e.g.,
[FM68]) typically calculates accurate minimizers of the barrier function for a decreas-
ing sequence of barrier parameters, and so moves from x(/) to x(#), where/ exceeds
# by some "reasonable" factor, say 10. In more recent practical algorithms, the idea is
to improve efficiency by performing only an inexact minimization of the barrier func-
tion for each particular barrier parameter. For any given value #, Newton iterations
of the form (6) are executed until some measure of improvement has been achieved;
the barrier parameter is then reduced and the process repeated. The hope is that
only a very small number of Newton iterations (perhaps even one) will be needed for
each value of barrier parameter.

The complexity analyses given in [GON91], [RV89], INN94], [ADRT], [JAR92],
[DRT92], and [DH92] (among others) reflect a broad classification of barrier algo-
rithms as "short-step" and "long-step" see [GoN92] and [DH92] for precise definitions
of these terms and surveys of related complexity results. In short-step methods, the
barrier parameter is reduced at a sufficiently slow rate to ensure that only a single
pure Newton step needs to be performed for each value of the barrier parameter; in
these methods, # is typically multiplied at each step by a factor less than but very
close to one--for instance, 1- 1/(9v/). In long-step methods, the barrier parameter
is reduced by a more generous factor, say 1/10, but the analysis assumes that several
Newton steps (some involving a line search) are carried out for a given barrier param-
eter. Practical methods for nonlinearly constrained problems are invariably long-step
methods.

Nonlinear problems are treated in [NN94], [JAR92], [DRT92], and [DH92] under
certain assumptions on the problem functions--for example, convexity and -self-
concordancy of the barrier function. As defined by Nesterov and Nemirovksii INN94],
a convex function from a region 9r E 74n to 74 is -self-concordant in jr0 if (i) is
three times continuously differentiable in 0 and (ii) for all y E jr0 and all h 74n,
the following inequality holds:

V3(y)[h, h, h]l 2, (hTV2(y)h)3/2,
where V3(y)[h, h, hi denotes the third differential of at y and h. (The logarithmic
barrier functions associated with linear and convex quadratic programming are self-
concordant with 1.) The complexity of long-step methods for suitable convex
nonlinear programs can then be analyzed using the H-norm, a distance measure
defined using the positive definite barrier Hessian:.

(7) Ilpll- __1 pTH.p;

note that our barrier function (2) differs by a factor of 1/# from those in the cited
papers. When p is the Newton direction PN, it follows from (6) that the H-norm of
pN satisfies

(s) pvgB.
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The proofs in INN94], [JAR92], [DRT92], and [DH92] show that a pure Newton step
whose H-norm is sufficiently smallwsay, less than 1/(3)--is guaranteed to be strictly
feasible and to reduce the barrier function. However, these results do not explain why
a pure Newton step may be unsuccessful in a long-step method for a general problem;
we now broadly analyze the reasons.

2.3. Properties of the barrier gradient and Hessian. It is assumed hence-
forth that we are performing Newton’s method to minimize B(x,#) for a general
nonlinear problem, that the current iterate is x, and that h > 0. (Because we do not
assume convexity and self-concordancy, only local results can be obtained.) The bar-
rier Hessian is presumed to be positive definite at any point of interest; this property
is assured for points sufficiently close to the barrier trajectory (see result (b) in 1.2).

We consider strictly feasible points x close to x* in the sense that

(9) c(x)>O and IIx-x*ll_<5
for suitable small 5. Observe that, for small enough 5 in (9), each inactive constraint

cj (x) is bounded above because of its smoothness in the closed bounded region defined
by the second relation in (9); furthermore, cj(x) is bounded away from zero because of
this same property and the fact that cj(x*) > 0. Thus, when constraint j is inactive
at x*., Ici(x)l O(1) for all x satisfying (9).

Under assumptions (i)-(v) of 1.2, it can be shown that IIx* x(#)l O(#); see,
e.g., [FM68] or [WR92] for details. Since our intent is to move from x toward x(#),
x(#) should be closer to x* than x. We thus assume that

(10) # 0(5).
Given that x satisfies (9) and # satisfies (10), we first examine the structure of

the barrier gradient (3). Full column rank of i.T(x*), continuity of g(x) and A(x),
and optimality conditions (i)-(ii) of 1.2 imply that the objective gradient satisfies

(11) g(x) tT(x)* + O(5), so that g(x) _T(x)*.
As noted above, the elements of C(x) corresponding to inactive constraints are O(1),
so that the quantity #/cj(x) in (3) is O(#) when constraint j is inactive. Because all
constraint functions are smooth, IIA(x)ll is bounded above for all x satisfying (9). We
conclude from the form of (3) and (11) that, near x* (not necessarily near the barrier

trajectory), the barrier gradient lies almost entirely in the range of AT(x)
(12) g. , Tj* tTd--le.

Now consider the barrier Hessian (4). In a sufficiently small neighborhood of
z*, smoothness of the constraint functions implies that the portion of the matrix

#ATC-2A corresponding to inactive constraints is O(#). In analyzing the remainder
of the barrier Hessian, we make the further assumption that z is close enough to
the barrier trajectory so that the smallest active constraint value is not too small
compared to #; formally, this property means that

(13) min cj(x) f(#) so that max # O(1).
je e c(x)

When (13) applies at x,
m

H(x)
cj(x) Hi(x) O(1),
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since the quotient #/cj is O(#) for inactive constraints and O(1) for active constraints.

Finally, the matrix #T0-2 is O(1/#) and hence dominates the barrier Hessian,
which accordingly resembles a large matrix whose column space is the range of T:

(14) HB

A more detailed discussion of the nature of the barrier Hessian under various assump-
tions is given in [WR94].

2.4. Approximating the Newton equations. We have just derived approxi-
mate expressions for gB and H that apply when x and It satisfy (9), (10), and (13).
If we use (14) and (12) in (6), the Newton equations "look like" the following relation,
which involves only vectors in the range of T:

(15) A-Apu -A* + ItflT-le.
Since AT has full column rank at x*, it also has full column rank near x*, and may be
cancelled from both sides of (15). The Newton equations are thus (approximately)

Suppose that the jth constraint is active. The corresponding Newton "almost-
equation" from (16) is

(17)

-j + or
Cj Cj

2 *
aZfpN Cj- CjAj.

We now show why, if x is a previous point on the trajectory (or close to such a

point), a pure Newton step is likely to be infeasible. Suppose that x is very close to
x() for some suitably small but old barrier parameter , where > It. The full rank
of (x*), optimality conditions (i)-(ii) and relation (5) imply that

(18)

which means that

,
Substituting for /j in (17), we obtain a relation that holds approximately for the
Newton direction calculated at x(/2) with barrier parameter It:

(19) apv -cj(- 1).
When/2 exceeds It by some reasonable factor, i.e., the ratio it is greater than

(say) 2, the relationship (19) strongly suggests that x + PN will be infeasible, for the
following reason. The step pt from x to a zero (the boundary) of the locally linearized
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Tjth constraint satisfies cj + ajp 0, which represents a relation similar in form to
(19), but with a coefficient of unity on -cj"

T
ajpt -cj.

Since the desired minimizer x(#) is strictly inside the boundary, the step p from a

point near x(/5) to x(#) must move toward but stop short of the boundary. One would
therefore expect that, for each active constraint j,

(20) T with 0< <1ajp -cj, "),

In contrast, the factor multiplying -cj on the right-hand side of relation (19) is
larger than one. Hence the Newton step is likely to move beyond the boundary and,
consequently, to be infeasible.

Suppose, for example, that # is smaller than/5 by a factor of 10; this would be
typical in a practical (long-step) barrier algorithm. According to (19), the Newton
direction satisfies

(21) apx .. --9Cj,

and will thus tend to produce substantial infeasibility.

2.5. A numerical example. Consider the following (nonconvex) numerical ex-
ample:

(22) minimize

subject to

--gXl -- 2x2 x3
_1 2 1>0

x23 +1 >_0

>_o.

1 2)T where the first and second con-The optimal solution of interest is x* (,
)T.straints are active, with Lagrange multiplier vector A* (, , 0 All calculations

given in this paper were performed on a Silicon Graphics 4D/440VGX using binary
IEEE double-precision arithmetic (around sixteen decimal digits). All displayed num-
bers are correctly rounded to the number of digits shown.

Let the vector d(x,#) be defined as d(x,#) #/cj(x), j 1, m. For
#- 10-3,

x- -0.99933 c- 1.9964 10-3 d- 0.50089

1.9992 2.7489 3.6378 10-4

where c, denotes c(x,) and d, denotes d(x,, It). For It- 10-4,

x -0.99993 c 1.9996 x 10-4 dt,

1.9999 2.7499

For It- 10-5,

0.500010

-0.999993

1.99999

3.99997 x 10-5 /cu 1.99996 x 10-5 du
2.74999

0.25002

0.50009

3.6365 10-5

0.250002

0.500009

3.63638 x 10-6
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If we choose x as x(10-3), and pick # 10-4, so that//#-- 10, we have

PN -6.0164 10-3 fi.pN -3.5696 10-2

3.2153 10-3
-1.8025 10-2

which gives

(23) al (x)Tp
--8.931 and

a2(x)Tp
--9.029

l(X) (x)

as predicted by (21). Taking a step of unity along the Newton direction leads, as
expected, to an infeasible point. Relationship (19) also applies for x x(10-3) and
# 10-5, with/5/# 100; in this case,

al(x)TpN
-97.8 and

a2(x)TpN
--99.5.

Cl(X) C2(X)

When the barrier Hessian is positive definite, the H-norm of p (8) used in
complexity analyses should be helpful as a local estimate of the quality of the Newton
step. Applying (8) in problem (22) at x(10-3) with # 10-4, we find that

IIpll- 161.5,

which is certainly not small.
Although cutting back the step taken along the Newton direction will eventually

restore strict feasibility, such a strategy may end up at a point very near the boundary,
where the Hessian will tend to be even more ill-conditioned (see [WR94]) and where
the H-norm of the next Newton step is unlikely to be small. A special line search
(see, e.g., [MW94]) can help to produce a good next iterate. Our first preference,
however, would be to find a direction along which a unit step can be taken with
impunity in a close neighborhood of the solution, where all the asymptotic properties
of a well-behaved Newton method should apply.

2.6. The barrier trajectory direction. In light of the unfavorable relation
(19), an obvious question is what value ap "should" have if p is the step to x(#) from
x(/5) rather than the Newton step. Recall that, along the barrier trajectory, the ratio,
#/cj converges to j. We would like to choose p such that

(24) # *
c(x + ) " ""

If, for an active constraint j, a good estimate of Aj is available, say /j, a search
direction p could be required to satisfy a relation like (24), but involving a linearized
version of the constraint:

(25) # ap .. -cj
Ajcj + ap )j or tt

Linear constraints based on (25) appear in the barrier trajectory algorithm proposed
by [WR76], in which the search direction solves an equality-constrained quadratic
program with constraints

fi.p -c + #.-le,



INFEASIBILITY OF A PRIMAL NEWTON STEP 9

where is a prediction of the active set and is a set of associated multiplier
estimates.

To see the form of the relationship (25) for points on the trajectory, suppose that
the current point is x(/5) for some suitably small/5. The obvious candidate for the
jth multiplier estimate is ft/cj; see (18). With this choice for j, (25) becomes

(26) ap---cj(1-),
and p is likely to stop short of the boundary (as in (20)) rather than produce infeasi-
bility (as for the Newton direction; see (19)).

For problem (22), the step p34 from x(10-3) to x(10-4) and the step P35 from
x(10-3) to x(10-5) are

/ -9"670610-4 /P34 -5.9926 10-4

7.2091 10-4

When x- x(10-3) and # 10-4,

al(x)Tp34
--0.8996

and p35

-1.0651 10-3 /-6.5925 10-4

7.9316 10-4

a2(x)Tp34
and -0.8993;

since #//5 0.1, relation (26) holds approximately for the active constraints. Simi-
larly, when x x(10-3) and # 10-5, with #//5 .01,

al(x)Tp35
--0.9896 and

a(x)Tp35
--0.9893,

CI(X) C2(X)
again approximating (26).

2.7. When a pure Newton step works well. Because the barrier Hessian
is positive definite at x(#), a pure Newton step must eventually be good when x is
sufficiently close to x(#). Given the poor results of 2.4 when x is taken as

(a point that might intuitively appear to be close to x(#)), an obvious issue is the
meaning of "sufficiently close." We have already mentioned the work of INN94],
[JAR92], [DRT92], and [DH92], where it is shown for certain convex problems that
the Newton step is guaranteed to be successful when its H-norm is small. It is
interesting to consider what information about the Newton direction can be deduced
from the properties involving ft. given in 2.4.

Consider relation (17) for the Newton step in the form

T

# 1
ajpN

,’ Cj,j.
Cj

If lapNl is sufficiently small relative to cj, so that

(27)
ap ,
cj

we may make the approximation

(28)
1

1+
ajTp

T

1 ajPN Cj

Cj

where 0</<1,
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When (28) holds, we may rewrite property (17) satisfied by the Newton direction p
as

T

( ) * *ap., ajp
cj,j + ,jp Cj,’j 1 +

Cj

or, after rearrangement,

apN ,. -cj +
,j

which is the same as relation (25) derived from properties of the barrier trajectory.
Following this interpretation, the Newton direction can be a good approximation of
the step to x(#) only when the ratio lapN/cjlis small enough for all active constraints.
This corresponds to the property that a unit step along the direction stops short of
the boundary of the linearized active constraints; see (20). It should be observed that
any property involving ap for the active constraints can be viewed as a condition on

the component of the search direction in the range space of iT, since p is unaffected
by the portion of p in the null space of .

A property with the same flavor as (27) can also be derived by considering an

approximation to the H-norm of the Newton step. Because the barrier Hessian is
dominated by pjT--2j near the trajectory (see (14)), the H-norm of the Newton
step satisfies

1 T TjT-2jp_ E Cj
pvHBp , pN

P jE,A

and will be small only when the ratio aPN/Cj is small in magnitude for every active
constraint.

To illustrate these estimates, consider problem (22) with # 10-4 and a starting
point of x(10-3). At the first iteration, the ratio la.p/cjl is approximately 9 for
both active constraints (see (23)), the squared H-norm of p is 161.5, and the pure
Newton step is infeasible. For the second iteration, we have

Cl C2

and once again the Newton direction is infeasible. At iteration 3, the estimates start
to become small, namely,

Cl C2

At this iteration (and all subsequent iterations for this value of #), the pure Newton
step is feasible and produces a sufficient decrease in the barrier function.

3. Conclusions. Complexity analyses of barrier methods for nonlinear convex
programming (in particular, INN94], [JAR92], [DRT92], and [DH92])indicate that
pure Newton steps cannot necessarily be taken successfully unless the barrier param-
eter is reduced by only a tiny amount. Using local analysis for general nonlinearly
constrained problems, we have seen why, following a computationally reasonable (long-
step) reduction in the barrier parameter from/5 to it, a pure Newton step is almost
certain to be infeasible even when the initial point is
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This situation seems unsatisfactory because asymptotic, results (see 2.6) indicate
that, under these circumstances, we should be able to calculate a good step toward
the next barrier minimizer. One way to interpret the difficulty is that a formulation
in terms of only the primal variables essentially ignores available information about
the Lagrange multiplier estimates.

If one is willing to predict the active set, a barrier trajectory algorithm (see
[WR761 and [MW78]) might be appropriate. Techniques based on maintaining mul-
tiplier estimates for all the constraints also seem promising; for example, a recently
proposed interior method for nonlinear convex programming [JS95] includes tests on
the quality of multiplier estimates in its calculation of the search direction.

Finally, a strategy not requiring prediction of the active set is to apply Newton’s
method to solve some form of the nonlinear primal-dual equations, involving both
x and multiplier estimates , that hold along the barrier trajectory. For example,
the standard primal-dual equations appear in the algorithm proposed by McCormick
[McC91] for convex programming:

g(x) A(x)TA and cjAj #, j 1,...,rn.

An obvious advantage of a primal-dual formulation is that the associated matrix is not
inherently ill-conditioned as the solution is approached. Several Newton-like strategies
that are derived from primal-dual relations and avoid the difficulties described here
are suggested in [CGT93]. Primal-dual methods for general nonlinearly constrained
problems will be considered in more detail in a future paper.

Acknowledgment. I am very grateful to Kurt Anstreicher for pointers to related
work. I also thank the referee for several helpful comments and suggestions.
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INTERIOR POINT METHODS IN SEMIDEFINITE PROGRAMMING
WITH APPLICATIONS TO COMBINATORIAL OPTIMIZATION *

FARID ALIZADEHi

Abstract. This paper studies the semidefinie programming SDP problem, i.e., the optimiza-
tion problem of a linear function of a symmetric matrix subject to linear equality constraints and
the additional condition that the matrix be positive semidefinite. First the classical cone duality
is reviewed as it is specialized to SDP is reviewed. Next an interior point algorithm is presented
that converges to the optimal solution in polynomial time. The approach is a direct extension of
Ye’s projective method for linear programming. It is also argued that many known interior point
methods for linear programs can be transformed in a mechanical way to algorithms for SDP with
proofs of convergence and polynomial time complexity carrying over in a similar fashion. Finally, the
significance of these results is studied in a variety of combinatorial optimization problems including
the general 0-1 integer programs, the maximum clique and maximum stable set problems in perfect
graphs, the maximum k-partite subgraph problem in graphs, and various graph partitioning and cut
problems. As a result, barrier oracles are presented for certain combinatorial optimization problems
(in particular, clique and stable set problem for perfect graphs) whose linear programming formula-
tion requires exponentially many inequalities. Existence of such barrier oracles refutes the commonly
believed notion that to solve a combinatorial optimization problem with interior point methods, its
linear programming formulation is needed explicitly.

Key words, semidefinite programming, interior point methods, eigenvalue optimization, com-
binatorial optimization, maximum cliques, perfect graphs, graph partitioning
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1. Introduction. Consider the following optimization problem that we call the
standard semidefinite programming (SDP) problem:

min(C.X" Ai.X=bi fori=l,...,m andX0},

where C, A’s, and X are n n matrices, and X is symmetric; the operation is the
inner product of matrices: A B:.-"],j AjB trace ATB; and the "inequality"
constraint

_
indicates the LiJwner partial order; that is, for real symmetric matrices

A and B, A B (respectively, A >- B), whenever A- B is positive semidefinite
(respectively, positive definite.)

The SDP problem is an extension of linear programming (LP). Specifically, if the
condition that X is a diagonal matrix is added to the constraint set then (1.1) reduces
to linear programming. Semidefinite programs arise in a wide variety of applications
from control theory (see [63] and [20]) to combinatorial optimization (see 5 below)
as well as structural computational complexity theory (see [21]). The oldest form
of semidefinite programming is the evaluation of eigenvalues of a symmetric matrix.
In fact, one can reformulate the classical theorems of Rayleigh-Ritz for the largest
eigenvalue, and those of Fan for the sum of the first few eigenvalues of a symmetric
matrix as semidefinite programs; see [53], [54] and 4. However, for these special
cases, techniques of this paper do not seem to be appropriate since better algorithms
from both theoretical and pragmatic points of view already exist. Most nontrivial
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semidefinite programs (those that are not equivalent to evaluation of eigenvalues of
a symmetric matrix by a simple transformation) arise in the form of minimizing the
largest, or sum of the first few largest, eigenvalues of the matrix X subject to some
linear constraints on X. An early example of such problems was studied by Donath
and Hoffman in connection with graph bisection and graph partitioning problems [17],
[18]; see 5. Cullum, Donath, and Wolfe studied the problem of minimizing the sum of
the first few eigenvalues of a linearly constrained matrix in [15]. They analyzed this
problem from the point of view of nonsmooth optimization. Also Fletcher studied
a similar problem and derived expressions for the subgradients of the sum of the
first few eigenvalues of a symmetric matrix and formulated optimality conditions
for this problem. In the same spirit as Fletcher, Overton [51] studied the largest
eigenvalue of a symmetric matrix as a convex, but nondifferentiable function. Based
on earlier work [24], in [51] Overton derived a quadratically convergent algorithm for
the problem of minimizing the largest eigenvalue of an affinely constrained matrix.
This work was further extended in [52] where both second order methods based on
sequential quadratic programming and first order methods based on sequential linear
programming for large scale problems were developed.

The algorithms contained in the above works are in the same spirit as the simplex
method for LP in that they are all active set methods and traverse the boundary of
the feasible set to converge to the optimal solution. For that reason their worst case
computational complexity is likely to be at least as bad as that of the simplex method,
though in practice they may be quite good.

Semidefinite programs, however, are polynomial time solvable if an a priori bound
on the size of their solution is known. This point was implicit in [41] for a special
instance of the SDP problem. It was proved in the work of GrStschel, Lovz, and
Schrijver, [30]. Polynomial time solvability of SDP is a direct consequence of the
general results based on the ellipsoid method for convex programming. The main
point essentially is that optimization of a linear function over a convex set endowed
with a separation oracle and an a. priori bound on the objective can be achieved in
polynomial time using the ellipsoid method. For the SDP problem, the separation
oracle is to determine whether a given symmetric matrix is positive semidefinite and
if not provide a separating hyperplane. Cholesky factorization or eigenvalue and
eigenvector evaluations easily provide polynomial time oracles for this task. See [32]
for a thorough treatment.

The ellipsoid method, however, has not proven practical in most applications,
including SDP. A more recent development is the possibility of using interior point
methods to obtain polynomial time algorithms for semidefinite programs. The earliest
work in this direction to our knowledge is that of Nesterov and Nemirovskii [48]. In
this important work the authors develop a general approach for using interior point
methods for solving convex programming problems that is based on the concept of
p-selfconcordant barrier functions. See [50] for a more recent complete treatment
of this subject. Nesterov and Nemirovskii show that for any convex set K that is
endowed with a p-selfconcordant barrier function, there is an interior point algorithm
that optimizes a linear function on K. Furthermore, every O(vffi iteration of this
algorithm results in an interior point with half the distance to the optimal solution. As
a special case, Nesterov and Nemirovskii show that linear programs with p inequality
constraints, quadratic programs with p convex quadratic constraints, and semidefinite
programs over p x p matrices all admit p-selfconcordant barriers. Therefore, the
authors extend the revolutionary result of Karmarkar [36] to a rather general class of
convex programs.
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In this paper we study interior point methods for semidefinite programs from an
alternative point of view. Our work [1] started somewhat later than, and independent
of, Nesterov and Nemirovskii [48]. Nesterov and Nemirovskii obtain their complexity
theorems by specializing their general results to SDP. We, on the other hand, take
a specific interior point algorithm for LP (i.e., Ye’s projective potential reduction
method [66]) and extend it to SDP. Furthermore, we argue that many known interior
point LP algorithms can also be transformed into an algorithm for SDP in a mechanical
way; proofs of convergence and polynomial time computability extend in a similar
fashion. Later Jarre in [35] and Vandenberghe and Boyd in [63] developed similar
interior point algorithms for special forms of SDP.

Polynomial time interior point methods for SDP have some interesting conse-
quences for combinatorial optimization problems. To solve such a problem by the
ellipsoid method, an explicit listing of all of the inequalities in its LP formulation
is not needed. Rather, one only needs a separation oracle and an initial ellipsoid
containing its feasible region to start the process. However, it is generally believed
that to apply interior point methods to the same combinatoriM optimization problem
one needs to have the explicit listing of all of the inequalities in the LP formulation;
see [32] and [27]. For instance, Goldfarb and Todd in their survey article on linear
programming write:

"... it appears that its [Karmarlur’s new algorithm] theoretical im-
plications are far more limited than those of the ellipsoid method. In-
deed, Karmarkar’s algorithm requires the linear programming prob-
lem to be given explicitly with all its constraints and variables listed,
and does not appear directly susceptible to column or constraint gen-
eration. Thus it cannot be used to provide polynomial algorithms for
several combinatorial optimization problems that have been success-
fully analyzed by the ellipsoid method."

With hindsight we show that this common belief is not completely accurate.
Specifically, in this article we present examples of combinatorial optimization prob-
lems whose LP formulations require exponentially many inequalities, and yet one can
design interior point algorithms that solve them in polynomial time. In fact, we should
emphasize that the general results of Nesterov and Nemirovskii imply that in principle
one can apply interior point methods to solve combinatorial optimization problems
without explicit knowledge of their LP formulation. All that is required is a poly-
nomial time computable self-concordant barrier oracle with a polynomially bounded
parameter. The most interesting example is the clique and stable set problem in a
class of graphs known as perfect graphs. In 5 we construct such a barrier indirectly
by an SDP formulation of the problem due to Lovsz. This example is particularly
interesting because presently no LP formulation of the stable set and clique problems
for perfect graphs with polynomially bounded number of inequalities is known.

LP interior point methods have been used by Goldberg et al. [26] to derive
sublinear time parallel algorithms for the bounded weight assignment problem. We
show that maximum stable sets for perfect graphs can be computed in randomized
sublinear parallel time. Furthermore, based on the work of Lovsz and Schrijver
[42], we argue that in a branch and bound scheme for 0-1 programs, interior point
SDP algorithms may efficiently yield much sharper bounds than possible from LP
relaxations of such problems.

In 2 we review the so-called cone duality theory as specialized to semidefinite
programs. This theory, though quite classical, is somewhat forgotten in optimization
literature. It turns out that at least for SDP, cone duality, which is a generalization of
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LP duality, is most appropriate for interior point methods. (This point of view is also
expressed in the latest edition of Nesterov and Nemirovskii [50].) In 3 we develop
an interior point algorithm which, as we mentioned, is a direct extension of Ye’s
projective potential reduction method. Furthermore, we propose a recipe to extend
mechanically many known interior point algorithms for LP into similar algorithms for
SDP. In this section we also review some differences between SDP and LP as far as
interior point methods and polynomial time algorithms in general are concerned. In
4 we build on the results of Overton and Womersley [53], [54] and derive semidefinite
programming formulation for various eigenvalue optimization problems. We also state
complementary slackness results for these problems. Finally, in 5 we study some
applications of SDP interior point methods to various combinatorial optimization
problems. These include 0-1 integer programs of [42], maximum clique and maximum
stable set problems in graphs, and various partitioning and cut problems in graphs.

Notation and terminology. Unless otherwise stated the following convention
and terminology is used throughout this article.

The SDP problem refers to any optimization problem with any mixture of (sym-
metric) matrix and scalar-valued variables that has a linear objective function and any
combination of linear equality or (either component-wise >_ or Lbwner >-) inequality
constraints.

We use lower case boldface letters to name column vectors and upper case letters
to name matrices. In particular, 1 and 0 denote vector of all ones and the zero vector,
respectively, and I and 0 denote the identity and zero matrices, respectively. Also,
Diag(x) denotes the diagonal matrix made up of the vector x; diag(X) is the vector
made up of diagonal entries of matrix X. For a vector x, xj is its jth coordinate;
similarly, Xij is the i, j entry of matrix X. We sometimes refer to members of iRn as

n-vectors. {R-r- is the set of symmetric n x n matrices.

The ith largest eigenvalue of a symmetric matrix X is Ai(X) (or sometimes an-
other lower case Greek letter, e.g., wi(X)); its ith largest eigenvalue absolute-valuewise
is (X) or w(X). The Lbwner partial order and the dot product were defined
above; the symbol >_ is used for componentwise comparison between two matrices or
two vectors.

For matrices, ]]X]] and ]]X]]2 are the Frobenius and the spectral norms of X,
respectively. Recall that in case of symmetric matrices, IIXII2 equals the spectral
radius p(X)= I,l(x)l and

For vectors, IIxll and Ilxll are the Euclidean and the maximum norms of x; also
I[xllp:=( [xfl) 1/p is the p-norm of x.

If A is a p q matrix then vec A is a pq column vector made up of columns of A
stacked on each other. If v is a pq-vector then Matpq v is a p X q matrix whose ith
column is made up of the entries at (i 1)p + 1 through ip in v; if p and q are clear
from the context we drop them from the subscript. For instance the set of relations

Ai X bi, for 1,.. m may be written as JlvecX b, where A E mxn, that
is row of j[ is vecT(Ai). Also, Mat(j[Ty) yiAi.

A (R) B is the Kronecker product of matrices: if A E mxn and B iRpxq then
A (R) B npXmq is an m x n block matrix whose i,j block is aijB. We use the
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following facts occasionally:

(A (R) B)(C (R) D) (AC) (R) (BD) and vec(ABC)-- (CT (R) A)vec(B).

See Graham’s text [29] for definitions and properties of Kronocker products.
If I and J are subsets of integers from 1 to p and from 1 to q, respectively, then

AI,j is the submatrix of A whose rows are taken from those rows of A indexed by I
and whose columns are indexed by J. AI. and A.j indicate rows indexed by I and
columns indexed by J, respectively. Also if A E mp and B E mq then [AIB
is an m (p + q) matrix whose columns are made up of columns of A followed by
columns of B.

We use := to define or name the left-hand side in terms of the right-hand side; in
algorithms :- is used for assignment.

For any convex cone/C, its polar cone/* is the set

/C*’={x for all a E/C, aTx >_ 0}.

Unless otherwise stated, we use :P for the cone of positive semidefinite matrices. Note
that :P* P. (This fact is direct consequence of Fejer’s theorem in [33].)

G (V, E) is a simple undirected graph without loops or multiple edges. A stable
set S in G is a subset of vertices that are mutually nonadjacent. A clique K in G is
a subset of vertices that are all mutually adjacent. A k-partite graph is one whose
vertices can be partitioned into k subsets Vj, for j 1,... ,k, where each V is a
stable set. A clique covering of G is a collection Kj, j 1,..., k of sets of vertices,
where each Kj is a clique, and tgK V.

2. Duality theory. A duality theory quite similar to that of LP may be con-
structed for the SDP problem. In this section we state the theory for the standard
form SDP. We also include proofs of basic results to make the paper self-contained.
Duality theory for more general forms of SDP follows exactly as in LP.

We should mention that LP duality has been extended to optimization problems
over convex cones in many works. It is easy to see that any cone K: C_ n, which is
closed, pointed (that is,/C f (-K:) {0}), and convex, induces a partial order >t: on
: x >_to y if and only if x y /C. For instance, the nonnegative orthant and the
positive semidefinite matrices induce the componentwise _> and the Lhwner

_
partial

orders, respectively. The duality theory in LP can be extended to generalized LP
problems where >_ replaces >_ in the primal problem and >_:. replaces >_ in the dual
problem.

Duffin in [19] was the first one to study such generalized duality theories. Later,
Hurwicz [34], Ben-Israel, Charnes and Kortanek [9], Borwein and Wolkowicz [11],
[12], and Wolkowicz [64], among others, developed alternative formulations of the
duality theory. For a comprehensive treatment of generalized duality theory from
the point of view of infinite dimensional linear programs, see the text of Anderson
and Nasa [3] and for alternative extensions refer to [11], [12]. It is worth mentioning
that Anderson and Nash in [3] study the duality theory from the point of view of
basic feasible solutions and extend the "tableau based" proofs of LP duality. The
latest version of the Nesterov and Nemirovskii text [50] also treats cone duality for
the general convex programs. Papers of Overton and Womersley [54] and Fletcher
[23] treat duality theory for the eigenvalue optimization problem from the point of
view of subdifferentials. Such an approach is related to the Karush-Kuhn-Tucker
duality theory and relies on derivatives or subgradients. Also Lovsz in [41], Grhtschel,
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LovAsz, and Schrijver [30]-[32], and Shapiro in [61] study more or less the same duality
theory as we do, but their treatment is restricted to a special form of SDP.

We now proceed to state and prove duality for the SDP problem. However observe
that the following development--in particular, the weak duality Lemma 2.1, Lemma
2.2, the extended Farkas Lemma 2.3, and the strong duality Theorem 2.8--actually
apply to generalized LP over any closed, pointed convex cone/ (in the primal) and
/* (in the dual.)

In semidefinite programming it is convenient to assume that C and Ai are sym-
metric. There is no loss of generality in this assumption. If C is not symmetric, since

(C + CT). The same argument holds for theCT X C X, we can replace C by
Ai’s. These assumptions of symmetry allow us to formulate the pair of primal and
dual standard SDP problems:

Primal Dual
min C X max bTy
s.t. A. X b for 1,.. m s.t. C "Y]=I yAi >- O.

X>-O

Notice the similarity of the primal and dual SDP pair to the corresponding LP pair.
First we state the weak duality lemma.

LEMMA 2.1. Let X be any feasible matrix for primal and y any feasible vector
for dual. Then C X >_ bTy.

Proof. We have

m m

i=1 i=1

C- yA X
i--1

>0.

The last inequality is true because the inner product of two positive semidefinite
matrices is nonnegative due to self-polarity of the positive semidefinite cone. [:]

We now state generalizations of the Farkas lemma. Such generalizations for ar-
bitrary convex cones have been studied as early as 1958 by Hurwicz [34]. See [3] for
references on the history and various extensions of the Farkas lemma to nonpolyhedral
cones. Here we study the relevant forms of this lemma in the special case of SDP.

It is not possible to generalize the classical Farkas lemma to nonpolyhedral cones
without additional qualifications. The difficulty arises from the fact that affine trans-
formations of closed cones are not necessarily closed, and therefore the appropriate
strong forms of separation theorems cannot be invoked. (For polyhedral cones how-
ever closedness is preserved under affine transformation.) For our purposes we need
to have that the set

K1 :--.A(7:) {4vecX X __. 0}
is closed. One class of sufficient conditions for closedness of K is based on assuming
that certain sets associated with P have nonempty interiors. Such conditions are
sometimes referred to as Slater-type constraint qualifications. Though these conditions
are not the weakest possible, they are sufficient for the purposes of this paper. In

Alternative extensions without closedness assumption are treated in [11], [12], [64].
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any case, we need to assume nonemptyness of the interior for both primal and dual
problems so that we have a valid interior point algorithm. Furthermore, in 3 we
show how any pair of primal and dual semidefinite programs may be transformed
into an equivalent pair whose K1 has nonempty interior as long as an a priori bound
on the size of primM and dual feasible sets are known. The following is a lemma of
Slater-type constraint qualifications:

LEMMA 2.2. If Mat(jtTy) - 0 for some y E m, then K1 is closed. (Recall that
Mat(ATY) E yiAi.)

Proof. Let ::={Mat(j[Ty) y e Rm}. The condition in the lemma says that

r Int P O.

Thus any translate of the linear subspace also intersects P and its interior. This
is equivalent to saying that every symmetric n n matrix can be written as the sum
of two matrices, one of which is positive semidefinite and the other belongs to .
Therefore, --- P + . Taking the polar we have

{0} =pn+/-.

Here _L is the set {X JtvecX 0}. Hence we have that X 0 is the only solution
of the system ,4 vecX 0, and X

_
0 and by Theorem 9.1 of [59, p. 73] we conclude

that K1 is closed.
Now we state the most common form of the Farkas lemma as given in Schrijver’s

text [60] and as extended to the positive semidefinite cone.

LEMMA 2.3 (The extended Farkas lemma). Let b Nm and .4 mxn2 be a
matrix such that its rows jtTi. vecAi where Ai are symmetric for i 1,...,m.
Furthermore, let there be an m-vector y such that Mat(j[Ty) - 0. Then there exists
a symmetric matrix X

_
O, with fit vecX b if and only if yTb _> 0 for all y for

which Mat(jtTy)

_
0.

Proof. For the only if part we have,

bTy (4 vecX)Ty Mat(jtTy). X _> 0.

(The last inequality is due to self-polarity of the positive semidefinite cone.) To prove
the if part, suppose that the system A vecX b and X 0 is infeasible. Then
b K1 {A vecX X 0}. By Lemma 2.2, K1 is a closed cone and thus there
must exist a hyperplane, specifically a linear half-space, that separates b and K1, i.e.,
there exists some vector y such that bTy < 0 and (,4 vecX)Ty >_ 0 for all X 0,
(see [59, Whm. 11.7, p. 100]). But this means that X Mat(ATy) _> 0 for all X

_
0,

which is equivalent to Mat(ATy) - 0, and the if part of the theorem is proved. D
We may formulate and prove several other variants of the Farkas lemma in a

similar vein, all of which are extensions of lemmas for the componentwise inequalities
as given, for example, in Schrijver’s text [60]. Related extensions for infinite programs
have been studied in [34] and [13] and in the case of matrix variables in [14]. In all
of these extensions we need to assume either some closedness criteria, or the lemma
must be modified by using cones other than P (as in [64], for instance.) We mention
here a few more.

LEMMA 2.4. Let jt n2xm be a matrix whose columns are linearly independent
and are of the form vecAi for symmetric Ai, and B e_. Assume that there
exists some symmetric matrix Y - 0 such that (vecy)Tjt-- 0. Then Mat(jix)

_
B

has a solution in x if and only if B Y >_ 0 for all Y

_
0 for which (vecy)Tjt 0.
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LEMMA 2.5. Let A E ,xn and B ,xm. Suppose there exist some matrix Y
such that ATyA - O. Then the system AXAT B and X - 0 has a solution if and
only if for all symmetric matrices Y, ATyA - 0 implies that B Y > O.

LEMMA 2.6. Let A mxn and B }mxm. Suppose there exist some matrix Y
such that ATyA 0 and Y - O. Then the system AXAT

_
B has a solution if and

only if for all symmetric matrices Y

_
0 and ATyA 0 implies that B Y > O.

LEMMA 2.7. Let A }mxn and B .mxm. Suppose there exist some matrix Y
such that ATyA - O. Then the system AXAT

_
B and X 0 has a solution if and

only if for all symmetric matrices Y 0 and ATyA

_
0 implies that B Y > O.

A strong duality theorem similar to LP holds for SDP. We say the primal problem
in (2.1) is feasible if the. set {X e 4vecX b, and Z

_
0} is nonempty;

otherwise we say it is infeasible. Feasibility is defined similarly for the dual in (2.1).
Recall that infimum over the empty set is by definition +(x and similarly supremum
over the empty set is -cx. Furthermore, the primal (respectively, dual) problem in
(2.1) is unbounded if the infimum (respectively, supremum) over the feasible set is -oc
(respectively, +x3).

THEOREM 2.8. Let

zl :=inf (C X AvecX b, and X O} and

z2:=sup {bTy C- Mat(c4Ty)
_

0}.

Assume that there is an m-vector y such that fifTy - O. Then Z2 Zl.
Proof. Notice that the dual problem is always feasible, because in the proof of

Lemma 2.2 we showed that 7) + and, in particular, there are some y
and S - 0 such that Mat(jtTy)+ S C. If zl -cx (i.e., the primal problem
is unbounded) then by the weak duality lemma z2 -cx3, and the dual problem is
infeasible, which is a contradiction. If z2 +x) (i.e., the dual problem is unbounded)
then by the weak duality Lemma 2.1 z +cx3 (i.e., the primal is infeasible) and the
theorem is proved. Conversely, if z +cx3, then the primal problem is infeasible and
the extended Farkas Lemma 2.3 implies that for some vector y we have

(2.2) MatjtTyl 0 and bTyl > 0.

But (2.2) implies that the dual problem is unbounded since to any dual-feasible pair
y one can add an arbitrarily large positive multiple of yl and obtain another feasible
solution with larger objective function value. Therefore, z2 zl +cx3. Thus, we
may assume that both zl and z2 are finite. Suppose z2 < z. Then the system

C.X=z2
AvecX b,
X-0

is infeasible. Therefore, by the extended Farkas lemma 2.3, there exists a scalar Y0
and m-vector y such that

m

(2.3) yoC + E yiAi - O and z2Yo + bTy < O,
i--1

where vecAi is the ith row of ,4. Now, for Y0 one of the following holds.
1. If y0 0, (2.3) is equivalent to

Mat(JtTy)
__

0 and bTy < 0,
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which by the extended Farkas lemma implies that gtvecX b and X >__ 0 is infeasible
and thus

2. If Y0 > 0, then dividing both relations in (2.3) by y0 we get

C- Mat(AT(--y/yo)) - 0 and z2 bT(--y/yo) < O,

which means z2 is not an optimal solution of the dual problem.
3. If y0 < 0, then dividing both relations in (2.3) by -y0 we get

-C + Mat(gtT(--y/y0)) >- 0 and z2 q- bT(--y/yo) < 0.

In fact, since we have strict inequality, we must have

-C + Mat(AT(--y/yo))
_

0 and z2 + bT(--y/yo) < --e

for some e > 0. But also, by optimality of z2, there must exist a y* such that

C- Mat(gtTy*) >- 0 and

Adding the last two sets of relations we get

Mat(gtT(--y/yo y*) >- O and

z2 bTy* < e.

bT(-y/yo Y*) < 0,

which again by the extended Farkas lemma implies that the primal problem is infeasi-
ble and zl oo. Hence the assumption z2 < zt results in contradiction. Since by the
weak duality lemma, Lemma 2.1, we have Z2 Z we conclude that Z2 Z1.

It is also possible to derive a "complementary slackness" theorem. In fact,
Grhtschel, Lovgsz, and Schrijver in [31] and Shapiro in [61] mention the complemen-
tary slackness theorem for a more restricted form of SDP. Note that when the strong
duality theorem is true and both primal and dual problems are bounded and feasible
then the duality gap X S vanishes. However, in SDP, as in LP, a stronger form of
complementary slackness results from this observation. First note the following easy
lemma.

LEMMA 2.9. Let A and B be symmetric n n matrices. If A >- O, B - O, then
A B 0 if and only if AB O.

Proof. Let B UtUT be the eigenvalue decomposition of B, with gt Diag(wi)
and wi > 0 for 1,..., n. Set C:=UTAU, thus C >-_ 0, and in particular, its diagonal
elements Cii > 0. We only need to show that Cgt 0. From A B 0 we have
C t 0 and therefore, Y].i=l Ciiwi O. Since all the summands are nonnegative, it
follows that they are all zero. Thus we have the following.

(i) If wi > 0 then Cii O, and by C >- 0, the entire row and column is zero.
(ii) If Cii > 0, then wi O.

Now suppose (Cf)ij 0 for some i,j. Then Cijwj O, which by (i) we must have
that the entire column j is zero, and so Cij O, a contradiction.2 [:]

Now the complementary slackness theorem is immediate.
THEOREM 2.10. Let X* be a feasible matrix for the primal, and y* a feasible

vector for the dual in (2.1). Define S*’=C-Mat(ATy*). Then.X* and y* are primal
and dual optimal, respectively, if and only if

(2.4) X’S* =0.

2 D. E. Knuth and an anonymous referee suggested the following slightly shorter proof: 0
A B trace A1/2BA1/2. Since A/2BA1/2

_
0 and its trace is zero, the matrix product itself

must equal zero, and therefore AB 0. It was pointed out to me that this lemma appears as an
exercise in the text of Lancaster and Tismenetsky [39].
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Notice that, in contrast with LP, componentwise multiplication in the complementary
slackness theorem is replaced by the ordinary matrix multiplication. The complemen-
tary slackness theorem for SDP can be restated in the following way which makes it
quite similar to the LP variant.

COPOLLAPY 2.11. Let X* be a feasible matrix for the primal problem in (2.1) with
eigenvalues A1,..., An; and S*:=C-Mat(4Ty*) be feasible for the dual problem with
eigenvalues Wl, wn. Then X* and S* are primal and dual optimal, respectively, if
and only if they commute and there is a permutation r of eigenvalues of S* such that

for 1, n.

Recall our convention that Ai and w are the ith largest eigenvalues of X and S, re-
spectively; this point necessitates the permutation r in the statement of the corollary.

Proof. X* and S* are optimal if and only if X*S* 0. Thus, X* and S* commute
with each other and therefore, they share a system of eigenvectors. Let columns of U
be a joint system of orthonormal eigenvectors of X* and S*, i.e.,

X* UDiag(A1,...,,kn)UT and S* UDiag(wl,...,w)UT

for some permutation r. The corollary follows immediately by multiplying the right-
hand sides of these two identities.

One can extend the notion of strict complementarity in LP to SDP. This can be
stated by saying that in the preceding corollary exactly one of A or w corresponding
to eigenvector u be zero for each 1,..., n. Equivalently we may require that
Rank(X*) + Rank(S*) n. However, unlike standard LP, where, in the absence of
nondegeneracy, one could say that precisely m components of the optimal solution
x* is nonzero, it is not clear generally how to predict Rank(X*) or Rank(S*) before
solving the SDP problem. All we can say is that Rank(X*) < n as the optimum of
the primal SDP problem is attained on the boundary of the semidefinite cone. In 4
we encounter another negative effect of the unpredictability of the rank of the optimal
solution in the context of interior point methods. We should also mention the paper
of Pataki that studies facial structure of feasible sets of SDPs and partially character-
izes "degeneracy" in semidefinite programs [55]. Similar to LP, the complementary
slackness Theorem 2.10 may be used as a basis for primal-dual algorithms. Indeed
in this paper, our interior point algorithm is a primal-dual method that maintains a
primal feasible Xk and dual feasible Sk and each iteration moves XkSk closer to the
zero matrix. The norm IIXkSkll is an indication of how close our current solution is
to the optimum. In general, the set of equations

jtvecX b,
jtTy + S C,

XS =0

is a system of n(n+1)/m equations in the same number of unknowns.3 In the absence
of degeneracy one can apply, for instance, Newton’s method or some quasi-Newton
method to solve this system. Since SDP is a convex program, the real solutions of
this system are global optima of the corresponding SDP problem.

As in LP, semidefinite programs may arise in a variety of forms; the standard
form (2.1) is just one type. Sometimes we may have positive semidefinite constraints

3 Actually, one can reduce the number of unknowns by writing X UDiag(x)UT and S
UDiag(s)UT and requiring U to be an orthogonal matrix.
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TABLE 2.1
Rules .for taking dual of a mixed SDP program. Variables in one program gives rise to con-

straints in another and vice-versa.

MIN MAX

matrix or scalar, >_ 0 C matrix or scalar,
V matrix or scalar, _< 0 O matrix or scalar,
A matrix,

_
0 N matrix

R matrix, 0 S matrix,
matrix or scalar, unrestricted T matrix or scalar,

C matrix or scalar, >_ matrix or scalar, >_ 0
O matrix or scalar, _< V matrix or scalar, _< 0
N matrix, A matrix,

_
O

S matrix, "A_ R matrix, 0
T matrix or scalar, matrix or scalar, unrestricted

imposed on linear combinations of matrices (as in the dual problem in (2.1), for
example). Sometimes we may have componentwise inequalities _> on scalar or matrix
variables in addition to LSwner inequalities. We may have several matrix expressions
constrained to be positive semidefinite. Finally, we may have some or all of these.
Of course, as in LP, it is possible to convert all such problems to the standard form,
usually by introducing new scalar and matrix variables and new constraints. However,
it is more convenient to apply duality directly, as with linear programs in general form.
It is easy to show that the rules for obtaining the dual are a straightforward extension
of these rules for the LP problem. The main addition is that constraints that involve
semidefinite relations on matrix-valued expressions give rise to matrix-valued dual
variables with semidefinite constraints. These rules are summarized in Table 2.1; this
table is a direct generalization of a similar table in the text of Bazaraa, Jarvis, and
Sherali [8].

3. An interior point algorithm. In this section we develop a potential reduc-
tion method for solving the primal problem so that, within O(x/l log el) iterations,
we get an approximate solution with at least e relative accuracy, if e is sufficiently
small. Our development closely follows Ye’s projective algorithm for LP [66]. Ye’s
complexity analysis is also extended to semidefinite programs.

3.1. Potential functions and projective transformations. First, recall that
the interior of the cone of positive semidefinite matrices is the set of positive-definite
matrices; therefore, all interior points are nonsingular. The boundary of the cone con-
sists of singular semidefinite matrices and so, some of the eigenvalues of the boundary
matrices are zero. In particular, optimal solutions of the primal problem in (2.1) are
singular.

We assume that there is a positive definite matrix X feasible for the primal and
a positive definite matrix S feasible for the dual. Therefore the optimal solution for
both primal and dual are finite and is attained on some feasible point. Later, in 3.4,
we show how to transform any primal-dual pair to an equivalent one where an initial
interior primal-dual solution is available.

Let q > 0, and _z be a given constant known to be a lower bound on the optimal
value z* of the primal problem in (2.1). Let X be an interior primal feasible matrix,
y an interior dual feasible vector, and S:=C- ’]im=l yiAi; thus, X - 0 and S - 0.
Define the primal potential function

(3.1) (X, z) q ln(C X z) In det X,
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and the primal-dual potential function

(3.2) (X, S) q ln(X S) In det(XS).

For motivation, one may think of semidefinite constraints X 0 expressed as
Ai(X) > 0 for i 1,..., n. When the standard logarithmic barrier is applied to these
constraints we get Yin__11n Ai(X) In det X.

The strategy of the algorithm is to generate a sequence of interior primal feasible
matrices Xk, and a sequence of interior dual vector-matrix pairs (yk, Sk), such that
the sequence (Xk, Sk) decreases at least like an arithmetic progression. With an
appropriate choice of q, this would imply that the duality gap C Xk-bTyk decreases
at least like a geometric progression with k; in particular, it becomes a constant
fraction of the original gap after O(v/- iterations.

Before describing the algorithm we state the following lemma which is a direct
generalization of a similar lemma that appears in the analysis of most interior point
LP methods. (Recall that p(X) is the spectral radius of matrix X, which equals its
largest eigenvalue when X is positive semidefinite.)

LEMMA 3.1. Let X be a symmetric n n matrix. If 0 -< X -< I, then

In det X > trace X- n-
trace (X i)2

z)]

Proof. In most interior-point LP algorithms it is shown that if IIx- 111 < 1,
then

K-’/_lnxj _> (1Tx n)- 2(1- IIx-- 111 )’

which is easily proved by expanding ln x, (see, for example, Karmarkar [36] or Ye
[67]). Now to prove the lemma, simply substitute Ay(X) for xy.

We use a projective transformation to bring the current iterate to the center,
except that the center here is the identity matrix (in contrast with LP in which the
center is 1). An important point is that the transformation should map the set of
symmetric matrices to itself. This is needed so that the transformed problem remains
a meaningful SDP problem. Let X0 - 0 be our current interior primal feasible point.
To find a symmetry-preserving projective transformation that maps X0 to the identity
matrix i, let L0 be any n x n matrix such that LoLTo Xo. There are infinitely many
choices for L0. For instance, it could be a Cholesky factor of Xo or it could be its

1/2square root, Xo We shall see shortly that it does not matter how we select Lo
as it will not affect the algorithm’s behavior and performance. Fix integer r. Define
T" N--- --. N-- Nr, such that T(X) (X,). Then

(3.3) -:=(n + r)LIXLT and := ( n + r )1.r +X . X r + XI . x
Also, the inverse transformation is given by

(3.4) X T- (X, K):=Lo-L
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Under T, the primal SDP problem is transformed into

(3.5)

where

min
Avec X + A3 0,
trace + 1T3 n + r,
X0,
3_>0,

(3.6) -:-LCLo,
(3.7) (z)’=- (z/r)1,
(3.8) -i’=LAiLo,
(3.9) A:=A(Lo (R) Lo),
(3.10) := (-l/r) blT.

Note that A is an m r rank-one matrix. The transformed problem may be viewed
as a mixed linear and semidefinite program. We may define the following primal
potential function for the transformed problem

(3.11) (,3,z):=qln [.+(z)T] --lndet- E lnSj.
j--1

The following invariant property holds for the potential functions under projective
transformations.

LEMMA 3.2. If-l -r, and q n + r and X:=’-1(,3) then

(3.12) (x, z) (x0,_) (x, ,_) (, , z).

Also, the following result is easily proved by expanding and applying Lemma
3.1; later we use it to prove the reduction in the primal-dual potential function.

COROLLARY 3.3. For q n + r we have

( V. + e(z) )(x,, z) (I, 1,_z) _< (n + r)In
\ t-aT7i + IIX- {{ / {{- 1{{

2(1

3.2. A potential reduction algorithm. Similar to LP, in (3.5) we replace the
inequality constraints X 0 and _> 0 by an inscribed "ball" constraint, except that
for the SDP problem the ball is centered at (I, 1). Therefore, (3.5) is replaced by the
"ball optimization" problem

(3.13)

rain X + (z)T
s.t. AvecX+A=0,

trace + 1T3 n + r,
IlX- 11:’ / IIx- 1]{ 2 _</9. < 1,

where/ is a fixed constant between 0 and 1 to be determined .shortly. Once we solve
this problem and map the result back to the original space, we get a point that serves
as a candidate for the next iterate. The solution of (3.13) is given by

(3.14) P(z)
}iP(_z)ll’
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and the candidate for the new primal iterate is given by

(3.15) X(z):--7"-l(X1, 1),

where

(3.16) P(z) :=:Put, e(z) (vec I)r -)1T

and :Put,(u) is the projection of the (n2 / r)-vector u to the null space of ,4’. After
expansion, the projection Put, in (3.16) becomes

(3.17)

P(z) I- [vecTII1T][vecTII1T]Tn + r
(I- [41]T([u41A][,41-]T)-lI-]). (Z)

Now define

(3.1s)
y(z) "= ([IA] [AIA]T)- [1] (z)

(4(X0 @ X0)4T + (l/r)bbT) - [Avec(XoCXo) + (z/r)b]

and

(3.19) S(z):=C- Mat(ATy(z)).

S(z) and y(z) serve as candidates for the new dual iterates. In terms of these quan-
tities, P(z) may be written as

(3.20) ( vec(LToS(z)Lo) ) C.Xo-z ( vecI )P(_z) bTy(z)_z I n+r 1

Observe that X(z), S(z), and y(z) are all independent of Lo; in fact in actual com-
putation we do not need to have L0 explicitly.

The main result to be proved is that first, at least one of the following holds.
1. Either X(z) - 0 and thus primal feasible, or
2. S(z) - 0 and therefore (y(_z), S(z)) is dual feasible.

Second, choosing either one of the feasible candidates reduces the value of the primal-
dual potential function by a constant amount. Observe that "Put, is a projector,
that is,/), :Put,. Therefore, from (3.14) we get

* (X1 I) + e(z)T( 1) -llP(z)ll.

Hence, noting that ln(l+x) <_ x, for nonnegative x, Corollary 3.3 implies the following.
COROLLARY 3.4. Let q n + r and X1 and be as in (3.14). Then

(X, 2, _z) (I, 1, z) <_ -(n + r)/ IIP(z)ll _+
c(z)T1 + trace C 2(1

Let A0 be the size of the duality gap in the current iterate; that is,

Ao:=C Xo z
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and let

A1 :=S(z). X0 C Xo bTy(z).

Thus A1 should be interpreted as the value of the duality gap if we choose y(z) as our
new dual iterate. Before deriving the amount of reduction in the potential function
we prove the following lemma.

LEMMA 3.5. If there is some real number a with 0 < < 1, such that

IIP(z)ll < n+r

then S(z) - O, and bTy(z) > z. Furthermore,

(3.21) LTo S(z)Lo -- < cA n+n2/r
n n+n2/r--2

and

(3.22) n+rA
n Ao

Proof. Suppose S(z) 0. Then LToS(z)Lo is not positive definite and so some of
its eigenvalues are less than or equal to 0. Thus, from (3.20) we have

A0 ) AoIIP(z)[l > P n + rI- LS(z)L >-n+r’

a contradiction. Also, If bTy(z_) < z then from (3.20) we have

Ao bTy(z)--z >
A0

n+r r n+r’
which is again a contradiction. Now from (3.20) we have

[vec(LS(z)Lo)--I] o x vecI
P(z) )1

Since I [(LToS(z)Lo) (A/n)I] 0, we have

IIP(_.z) [Ie

(3.23)

LS(z)Lo --I
n

LS(z)Lo --I
n

9. Ao A Ao A1+n +rn+r n r

(+ n+
r n n+r

n+r

If (3.21) is false, then from (3.23) we have

(3.24)

ilp(z)ll 2 > a2 n / n2/r
n + n2/r a2

>a2( )n+

+ n+--
r n n+r
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(The last inequality is proved by taking the right-hand side of the first inequality as a
quadratic function in A/n and minimizing it.) But (3.24) contradicts the assumption
of the lemma, so (3.21) must be true. Finally, since (3.24) is false, we have

n + < a2 Ao.
T n n+T r

from which (3.22) follows. [:]

Now we may prove the potential reduction theorem.
THEOREM 3.6. Let Xo be any interior feasible matrix for the primal problem

(2.1) and Yo interior feasible for the dual. Let also, r:=[x/] and q:=n + r, So:=C-
Eim=l yA, Zo:=bTyo, X(z):--7-l(l,1), as in (3.4), y’=y(zo) and Sl"=S(zo).
Then there exists an absolute constant 5 such that either

(x(z), o) < (Xo, o)

or

l/(Xo, 1)

_
l/)(Xo, o)-.

Furthermore, if we set a 0.55 and fl:=0.3, then 5 > 0.1.
Proof. If for some constant, 0 < ce < 1

ioIIP(z)ll >,n+r
then

(X(z), So) (Xo, So) (X(z), Zo) (Xo, Zo)
(X(z), 1, Zo) (I, 1, Zo)

<_ -fia + 2(1

(the last inequality is true by Corollary 3.4). Otherwise, the conditions of Lemma 3.5

:---Ol
/ nTn2/rare satisfied. Also applying Lemma 3.1 to (n/A1)LSILo and setting

we have

where the last relation results from applying the arithmetic-geometric mean inequality
to the eigenvalues of XoSo (which are all real). By (3.22) of Lemma 3.5 we have

A1 < (1 n+r n + r v/n + n2/r
A"



INTERIOR POINT SEMIDEFINITE PROGRAMMING 29

Thus,

(3.26) r In ZooS1 A1 r2 ( a )Xo*So rlnoo < -1 +
n + r v/r + r2/n

Adding (3.25) and (3.26) we get

(3.27) (X0, $1) (X0, So) < 1 + ++ +
It is easily verified that choice of a 0.55, fl 0.3, and 6 0.1 is consistent with all
the conditions of the theorem. D

Based on this result we present the projective version of the algorithm displayed
in Fig. 3.1. Note that in this algorithm, fl* and z* are obtained by line search on the
potential function. We justify this in the next subsection. Also it should be realized
that this algorithm is only a prototype and in a practical implementation one must
apply substantial simplifications to eliminate redundant use of storage and algebraic
operations, especially regarding symmetric matrices.

ALGORITHM SDP:
Input:

An n n matrix X0, interior feasible for the primal problem in (2.1);
an m-vector Yo interior feasible for the dual problem;
a constant e > 0.

Output:
A primal feasible solution X and dual feasible solution y such that
CoX-bTy < e.

Method:
1. Set k 0 and a 0.55.
2. Set _zo bTy0.
3. Set Sk:-’C- Mat(jtTy0).
4. While C Xk bTyk >_ e do

begin
Compute S(zk) from (3.19) and P(zk) from (3.16).
If IIP(zk)ll _> a(C Zk zk)/(n + r) then
(a)Find *’-----argmin < < (Xk LkP(zk)n0_/3_1

using a line search procedure.
(b) Set (Xk+l,k+l)= (I, 1)- *P(z),

and set Xk+ :=q’- (-k+1,k+1).
(c) Set Sk+l:=Sk, and zk+l:=zk.

Else
(d) Find z* :--argmin_z<_zk (Xk, S(z)) by a line search.

(e) Set Sk+l (z*).
(f) Set Xk.bl Xk, and Zk_bl bTy(z*).

Set k k + 1.
end.

FIG. 3.1. A projective potential reduction algorithm.

The following theorem now shows that by using Algorithm 3.1, one can get the
duality gap to less than e in a number of iterations k, which is dependent on Ilogel,
v, and the value of the potential function at the initial solution.

THEOREM 3.7. Let Xo, Y0, and So:=C- Mat(4Ty0) be given initial interior
points for the primal and dual semidefinite programming problems in (2.1). Also
let r [V] and q n + r in the primal-dual potential function , and assume
that (X0, S0) _< O(x/E) for some constant E. If an algorithm generates a se-
quence of interior primal and dual points .Xj, yj (and thus S) such that (X, Sj) >_
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)(Zjh_l,j.t_l + for 8omf. fixed number 5 then, after k O(-1 logel) iterations,
for primal and dual solutions Xk, Yk, and Sk, we have

C . Xk bTyk < 2Ee.

Proof. Each iteration reduces the potential function by at least 5.
(Xo, So) < O(v/-dE) then after O(v/’l log el) iterations we have

Thus, if

(Xk, Sk) < (x/-E v/-] log

(x/-[log 2E log
< v/-l 1og(2Ee)l.

Therefore,

x/log Xk Sk < -nlogXk Sk + logdetXkSk + V/-rl log(2Se)l
< -n log n + /-1 log(2Ee)l.

The last inequality comes from applying the arithmetic-geometric inequality to the
eigenvalues of XSk, which are real, as both matrices are positive definite. Therefore
logXk.Sk < 1og(2Ee)l. Since ZkoSk C.Xk-bTyk, the theorem follows.

In other words, if we start our potential reduction algorithm at a pair (X0, Y0)
with (Z0, So) v/-E, then after O(x/(E+I log el) iterations we will have a solution
with duality gap less than e. Therefore, for all e < 2-E the term log e dominates E
and so the number of iterations is bounded by O(v/l log el). Also observe that this
proof solely depends on the reduction of the potential function . We must guarantee
a reduction of at least 5 in each iteration, but larger reductions may speed up the
algorithm without affecting its worst case complexity. Therefore, in steps 4(a) and
4(d) of the algorithm in Fig. 3.1, we allow a line search to find a step length fl* and
z*, which maximizes the reduction in the potential function.

3.3. Feasibility boundedness and polynomial-time computability. To
complete our analysis we must study feasibility of the SDP problem and bounds
on the norms of the optimal primal and dual solutions. The situation is somewhat
different from LP. First, let us assume that all entries in the primal and dual problems
(2.1) are integers. In contrast with LP, the optimal solution of (2.1) is not necessarily
a rational number. Therefore we need to specify an error tolerance, e, and ask for
a pair of primal and dual solutions X and S such that the duality gap X S _<
If e is also a rational number, define L, the size of the SDP problem, as the number
of bits in the binary representation of e and entries of C, A, and b; see [32] for a
complete definition of "size" of a problem. One might expect that the interior point
method developed in the previous sections leads to an algorithm that runs in time
polynomial in rn, n, and L. However, this is not generally true as the solution itself
may be exponentially large. To see this, consider the optimization problem

(3.28) min{xn xl >_ 2, and xi >_ xi_12 for i= 2, n}.

Clearly, x 22-1 for i 1,... ,n is the solution of this problem, which requires
exponential number of bits. Now (3.28) can be written as the following semidefinite

4 Since x, S, and y are solutions of the algebraic system of equations: XS 0, AvecX
b, and 4Ty h- S C, there are algebraic solutions among all optimal solutions of an SDP problem
with integral input.
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program:

min x,,
s.t. xl _>2

(xi xi- ) 0 fri=2’’’"1

This SDP problem can be easily turned into a standard form SDP whose input size
(taking e 1, say) is polynomial in n and whose output requires exponential number
of bits. Therefore no algorithm can solve it in polynomial time.5

In many cases, including all of the combinatorial optimization problems described
below, one may be able to put an a priori bound on the norms of the optimal solutions.
For instance, we may be able to prove that the feasible sets of both the primal and
dual solutions are inside balls of radius, say, R (a rational number) centered at the
origin. In such cases we can show that the interior point algorithm developed earlier
can produce in polynomial time (in log [, L and In R) primal and dual solutions
whose duality gap is smaller than e. Notice that in the ellipsoid method such an a
priori bound is assumed by requiring that the initial ellipsoid be a ball of radius R
centered at the origin. Let L be the number of bits in the binary expansion of some R.
Then, similar to LP, one can always transform the pair of primal and dual problems
(2.1) to another pair for which initial interior feasible points are readily available. We
extend the construction suggested by Kojima, Mizuno, and Yoshise in [38] which, in
turn, is based on Megiddo [43].

Consider the following pair of primal and dual problems:

min C . X + Mxl
s.t. jtvec(X) + [b- .Avec(Xo)]xl b,

(3.29) [Mat(ATy0) - S0 C] X -[- x2 N,
X_0,
x,x. >_ O,

and

(3.30)

max bTy- Ny
Mat(ATy) + S + [C- Mat(jtTy0) So]y C,
[b 4vec(Xo)]Ty + Y2 M,
S_0,
yl, y2 >_ 0,

where X0 and So are arbitrary positive definite n n matrices, Y0 an arbitrary m-
vector, and M and N are large enough positive numbers to ensure that y2 >_ 0 and
x2 _> 0. Clearly, X:=Xo, xl :=1, and x2:=N (Mat(ATy0) + So C) Xo are interior
feasible for the primal (3.29) (with large enough N); and S:=S0, Y:=Y0, y:=l, and
y2:=/- (b 4vec(X0))Ty0 are interior feasible for the dual problem in (3.30) (for
large enough M). By choosingX0 So I, x y 1, yo 0, it suffices to
choose M and N such that

5 am indebted to Motakuri Ramana for bringing to my attention an error in [1],[2] where had
claimed that the norm of the solution to any SDP problem is bounded by 2L. Ramana essentially
provided this counterexample.
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TABLE 3.1
Correspondence between LP and SDP.

LP SDP
unknown vector: x unknown symmetric matrix: X
inequality constraints: _> LLwner constraints:
dual variable: y dual variable: y
dual slack vector: s dual slack symmetric matrix: S
1
linear scaling: linear scaling:
x (xi/(x0)i)?=l [Diag(xo)]-lx X LIXLT Mat[(L (R) L-l)vec(X)]
projective scaling:

el [Diag(X0)]- lxX c2+lT[Diag(X0)]_lx
barrier function:

In xi
norms:

projective scaling:

x clL-1X%
c.+trace LIxL

barrier function:
In det X
norms:

(

M > max 0, bTy* Zytrace (Ai))
For instance we may set N M 2L+L’. It is easy to see that if the optimal
value of xl is not zero, then the original primal is infeasible (the proof is exactly like
the one given by Kojima et al. in [38]). Similarly, if the optimal value of yl is not
zero, then the original dual is infeasible. Otherwise, the optimal X* and y* are also
optimal for the original primal and dual problems, respectively. Furthermore, It is
easily verified that the value of the primal-dual potential function at the initial
point is bounded by O(x/’(L + L’)). So, for the general SDP problem, any algorithm
that reduces the primal-dual potential function by a constant amount may find, in
O(v/ max(L, L, log el) iterations, a pair of primal and dual feasible solutions whose
duality gap is less than e; if e < 2-i-i’ then the number of iterations is bounded by
O(v"-l log el).

3.4. A correspondence between proofs in linear and semidefinite pro-
gramming. The remarkable similarity between the algorithm presented here and
Ye’s LP algorithm in [66] suggests that other LP interior point methods may also be
extended to SDP problems. Proofs of convergence and polynomial time complexity
may be extended as well. The correspondence is summarized in Table 3.1. Given an
interior point algorithm for LP we may construct, in a mechanical way, an algorithm
for the SDP problem by replacing any references to the entries under the LP col-
umn with the corresponding entry under the SDP column. Proofs of convergence or
polynomial time complexity may also be extended mechanically in the same manner.
We have already verified this claim on the approaches of Gonzaga [28] and Ye [67]
(see [2]). Extension to primal-dual methods such as Monteiro and Adler [44] is more
challenging. This table itself may be summarized by the following rule: In any LP al-
gorithm, replace any implicit or explicit reference to x (or s) by a reference to A(X)
(or i(S)). Furthermore, in any scaling, replace affine or projective transformations
by corresponding symmetry preserving transformation on matrices. Notice that these
same rules were implicitly used to derive various duality and complementary slackness
theorems for SDP from the corresponding theorems for LP.
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Similar techniques may be applied to more general problems. For instance, one
can define a semidefinite analog of convex quadratic programming or, more generally,
a semidefinite analog of the linear complementarity problem. Also, one can study a
semidefinite analog of linear fractional programs. For the linear version of all these
problems, interior point methods have been developed (see [45], [37], and [4], for
example) and one can apply the conversion rules mentioned above to obtain interior
point methods for their semidefinite variants. Details are omitted here.

3.5. Differences between SDP and LP interior point algorithms. Thus
far, we have emphasized the similarity of linear and semidefinite interior point meth-
ods. There are however, important distinctions and some favorable circumstances
in LP do not extend to SDP. We have already seen the differences between LP and
SDP when we studied irrationality and a priori bounds on the number of bits in the
optimal solutions. We list other distinctions that must be studied carefully before a
serious practical implementation of interior point SDP algorithms is attempted.

1. In the absence of degeneracy one can predict that precisely m entries of
the optimal vector x* are nonzero in the standard linear program with coefficient
matrix A E mxn. Recall that in each iteration of a primal interior point algorithm,
the main computational effort is in obtaining (A Diag(x)2 AT)-Iv, where v is some
vector. Therefore, if A is of rank m and reasonably well conditioned, this computation
is fairly straightforward and typically no numerical difficulties should arise. In SDP
however, even if we assume strict complementarity, (i.e., Rank(X*)+ Rank(S*) n,)
we still do not know what Rank(X*) is going to be before solving the SDP problem.
Furthermore, let Rank(X*) r. Since the main computational work in SDP interior
point methods is computing (jt(X (R) X)jtT)-Iv, even if 4 is full rank and reasonably
well conditioned, ,A(X (R) X).AT may converge to a singular matrix unless m _< r2,
which is not guaranteed. The same issue arises if we use dual or primal-dual interior
point algorithms.

2. The main reason that interior point methods in LP are practically competi-
tive --aside from the small number of iterations--is that if the matrix AAT is sparse,
so is ADAT for any diagonal matrix D; in fact, ADAT and AAT have precisely
the same nonzero structure. Therefore, once a good order of elimination is obtained
for AAT, the same order works for all subsequent iterations of the interior point
algorithm. This is is not the case for SDP. In general even if ,AT is sparse, the
matrix .A(X (R) X).AT may not be sparse at all. It is not clear how factorization of
,A(Xk (R) Xk),AT could be of any use in factoring .A(Xk+I (R) Xk+),AT.

3. Karmarkar in [36] gives a nice amortized method for updating factors of
ADAT. He develops a technique where xk and xk+ differ only in jk entries where

jk over all iterations is bounded by O(v/’). From this observation he manages to
reduce the overall number of operations by a factor of v/. It is not clear how one
extends Karmarkar’s amortized scheme to SDP interior point algorithms. (See [49]
for some progress in this direction.)

4. Eigenvalues as semidefinite programs. In many cases semidefinite pro-
grams arise in the form of minimizing or maximizing an appropriate linear combination
of eigenvalues of a symmetric matrix subject to linear constraints on the matrix. In
this section, we study problems of this form and show that, under proper assump-
tions, they are indeed special case semidefinite programs. We give primal and dual
characterization of each problem and examine the complementary slackness theorem
as specialized to that problem.
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4.1. Minimizing sum of the first few eigenvalues. First we consider min-
imizing sum of the first k eigenvalues of a symmetric matrix subject to linear con-
straints on the matrix. We consider two variations, namely,

min{A1 (X) +... + Ak(X) jtvecX b}

and

k m

(4.2) minE i(A(x)) where A(x) Ao / ExiA.
i=1 i=1

To show that these problems are indeed semidefinite programs, we use the following
elegant characterization by Overton and Womersley [53], [54].

THEOREM 4.1. For the sum of the first k eigenvalues of a symmetric matrix A
the following SDP characterization holds:

AI (A) +... + Ak(A) =max A. U
(4.3) s.t. trace U- k,

O_U_I.

It is worth mentioning that this result is based on a beautiful convex hull charac-
terization that was known at least as early as 1971 (see [22]) but unfortunately has
remained somewhat obscure. Here is the statement of this result.

LEMMA 4.2. Let

SI’={YYT" Y E Nnxk, yTy I}

and

S2:--{W W WT trace W k, 0 W - I}

Then

conv S $2,

and SI is exactly the set of extreme points of $2.
For a historical account of this result, its connection to the well-known, but com-

putationally less useful theorem of K. Fan, and interesting connections to the theorem
of Birkhoff and Von Neumann concerning the convex hull of doubly stochastic matri-
ces, refer to Overton and Womersley [54].

To express (4.1) as a semidefinite program we first derive a dual characterization
of sum of the first k eigenvalues of A, by finding a dual version of Theorem 4.1. Let
us see how applying the rules of Table 2.1 to (4.3) can aid us in finding such dual
characterization. The constraint U

_
I gives rise to dual variable V, which by the

third line of Table 2.1, must satisfy V

_
0. The variable U

_
0, by the eighth line of

Table 2.1, gives rise to the constraint zI + V
_

A. Thus we have the following result.
THEOREM 4.3. For the sum of the first k eigenvalues of a symmetric matrix A

the following SDP characterization holds"

A(A) +... + Ak(A)= min kz + trace V
(4.4) s.t. zI / V A,

V-0.
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Now, it is easy to incorporate the equality constraints into (4.4) by replacing A with
X. So the optimization problem (4.1) is equivalent to

(4.5)

min kz + trace V
AvecX b,
zI + V- X - 0,
V0,

and taking the dual again we have the following dual characterization:

(4.6)

max bTy
U- Mat(4Ty),
trace U k,
O-, U- I.

The complementary slackness result for primal feasible z*, X*, and V*, and dual
feasible U* states that these are optimal if and only if

Similarly (4.2) may be expressed by the following primal and dual pair:

(4.7)

min kz+traceV max Ao.Y
s.t. zI + V- , xiAi

_
Ao, s.t. trace Y k,

V_O, Ai.Y=O
O-’ Y- I.

for 1,...,m,

When k 1, these characterizations become simpler, because in that case the
constraint Y I (and thus variable V) are redundant. Therefore, the problem

min{Al(X)" 4vecX b}

may be expressed as the solution of the primal and dual SDP pair

(4.8)
min z max bTy
s.t. zI- X 0, s.t. trace Mat(ATy) 1,

JtvecX b, Mat(c4Ty)
_

0,

and the complementary slackness theorem indicates that for X* and y* to be primal
and dual optimum solution for (4.8), in addition to being primal and dual feasible
they must satisfy

Mat(ATy*)(AI(X*)I- X*) O.

4.2. Minimizing weighted sums of eigenvalues. In this section we consider
the weighted sum of eigenvalues of a matrix. Let ml >_ m2

_ _
mk > rnk+l 0

be a set of fixed real numbers. We are interested in the following problem:

(4.9) min{mlAl (X) +... + mk,Xk(X)" jtvecX b}.

Note that without the condition m >_ m2 >_ >_ mk > 0, (4.9) is not necessarily
a convex program. To formulate this problem as a semidefinite program, we use a
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technique originally employed by Donath and Hoffman in [18]. They rewrote the sum
as follows:

mA(A) + m2A2(A) +... + mkAk(A) (m m2)A(A)
+ (m2 -m3)[AI(A)+ A2(A)] +...
+ (mk-1 mk)[Al (A) +... + Ak-1 (A)]

(4.10) + mk[Al (A) +... + Ak(A)]

and observed that the right-hand side of (4.10) is a nonnegative combination of convex
functions and, therefore, is itself convex. This formulation also allows us to write (4.9)
as an SDP. For each of the partial sums of eigenvalues in (4.10) we may use the SDP
formulation of the last subsection and obtain the primal

min ik__l izi + -ik= trace V/

(4.11) s.t. ziI + Vi (mi -mi+)Z

_
0 for 1,... ,k,

AvecX b,
V-0 for/=l,...,k

and the dual

max bTy

(4.12) s.t. ATy k=(mi mi+)Ui O,
traceUi=i fori=l,...,k,
O

_
U

_
I for -1,...,k

equivalents of (4.9).
The complementary slackness condition for feasible X*, z, V*, y*, and U* for
1,..., k to be optimal may be stated as

(z;I + V (mi mi+l)X*)V (I U/*)V/* 0 for 1,... ,k.

Notice that the primal and dual characterizations (4.11) and (4.12) contain 2k semidef-
inite constraints each involving n x n matrices, and therefore, the interior point meth-
ods discussed earlier require O(v/) iterations for each new significant digit of accu-
racy. It will be interesting to improve this complexity to O(x/-).

4.3. Minimizing sums of absolute-valuewise largest eigenvalues. The re-
sults of the two preceding subsections may be extended to the sum of the k absolute-
valuewise largest eigenvalues as well. Overton and Womersley derived the max char-
acterization similar to (4.3); applying duality to their result we obtain the following
theorem.

THEOREM 4.4. For a symmetric matrix A the sum [AI(A)[+ .+[Ak(A)[ is equal
to the optimal solution of the pair of primal and dual semidefinite programs:

(4.13)

max A.Y-A.W, min kz+traceV+traceU
s.t. trace (Y + W) k, s.t. zI + V- A 0,

O -< Y

_
I, zI + U + A 0,

0

_
W

_
I, U

_
O,

V-O.

(Recall that i(X) is the ith largest eigenvalue of X in the absolute-value sense.)
Now to solve the optimization problem

(4.14) min{IA(X)l +... + IAk(X)l .AvecX b},
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we may simply add the equality constraints to the min formulation in (4.13). Then
taking its dual we get the following pair of primal and dual semidefinite programs:

(4.15)

min kz + trace V + trace U max bTy
AvecX b, s.t. jtTy Y- W,
zI + V X - O, trace (Y + W) k,
zI+U+X _0, O_Y

_
I,

UO, OW

_
I.

VO,

The complementary slackness theorem indicates that primal feasible z*, V*, and
U*, and dual feasible Y*, and W* are optimal if and only if

(z*I + V* X*)Y* (z*I + U* + X*)W* (I Y*)U* (I W*)V* O.

Again these results may be generalized to the weighted sums of absolute-value-
wise largest eigenvalues. In other words, the problem

(4.16) min{rnIA(X)[ +... + mk[Ak(X)[ 4vecX b}

may be expressed by a primal and dual pair of semidefinite programs. First, let us
ignore the equality constraints jivecX b, and assume that X is a fixed matrix A.
Then, we have the following result.

THEOREM 4.5. The sum ml[AI(A)[ +...-+- mk[Ak(A)[, where A is a symmetric
matrix equals the optimal solution of the primal program

(4.17)

min k kEi=I izi + Ei=I trace (Ui + V)
ziI + Ui (mi mi+l)A - 0 for i 1,..., k,
ziI + Vi + (mi mi+l)A k 0 for 1,... ,k,
Ui-0 for i- 1,...,k,
V0 for/=l,...,k

and the dual program

(4.18)

k’=1 (mi m+l)(A Y/- A W)
trace (Y + W) i for 1,..., k,
0Y_I fori=l,...,k,
0_WI for/=l,...,k.

Now we may replace A by X and impose the equality constraints on the min
characterization in (4.17). After taking the dual we have the following pair of primal
and dual SDP equivalents of (4.16)"

(4.19)

min k kEi=l iz + Ei=l trace (Ui +
AvecX b,
ziI + Ui (mi mi+l)X 0 for 1,..., k,
ziI + Vi + (mi mi+l)X 0 for i 1,... ,k,
U0 fori=l,...,k,
V0 for/=l,...,k
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and

(4.20)

max bTy
kATY i=1 (mi mi+l)(Y/- Wi),

trace (Y/+ Wi) for 1,..., k,
0_Y--<_I fori=l,...,k,
0W-<I for/=l,...,k.

Finally, the complementary slackness theorem for problem (4.16) states that primal
(4.19) feasible z, V*, and U*, and dual (4.20) feasible Y*, and W*, for i= I,..., k
are optimal if and only if

(zI + V* (mi mi+I)X;)Y* (zI + U. + (mi mi+)X;)W:
(I- Y*)U* (I- W*)V* 0 for 1,..., k.

The characterization (4.3), and the max part of (4.13) were given in Overton
and Womersley [53]. Also, Fletcher in [23] derives a closely related result to (4.3)
but the result was incorrect (Fletcher had 0

_
S rather than 0

_
S I.) The

min characterizations as well as the primal and dual formulation of the variants with
equality constraints, we believe are new.

In a similar manner, primal and dual SDP formulations can be derived for maxi-
mizing (weighted) sums of the smallest eigenvalues of symmetric matrices or (weighted)
sums of the largest singular values of arbitrary matrices; we omit these straightforward
formulations here (see [62] for the study of singular values). However, maximizing the
last few smallest eigenvalues of a symmetric matrix absolute-valuewise, or sum of the
last few smallest singular values of an arbitrary matrix, cannot be formulated as SDP
because these problems are not convex programs.

5. Applications in combinatorial optimization. The SDP problem studied
in the previous sections has applications in combinatorial optimization, especially in
graph theory. The connection usually is the spectral properties of graphs. Semidefinite
programs may arise in two different roles. Their more common role is to provide an
approximation--an upper or lower bound--on an NP-hard combinatorial optimization
problem. In such role one hopes that the SDP bound gives rise to much sharper bounds
than the more common LP bounds. Remarkably SDP relaxations have been shown
to give rise to approximation algorithms whose guaranteed performance is superior to
any known combinatorial or LP approximation technique; see for instance [25]. The
second role is to give exact characterization to some special cases of combinatorial
optimization problems. An example of such application is the SDP formulation of
maximum clique and maximum stable set problem in perfect graphs.

In the following sections we first examine a general approach of Lovgsz and Schri-
jver which applies semidefinite programming to zero-one integer programming prob-
lems. Then we study other applications such as the maximum stable set, the maximum
induced k-partite subgraph, and graph partitioning (in particular, graph bisection)
and the maximum cut problems.

5.1. Nonlinear relaxations of 0-1 programming. Consider the integer pro-
gramming problem

(5.1) max{eT fi _> b and Y:i E {0, 1}}.

The LP relaxation of (5.1) results from replacing Y: E {0, 1} with 0 _< Y: _< 1. This
relaxation serves as a first approximation of the solution of (5.1). In general, this first
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approximation may be nonintegral and far from the actual solutions. Most effective
methods of integer programming consist of adding new "cutting planes" to the LP
relaxation and then using some branch and bound technique to the resulting problem.
It seems, however, that little work has been done in generating "nonlinear" but convex
cuts in the feasible region of the LP relaxation. Generally such cuts may produce far
better approximations than linear cuts. An ingenious approach for creating a class
of nonlinear cuts has been proposed by Lovsz and Schrijver in [42]. The idea is to
"lift" the space from vectors in Nn to n x n symmetric matrices.6 In essence, they
provide a convex set which contains the feasible region of (5.1) and is contained in
the feasible region of its LP relaxation. Furthermore, this convex relaxation may be
expressed as a projection of the feasible set of a semidefinite program, and therefore.
itself may be represented as an SDP. Here is a summary of the Lovsz and Schrijver
technique.

First, it is convenient to homogenize the integer program (5.1) by introducing a
new variable x0 as a multiple of b and then imposing the constraint x0 1. After this
transformation the homogenized integer programming problem and its LP relaxation
can be written as

IP LP
max cTx max cTx
s.t. aTx _> 0 for i 1,..., m, s.t. aTx _> 0

Xie{0,1} fori=0,...,n, 0_<xi_<x0
x0 1, x0 1.

for 1,..., m,
for 0,...,n,

Let P be the convex cone which is the feasible region of the LP relaxation without the
constraint x0 1, and .(P) its integer hull (that is, (P) is the convex cone generated
by 0-1 vectors in LP with x0 1.) First, we decompose the set of constraints into
two sets (with possible overlap); then we multiply each inequality in the first set by
each inequality in the second set to obtain quadratic constraints, then replace each
occurrence of xixj by a new variable xij to get linear constraints again; finally we
impose on the matrix X (xiy) the positive semidefinite constraint. If P1 and P2
are the cones defined by the first and second sets of constraints, then P P1 N P2,
and the space of matrices just defined is denoted by M+(PI, P2). More formally, let
J and J2 be two subsets that cover the index set of the inequality constraints in L__P.
Define AI:=Aj1, and A2"=Aj., and P the set {x" Ax >_ 0} for i 1, 2. We require
that constraints 0 _< xi <_ xo be in both subsets. Then

M+(P, P2)’={X e- X L-_ O, Xeo diag(X), and (A (R) A2)vec(X) >_ 0},

where e0 (1, 0,..., 0)T. Also, let N+(P,P2) be the set of n-vectors made up of
diagonals of matrices in M+ (P1, P2), that is,

N+(P, P2)’={diag(X) X e M+(P, P2)}.

The main result of Lovsz and Schrijver, for the purposes of our discussion, is that

(P) C_ N+(P,P2) c_ P.

It is clear that optimizing a linear function over N+(P, P2) is an SDP problem,
and interior point techniques may be applied (as long as P is given by an explicit

6 The presentation here is more restrictive than that given in [42]. Lovsz and Schrijver consider
optimization problems over a cone K: endowed with a separation oracle and derive nonliner cuts for
the subcone generated by 0-1 vectors in K:.
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system of inequalities.) The process just described may be quite powerful in certain
combinatorial optimization problems. For instance in a general branch and bound
algorithm, one may use interior point algorithms to solve the optimization problem

x e

The solution then may be used as a bound and the resulting x necessarily satisfies
0 <_ x_< 1. Now if for some coordinatei we have 0 < xi < 1, then we branch by
solving the two SDP subproblems with additional constraints, respectively, xi 0
and x 1. From a practical point of view such subproblems are all polynomial
time solvable by the interior point methods, though they are computationally more
expensive than the classical branch and bound approach based on LP relaxations.
The advantage however is that the bounds are sharper (hopefully much sharper) than
the corresponding LP bounds, and therefore the total number of subproblems solved
may be considerably smaller.

Lovsz and Schrijver show that applying the N+ operator to the LP relaxation of
the stable set polytope of a graph G (V, E) gives bounds that are already stronger
than a combination of several well-known classes of linear cuts. Recall that a stable
set in a graph G (V, E) is a subset of vertices S where each pair of vertices and j
in S are nonadjacent. Let w be a weight vector on the vertices of G, such that wi is
the weight of vertex i. The weighted maximum stable set problem in graphs can now
be formulated as the following 0-1 program:

max wTx
(5.2) s.t. xi / xj _< 1 for all {i,j) e E,

x E {0, !} for all i E V.

Now we homogenize (5.2) by adding a new variable x0, and applying the N+ operator
to a decomposition of (5.2), where P1 is given by the entire feasible set of (5.2) and
P2 is induced by 0 _< x _< x0. In other words

and

PI’=P=(x" x+xj <_xo for alli,jE, and0_<xi_<x0 for alliV)

P2:--(x x0 x _> 0, and x >_ 0}.

Let the resulting set be N+(STAB G). Optimization over this set is a semidefinite
program and can be done in polynomial time using interior point methods (Lovsz
and Schrijver use the ellipsoid method to establish polynomiality). Furthermore, it is
clear that

STAB G c_ N+(STAB G) c_ E-STAB G,

where STAB G is the convex hull of all 0-1 vectors that characterize some stable set
of G, and E-STAB G is the polytope associated with the LP relaxation of (5.2) (that
is the polytope obtained by replacing constraints x e {0, 1} by 0 <_ x <_ 1.) The set
N+(STAB G) is convex, but generally nonpolyhedral. However, Lovsz and Schrijver
show that the set of points in N+(STAB G) already satisfy the following classes of
well-known valid inequalities for STAB G.

1. Clique constraints. Let K be a clique in G, that is, a subset of vertices every
pair of which is adjacent. Let S be a stable set in G. Then clearly IS N K _< 1. This
observation implies that for all cliques in G the inequality

(5.3) 1 x <_ 1
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(where 1K is the characteristic vector of clique K) is valid for STAB G. Define

Q-STAB G := {x" xi _> 0 and 1 x _< 1 for each clique K}.

2. Odd hole constraints. For every cycle (hole) C with 2k + 1 edges and every
stable set S we know that IC N S _< k. Thus, for all odd cycles C in G, the constraint

(5.4) lx _< k

is valid for STAB G. Define

C- STAB G "= {x" xi _> 0 and lx _< k for each odd cycle C}.

3. Odd antihole constraints. Let be a graph whose edge complement set is
an odd cycle. Then the maximum stable set in G has two vertices and therefore,
IC N S _< 2 for all stable sets S. Therefore, for all odd antiholes C in G, every
inequality

(5.5) l-x _< 2

is valid for STAB G. Define

-STAB G {x" xi >_ 0 and lx _< 2 for each odd antihole }.

4. Odd wheel constraints. Let W be a graph with 2k vertices such that vertices
Vl, v2,... V2k_ induce a cycle and vertex V2k is adjacent to all other vertices. Then
W is called an odd wheel. It can be shown (see [32]) that for all wheels W in G, the
inequality

2k-1

(5.6) E xv + (k- 1)xv.k _< k- 1
i---1

is valid for STAB G. Define

W-STAB G .= { 2k-1

x" x _> 0 and E Xv + (k- 1)Xv.k <_ k- 1 for each odd wheel W
i-1

It turns out that (see [42])

STAB G c_ N+(STAB G)
C__ Q-STAB G C-STAB G N C-STAB G W-STAB G c_ E-STAB G

and N+(STAB G) already provides a sharper relaxation of STAB G than any of the
polytopes defined above. Yet optimization over N+(STAB G) is an SDP problem,
and the interior point methods developed in this paper may yield practical ways of
achieving strong bounds on the maximum stable set problem.

Remark. Barriers for polytopes with exponentially many facets. A
strong property of the ellipsoid method for combinatorial optimization problems is
that generally one does not need to have the LP formulation of the problem explic-
itly. All that is required is existence of a separation oracle and an initial ellipsoid to
start the process. For instance, for certain classes of graphs, the stable set polytope
may be characterized completely by C-STAB G (such graphs are called t-perfect).
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Other classes may have their stable set polytope characterized by Q-STAB G (per-
fect graphs), or by C-STAB G N Q-STAB G (h-perfect graphs), or generally any
combination of the polytopes mentioned in items 1-4 above. The stable set polytopes
of such graphs have generally exponentially many facets. However, in [32], [42] it
is shown that one can construct polynomial time computable separation oracles for
these polytopes and thus find the maximum stable set for the corresponding graphs
in polynomial time.

It is common belief that in contrast to the ellipsoid method, interior point meth-
ods require explicit knowledge of the facets of the polytope on which we wish to
optimize; see, for instance, [32] and the quotation from [27] in the introduction. How-
ever, we can use polynomial time interior point methods to optimize over STAB G
in the special cases mentioned above, even though the number of facets in such poly-
topes may be exponentially large. In fact, the ground breaking work of Nesterov and
Nemirovskii implies that, at least in principle, a listing of all inequality constraints in
the LP formulation is not necessary. Instead of a separation oracle as is required in
the ellipsoid method, one needs a polynomial time computable barrier oracle with a
polynomially bounded self-concordance parameter. For instance, as indicated, we can
optimize over N+(STAB G) in polynomial time and N+(STAB G) STAB G for the
classes of graphs mentioned above. The general results of Nesterov and Nemirovskii
imply that one can directly compute a barrier function for N+(STAB G).

THEOREM 5.1. Let b" IntN+(STAB G) --, be the function defined by

(5.7) b(x)’-- min(- In det Z" diag(X) x, X e M+(STAB G)}.

Then there is an interior point algorithm that uses b(x) as its barrier and finds
max(wTx x e N+(STAB G)} in O(v/max(llwll, log el) iterations and error at
most e.

Proof. Nesterov and Nemirovskii prove that In det X is n-selfconcordant for the
cone of positive semidefinite n n matrices. (See [48] for definitions.) They also show
that existence of an n-self-concordant barrier for a convex set generally implies that
one can optimize a linear function over that set with every O(vf) iterations yielding
a significant bit. Furthermore, in Proposition 1.5, [50, p. 121] they show that if a
convex set K C_ }n is endowed with an n-self-concordant barrier b, and
is an affine transformation mapping K on to ,4(K), then the following function is
n-self-concordant for A(K)"

b+(y)’- inf(b(x) x e A-1 (y) N Int K}.

Now the theorem follows immediately from the definition of N+(STAB G) as given in
[42] with the affine transformation ,4 replaced by projection of elements of M+(STAB G)
onto their diagonals.

Notice that each iteration itself requires evaluating the function b(x), which in-
volves another optimization problem. Nevertheless the result above shows that if a
convex set K in n can be represented as a projection of another convex set K
with N > n, such that K is endowed with a polynomial time computable p-self-
concordant barrier, then there is a polynomial time computable p-self-concordant
barrier for K. In combinatorial optimization there are many examples of polytopes
with exponentially many facets that can be represented as a projection of polytopes
in higher dimensions but with fewer (polynomially many) facets. For all such poly-
topes one can apply interior point methods and optimize over them in polynomial
time. For a thorough discussion of liftings of polyhedra associated with combinatorial
optimization problems, consult [65], [42] and the references cited in them.
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It is an interesting problem to look for easily computable (for instance NC-
computable or at least polynomial time computable) barriers for combinatorial op-
timization problems whose LP formulation contains exponentially many inequalities.
A concrete open problem is to find an easily computable barrier for the matching
polytope with the property that a suitable interior point algorithm with such barrier
requires O(x/) iterations where m is the number of edges in the graph. This problem
is especially interesting because Yannakakis has shown that under certain symmetry-
preserving conditions on the lift operator it is impossible to lift the matching polytope
to a higher dimensional polytope with polynomially many facets [65]. Whether the
matching polytope can be represented as a projection of a convex set endowed with
an O(m)-self-concordant barrier function remains an interesting open problem.

5.2. Maximum cliques in perfect graphs. A particularly nice application of
semidefinite programming is to the solution of the maximum clique problem in perfect
graphs. A graph G(V, E) is called perfect if for all induced subgraphs G of G, the size
of the maximum clique, w(G), equals the size of minimum proper coloring, x(G). (A
proper coloring of vertices of a graph is an assignment of colors to each vertex such
that no two adjacent vertices have the same color.) It is clear that w(G) _< x(G) for
all graphs, as one needs at least w(G) colors just to cover the vertices of the maximum
clique. Several interesting properties of perfect graphs should be noted. First, the
perfect graph theorem of Lovsz indicates that a graph is perfect if and only if its
complement is perfect [40]. This statement is equivalent to saying that for all induced
subgraphs G of G, o(G) p(G), where (G) is the size of the largest stable set
in G, and p(G) is the size of the smallest number of cliques that cover all vertices
of G. Thus, in effect, studying cliques in perfect graphs is equivalent to studying
stable sets and any algorithm for one is valid for the other one (by simply applying
it to the complementary graph.) As a consequence of the perfect graph theorem, one
can show that equality of maximum cliques and minimum coloring extends to the
weighted graphs. More precisely, let w E Nn be an integral weight vector defined on
the vertices of G. A proper w-coloring of G is an assignment of colors to the vertices of
G such that each vertex has at least wi colors and for two adjacent vertices, their color
sets are disjoint, x(G, w) is the minimum number of colors over all proper w-colorings
of G. A maximum weighted clique in G is the clique whose sum of weights of vertices
is maximum; this sum is denoted by w(G, w). A graph is perfect if and only if for
all weight vectors w E Nn, w(G, w) x(G, w). Restating this for the complements
of graphs, we have that a graph is perfect if and only if a(G, w) p(G, w), where,
c(G, w) is the weight of the maximum weighted stable set in G, and p(G, w) is the
minimum number of cliques required to cover vertices of G such that each vertex i
is in at least wi cliques. These results are equivalent to the following statement; see

THEOREM 5.2. A graph G (V, E) is perfect if and only if STAB G Q-
STAB G.

Therefore, already the discussion in the preceding subsection implies that com-
puting maximum cliques and maximum independent sets in perfect graphs can be
accomplished in polynomial time by interior point methods. However, in this case
one can derive a slightly stronger result.

Lovsz in [41] discovered an invariant of graphs, 0(G, w) that has two desirable
properties: first it is polynomial time computable, and second it is simultaneously
an upper bound for w(G, w) and a lower bound for x(G, w). This invariant can be
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defined by a pair of primal and dual semidefinite programs. Let

JM:-(X e Xij 0 for all i,j e E or j}

and

3A+/-:-(Y e -- Yij 0 for all i,j E}.

Then the weighted Lovdsz number of G is defined by the following primal-dual SDP
pair:

O(G, w):= mAn{),1 (X + W)" X e 3/1}
=max{W.Y" YEA/[+/-, Y_0andtraceY=l},

where W:--v/-VT and is an n-vector whose ith component is Vi. This mAn-
max equality is proved directly in [32], and also follows easily from the duality theory
stated earlier; see (4.8).

LEMMA 5.3. For every vertex weighted graph G (V, E),

w) < o(a, w) < x(a, w)

and

a(G, w) _< )(G, w):=o(a, w) _< p(G, w).

See [32, Chap. 9] for a thorough treatment of the Lovsz number of graphs including
several other characterizations and many interesting properties. We just mention here
that O(G, w) is a relaxation of max{wx" x E N+(STAB G)}. Since in case of perfect
graphs we have

w) w) x(a, w)

and

w) 0(G, w) w),

we can actually compute the maximum clique and maximum stable set in polynomial
time for this class of graphs. In [32] the ellipsoid method was used to establish
the polynomial time computability of maximum cliques in perfect graphs. We now
show that interior point methods give us a slightly stronger result than the ellipsoid
method. More precisely, we show that computing maximum cliques (and maximum
stable sets) in perfect graphs can be accomplished in (() randomized parallel time
using the P-RAM model of computation if Ilwll O(nc) for some constant c.7

This is. straightforward. First recall that we showed that a standard SDP problem
can be solved in O(x/max(i,i,lloge.I)) iterations, if i is the number of bits in
the input SDP, L is an a priori bound on the norm of the solution, and e is the
accuracy required on the size of the duality gap. In case of perfect graphs we only
need to set e 1/3; in fact, if zk and Yk are our current primal and dual estimates
where there is only one integer between Zk and W Yk, then we can stop and declare
O(G, w) [zk [W*Yk]. Furthermore, i 0(1) since all coefficients in the primal-
dual characterization of O(G, w) in (5.8) are either zero or one or wiwj. Similarly, L’

7 (v means O(vlogk n) for some constant k.
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((1) because the weight of the maximum clique cannot exceed wi. Thus computing
O(G, w) requires ((x/) iterations. Each iteration essentially involves solving a system
of linear equations that is already known to be in complexity class NC, that is, it
requires 0(1) time with polynomial number of processors. Therefore, computing
O(G, w) for polynomially bounded w requires ((v) operations on a P-RAM model
of computation.

It remains to show that computing the maximum clique itself can be accomplished
in (x/). We cannot use the self-reducibility process here since it may require O(n)
time even on a P-RAM machine. However, observe that if the maximum clique is
unique then we can compute it in ((v) parallel time. One could remove one vertex
of the graph and compute O(G\i, w) for the remaining graph. The vertex i is in

the unique maximum clique if and only if w(G\i, w) < w(G, w). Therefore, testing
this simultaneously for all vertices we get the set of vertices in the maximum clique.
In general we do not have uniqueness, but we could use the randomized perturbation
scheme of Mulmuley, Vazirani, and Vazirani [46]. First recall their isolating lemma.

LEMMA 5.4. Let S {xl,...,Xn} and F a family of subsets of S, that is
F {St,..., SN}. Furthermore, let elements of S be assigned integer weights chosen
uniformly and independently at random from [1, 2HI. Then,

1
Pr[There is a unique maximum weight set in F] _> .

See [46] for the proof.
To get a maximum clique in a perfect graph we follow a procedure similar to

the one adopted by Mulmuley, Vazirani, and Vazirani for constructing the minimum
weighted perfect matching in graphs. The idea is to assign weights to vertices ran-
domly so that with high probability the maximum clique with the new weights is

unique, but at the same time, this clique is among the maximum cliques with the
original weights.

Let C:-’ wi. First give a weight of 2C2wi to each vertex so that the weight
of maximum weighted cliques is at least 2C2 more than the next largest clique weight.
Then perturb weight of each vertex i by adding integer ui uniformly and independently
chosen from integers in [1, 2C]. So now each vertex has weight wi 2C2w + ui.
Notice that if a clique was not maximum before, then it is impossible for it to become
maximum after assigning new weights. Therefore, the maximum clique with respect
to new weights is among one of the maximum cliques with respect to the original
weights. The isolating lemma implies that this clique is unique with a probability at
least one-half and we may use the scheme mentioned earlier in this section to find it
in parallel.

We should mention that this scheme, in fact, results in a Las Vegas type random-
ized algorithm. No randomization is involved in computing w(G, w); only constructing
a maximum clique involves probabilistic choices. If the weights generated do not re-
sult in a unique maximum weighted clique, our method may return a set that is not
even a clique. This can be checked in parallel and the algorithm returns a message
of failure; any set returned by the algorithm is a genuine maximum clique with no
possibility of error. We summarize these results in the following theorem.

THEOREM 5.5. Let G (V, E) be a perfect graph with an integral weight vector
w on its vertices. Let also that Ilwll O(nc) for some constant c. Then one can

c_ompitte the maximum weighted clique and the maximum weighted stable set of G in
O(v/ Las Vegas randomized parallel time using a P-RAM model of computation.

Finally, we remark that presently no representation of the stable set polytope of
perfect graphs as projection of a higher dimensional polytope with polynomially many
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facets is known. Therefore, STAB G for a perfect graph G serves as an example of a
polytope with exponentially many facets on which one can optimize a linear function
in polynomial time using interior point methods. In fact, as mentioned in 5.1, one
can compute an n-self-concordant barrier for this polytope in polynomial time.

5.3. The maximum induced k-partite subgraph problem. In [47]
Narasimhan and Manber generalized the concept of the Lovsz number of graphs
as follows: Let ok(G) be the size of the largest induced k-partite subgraph in G.
Recall that p(G) is the minimum number of cliques that can cover all vertices of G.
Then Narasimhan and Manber show that

k

(5.9) ak(G) <_ @k(G):= min E Ai(X + J) < kp(G)
X6[+/-

i--1

where J is the matrix of all l’s. For k 1, Ok reduces to the Lovsz number 0. It
is clear now that computing Ok(G) is an SDP problem and may be solved by interior
point methods. Taking the dual of (5.9) we get

(5.10)

(G) max
Sot.

J.Y
trace Y k,
Y E J4,
O --< Y -’< I.

It is not difficult to extend the bound of Narasimhan and Manber to the weighted
case. Let w be a weight vector over the vertices of G and ck(G, w) the maximum
weight k-colorable induced subgraph of G.

THEOPEM 5.6. Let W (v)(v)T. Then ck(G,w) <_ )k(G,w), where
zOk(G, w) is defined as

(5.11) Oa(a,w)" mln{Y. ,i(X + W)" X e .M +/- }
=max{W.Y" Y.M and traceY=k, OY__I}.

Proof. (This proof is essentially the same as the one given in [31] for the case
k 1.) One can transform a weighted graph G into an unweighted one Gw by
replacing each vertex i with wi mutually nonadjacent vertices and then connecting
all wi vertices arising from vertex to all wj vertices arising from vertex j if and only
if and j are adjacent in G. Clearly the size of the unweighted maximum k-partite
subgraph of Gw equals k(G, w). It suffices to show that %gk(G, w) Zgk(Gw). Now,
in Gw two vertices i and j (respectively, edges uv and kl) are equivalent if there is
an automorphism of Gw mapping i to j (respectively, uv to kl). In particular all wi
vertices arising from vertex i in G are equivalent; so are the all edges arising from
uv. It is clear that if two vertices and j (respectively, two edges uv and kl)are
equivalent, then in (5.10) the corresponding variables Y/i and Yjj (respectively, Yuv
and Ykt) are equivalent in the sense that by exchanging these variables (5.10) does
not change at all. This in turn implies that among all optimal solutions of (5.10)
for graph Gw, there are solutions where equivalent vertices (respectively, edges) have
identical optimal values for their corresponding variables. In other words, among
all optimal solutions of (5.10) for Gw, there is one solution Y, with the following
property: Y* can be partitioned into an n n block matrix, such that the i, j block
is awi wj matrix with all its entries equal to, say, yi*. Now, matrix Y* whose i, j
entry is yi)/v/wiw is feasible for the max problem in the theorem and it is easy to



INTERIOR POINT SEMIDEFINITE PROGRAMMING 47

verify that W Y* J Y 0k(Gw) and thus, 0k(Gw) < Ok(G, w). The other
direction inequality is also easily verified by reversing the construction given. [:]

Let U(k) be the class of graphs for which ak(G’) zgk(G’) for all induced sub-
graphs G’. Then the sublinear parallel time algorithm of Theorem 5.5 may be ex-
tended to solve the largest induced k-partite subgraph problem for graphs in class
U(k). It remains an interesting open problem to fully characterize 3(k).

5.4. The graph partitioning problem. An important class of combinatorial
NP-hard optimization problems which lend themselves to SDP methods for finding
upper or lower bounds arise from graph partitioning and cut problems. In many cases
such problems result in semidefinite programs with only O(n) variables. Therefore,
the interior point methods may be especially efficient as each iteration requires only
solving n n systems of equations.

The general graph partitioning problem is defined as follows. Suppose we are
given a set of integers ml >_ m2 >_ >_ mk, with -j mj n. Denote by m the
k-vector made up of mj’s. Also let G (V, E) be a complete edge-weighted graph
with n vertices and each edge {i, j} with weight wij. We want to partition the vertices
of G into k subsets such that the jth subset has cardinality mj, and that the sum
of the weights of those edges whose endpoints are in different subsets is minimized.
Let us denote this minimum number by 7rm(G). Computing 7rm(G) is of course NP-
hard. Donath and Hoffman in [17] and [18] derive a lower bound on the size of the
minimum partition (see, also, Barnes and Hoffman [5]). Let A be a matrix with
Aj wi (Ai 0). Then Donath and Hoffman prove the following relation [18]:

k
1

min rnj Aj (A + Diag x)7rm(G) > - .Tx=a

where a:- wiy. Again it is clear that computing this bound is an SDP problem.
Using the results from 4 and after some simplification we get the following pair of
primal and dual SDP programs:

k kmin -i=1 izi + 1Tx + -:i=l trace V/
(5.13a) s.t. ziI + V + (mi mi+)Diagx - (mi mi+l)A for 1,..., k

V>-0 for/=l,...,k

and

(5.13b)

max A. (/k=l(gt -?’gi+l)Ui)
trace Ui

k

O-e, Ui - I

for 1,...,k,
for j 1,...,n,
for/- 1,...,k.

Barnes and Hoffman in [5] describe a method that uses eigenvectors associated
with the k largest eigenvalues of the optimal matrix A+Diagx* to generate a partition
of the nodes of the graph. See, also, Barnes [6], [7].

An important special case of the graph partitioning problem is the case when all
mi’s are equal. In that case the graph partitioning problem simplifies to

min (k/n)lTx + trace V max A Y
(5.14) s.t. V + Diag x - A, s.t y/ _k for 1,..., n,

V_O, O_Y_I.
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Boppana in [10] considers the graph bisection problem (that is when k 2 and
ml m2 n/2) and derives the following bound on the bisection width (G), which
is always sharper than (5.14)"

1
(G) >_ max [J (A + Diag(x)) nA1 (P(A + Diag(x)P))],

where P:=(I- J/n) is the projection operator on the linear space S:={x 1Tx 0}.
This characterization is equivalent to the primal and dual SDP pair

min
(5.15a) s.t.

nz + 1Tx
lXT- JAWAJzI- Diag(x) ’..xlr >- A +2n 2n

max A(I + J/n) Y
n(5.155) s.t. Y + (l/n)’=Y 1 for 1,..., n,

Y-O.

(Boppana had the min characterization only, the max characterization results by
simply taking the dual.) To find an actual bisection Boppana uses an eigenvector
corresponding to the largest eigenvalue of AI(P(A / Diag(x*)P) and outputs the
bisection that has the n/2 largest component of the eigenvector on one side. Using the
primal characterization, Boppana shows that in the unweighted case (i.e., the matrix
A is simply the 0-1 adjacency matrix of graph G) one may get the optimal bisection
with high probability. The graph bisection problem has important applications in the
very large scale integration (VLSI) routing problem. Combining the SDP formulation
of Hoffman and Donath, the favorable average case analysis of Boppana, and the
interior point technique developed in this paper may result in an effective and practical
method for solving this problem. For generalizations of these ideas see [58].

Related to the graph bisection problem is the maximum cut problem: partition
the nodes of the graph into two sets such that the number of edges with endpoints
on different sets is maximum. Of course one obvious way for finding bounds for
this problem is to solve the graph partitioning problem with k 2, m i, and
m2 n- i for all 1,..., Ln/2J (notice that in graph partitioning problem max
and min characterizations are essentially equivalent by simply changing the weights
wi with wj -wi). In [16], [56] the following SDP bound is proposed:

(5.16) min AI(A + Diag(x)) lx >_ MC(a),

where MC(G) is the ’sie of maximum cut in G. Equation (15.16) is equivalent to

min z+ (1/n)lTx max A.Y
(5.17) s.. zI- Diag(x)_ -A, s.t. Y/i 1/4,

YO,

and may be solved by interior point methods. Recently, Goemans and Williamson
[25] have shown that the solution of (5.16) yields a cut whose size is guaranteed to
be to within 0.87 of the optimum; the previous best result only guaranteed 0.5 of the
optimum. Thus far, the best approximation algorithm for the maximum cut problem
(as well as for the maximum satisfiability problem) is based on SDP relaxations. For
related treatment of maximum cut and graph bisection problem, see [57].
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INFEASIBLE-INTERIOR-POINT PRIMAL-DUAL
POTENTIAL-REDUCTION ALGORITHMS FOR LINEAR

PROGRAMMING*

SHINJI MIZUNOt, MASAKAZU KOJIMA$, AND MICHAEL J. TODD

Abstract. In this paper, primal-dual potential-reduction algorithms are proposed that can start
from an infeasible interior point. The authors first describe two such algorithms and show that both
are polynomial-time bounded. One of the algorithms decreases the Tanabe-Todd-Ye primal-dual
potential function by a constant at each iteration under the condition that the duality gap decreases
by at most the same ratio as the infeasibility. The other algorithm reduces a new potential function,
which has one more term in the Tanabe-Todd-Ye potential function, by a fixed constant at each
iteration without any other conditions on the step size. Finally, modifications of these methods are
described (incorporating centering steps) that dramatically decrease their computational complexity.
The algorithms also extend to the case of monotone linear complementarity problems.

Key words, polynomial time, linear programming, primal-dual, infeasible-interior-point algo-
rithm, potential function
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1. Introduction. The primal-dual infeasible-interior-point algorithm for linear
programming is a simple variant of the primal-dual (feasible-)interior-point algorithms
developed by Megiddo [11], Kojima, Mizuno, and Yoshise [4], [5], Monteiro and Adler
[15], [16], and Wanabe [18]. The algorithm can start from an infeasible point, while
interior-point algorithms must start from a feasible point. When we solve a given
problem by an interior-point algorithm, we need to construct an artificial problem to
get an initial feasible point. The advantage of the infeasible-interior-point algorithm
over the interior-point algorithm is in solving the given problem directly. (This is a
very significant advantage in practice. In theory, the complexity analysis of most of
these methods still requires initial solutions that may need to have very large (big
M) components.) The algorithm has been studied by Lustig [8], Lustig, Marsten,
and Shanno [9], Marsten et al. [10], and Wanabe [19] and is known to be one of the
most efficient interior-point algorithms (see for example [9], [10]). Kojima, Megiddo,
and Mizuno [3] demonstrated the global convergence of an infeasible-interior-point
algorithm. Then Zhang [22], Mizuno [12], and Potra [17] proved polynomial-time
convergence of certain infeasible-interior-point algorithms. Those algorithms generate
a sequence of points in a neighborhood of the path of centers and they are classified
as path-following algorithms.

In the framework of interior-point algorithms, potential functions have played im-
portant roles in determining a step size at each iteration and in obtaining a theoretical
upper bound on the number of iterations (see Karmarkar [2], Ye [20], Kojima, Mizuno,
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and Yoshise [61). Kojima, Noma, and Yoshise [7] investigated the global convergence
of infeasible-interior-point (both potential-reduction and path-following) algorithms
for monotone complementarity problems. In this paper, we propose polynomial-time
primal-dual potentiM-reduction algorithms that start from an infeasible interior point.

Let A be an m x n matrix, b E Rm, and c E Rn. Consider the standard form
linear program

and its dual

(P) Minimize cTm
subject to Am-b, m>_0

(D) Maximize bTy
subject to ATy+z=c, z >_ O.

We assume that the matrix A has full row rank, i.e., rank A m. We call (m, y, z)
an (infeasible) interior point if m > 0 and z > 0, and a feasible interior point if in
addition Am b and ATy + z c.

Let (m1, yl, z1) be an interior point and a > 0 be such that

(ml)Tz > all(Am b, ATy + z c)ll,

where I1" denotes the t2-norm.
potential functions:

For a constant >_ 0, we define two primal-dual

(m, z) :- (n + ) ln(mTz)
n

E ln(xz) n In n,
i--1

n

(m, y, z)"-- (n + + 1)ln(mTz)- E ln(xz)--nlnn
i--1

ln(mTz all(Am b, ATy + z c)ll).

The first is known as the Tanabe-Todd-Ye primal-dual potential function (used for
feasible-interior-point algorithms) and the second is defined here for an infeasible-
interior-point algorithm. If (m, y,z) is feasible, (m, y,z) (m,z). Note that
involves the norm of a vector formed from the primal and dual infeasibilities. It
appears that this would be very sensitive to different scalings of the original problem.
However, we see in (6) below that each component of this vector decreases at the same
rate during the algorithms. Hence the norm measures how much each infeasibility has
been reduced.

Sections 2-4 of this paper construct two infeasible-interior-point algorithms,
namely, Algorithms I and II, which start from the initial point (m1, yl, z) and gen-
erate a sequence {(mk, y, zk)} of interior points. Algorithms I and II decrease the
potential functions and at each iteration, respectively. The step size a at the
kth iterate (mk, yk, zk) of Algorithm I is determined such that decreases at least a
constant value and an extra condition holds, while Algorithm. II does not need any
such condition. So Algorithm I is a constrained potential-reduction algorithm, while
Algorithm II is a pure potential-reduction algorithm. In the worst case, the decrease
in the potential functions at each iteration is only gt(n-2), and this leads to a com-
plexity bound of O(n2"5L) iterations, where L is related to the initialization and the
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termination criterion of the algorithms. Then 5 describes variants that require only
O(nL) iterations by adding centering steps when the current iterate lies outside a
wide neighborhood of the path of centers. The centering steps keep the "duality gap"
and the infeasibilities fixed while decreasing the potential functions and . Finally,
6 contains a discussion of why the complexity bounds of these infeasible-interior-
point methods are so much higher than those for feasible-interior-point algorithms,
and shows how the algorithms also extend to monotone linear complementarity prob-
lems (LCPs). We chose to confine ourselves to the more familiar setting of linear
programming for the main development.

2. A constrained potential-reduction algorithm. The path of centers con-
sists of the solutions (x, y, z) to the system of equations

(I)
Am b

ATy+z--c --0
Xz #e

for all It > 0. Here X := diag(x) denotes the n x n diagonal matrix containing the
coordinates of a vector m E R and e :-- (1,..., 1)T Rn. At each iteration, we assign
the value (xk)Tzk/(n/v) to the parameter It, and then compute the Newton direction
(zx, zy, zz) at (xk, yk, Zk) for the system (1) of equations; that is,
is the unique solution of the system of linear equations

0 AT I y ATyk + zk c
Zk 0 Xk Az Xkzk Ite

where Xk
"= diag(xk) and Zk := diag(zk).

Let p be a positive constant for which we want to find the optimal solutions x*
of (e) and (y*, z*) of (D), if they exist, such that

ALGORITHM I
Step 1. Choose o (0, 1] and a positive constant 5 (which may depend on
n and v). Set (x1, yl, z1) :_ 0p(e, 0, e). Let k :- 1.
Step 2. If (xk)Tzk <_ e then stop.
Step a. Let It :-- (xk)Tzk/(n + ). Compute the solution (Ax, zy, Az) at
(xk, yk, z) of the system (2) of equations.
Step 4. Find a step size a such that

(3)
(a)

+ +  ,az) < (z z 6,
(xk + aAx)T(zk + aAz) >_ (i a)(xk)Tzk.

If we cannot find such a step size then stop.
Step 5. Let (,k+l,yk+l,2;,k+l):-- (xk,yk,2k) + O(ZX, y, g). Increase k
by 1 and go to Step 2.

The direction (zx, zy, zz) is, except for the choice of It, the same as in the earlier
primal-dual infeasible-interior-point algorithms. If the current iterate is feasible, our
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choice of # yields the direction that is the projected scaled steepest descent direction
for the potential function (or ) [6].

Since (a:, z) >_ ln(:cTz) and the potential function decreases by a constant 5 at
each iteration, Algorithm I terminates in O(L/) iterations provided that (c1, z1)
O(L) and ln(1/e) O(L). If L >_ lnn and lnp O(L) then (cl,z1) O(L). In
the next section, we show that if there are optimal solutions :c* of (P) and (y*, z*)
of (D) such that z*)ll < p, then there exists a step size a, which satisfies (3)
and (4) for 5 "= 704/(300(n + )2). (Condition (4) is what makes this a constrained
potential-reduction algorithm.) Hence we have the following result.

THEOREM l. Let L
(0, 1]. Suppose that In p O(L), ln(1/e) o(n), >_ x/, and := 704/(300(n+ )2).
Then Algorithm I terminates in O((n + )2L) iterations. If the algorithm stops in
Step 2, we get an approximate solution; otherwise (if it stops in Step 4) there are no
optimal solutions * of (P) and (y*,z*) of (D) such that II(c*,z*)lloo

_
p.

3. Analysis of Algorithm I. Theorem 1 follows from the following four lem-
mas. The first lemma gives a bound on the decrease in .

LEMMA 2 (Kojima, Mizuno, and Yoshise [6]). For any n-vectors > O, z > O,
Ca, az, and a > 0 such that IlaX-laxll <_ T and IIoZ-l2;llcx)

_
7" for a

constant T E (0, 1), we have

n-I-( +aA + aZ) < (, ) + e (XZ)-le (ZA + XA)aT2

(5) -b ((n q- v)
AT’T /Iz "x-l /"2 J- "z-l /z"2 ) oz2+T2 2(1-7")

The next result is important in analyzing the linear term above, with v "= X1/2zl/2e.
LEMMA 3 (Lemma 2.5 in Kojima, Mizuno, and Yoshise [6]). For any n-vector

v > O and v >_ x/,

V_le n+
vTv 2Vmin

where V diag(v) and Vmin mini vi.
Note that -- is fixed in [6], but the proof is valid for any g _> x/-.
Let ak be the step size at the kth iteration of Algorithm I. We define a sequence

{9 } by

01 :--1 and 0+1"=(1-a)0 fork=l,2,3,

As shown in [3], we have

(6) (Ak b, ATyk

The following result is used to bound the second-order term in (5). The parameter
71 is introduced to allow this lemma to be used in the analysis of Algorithm II also.

LEMMA 4 (based on Mizuno [12]). Let 70 e (0, 1], 71 e (0, 1], and p > O. Suppose
that

(1, yl, Z1) 70t0( 0, ),
(Axk b, ATyk -[- zk c) Ok(Ax b, ATy -k z c),

(7) (3gk)Vzk

_
OkT1 (I)Tz1"
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If there exist optimal solutions * of (P) and (y*,z*) of (D) such that
p, then we have

I[Dzzll _<
"’)’1 Vmin

wh.re. D :-- (xk)l/2(Zk) -1/2 a?gd Vmin min V/-kzk.
Proof.. Assume that there exist optimal solutions x* of (P) and (y*, z*) of (D)

such that (x*, z*)]] <_ p. Then we have

(8) (o + ( o)* )r(oz + ( o)z z) o,

which implies

(ox + ( -)*)rz + (0z + ( -0)z*)r
( + ( )*)(* + ( *)*) + ()r*.

x* <_pc z*_<pe, andxz =0foreachi,By using this equality, x z ")’ope,
we have

Ok Txk0(o)!1( )111 (() + ()r)
(ok "Jr-(l- ok)*)Tzk 2t-(Okz + (1- Ok)z*)Txk

=(Okm + (1 --Ok)x*)T(okz + (1 --Ok)Z*) + (W,k)Tzk
<_ nOk’op2 + (k)T2jk,

where the last inequality follows from the fact that for each one of 0 xi + (1 0)xi*
and Okz +(1--Ok)z is at most Oop and the other is at most p. om (7), (xk)Tzk

Ok(x)Tz nOkp2. Hence we have

() 00(,)] ().
ffOl

From (2) and (6), we get

0 AT I Ziy + Ok (yl y.)
Z 0 X az+O(zi-z*)

( o
(10) 0

Xz e OZ( *) OX(z z*)

Then we have via a straightforward computation (see also Mizuno [12])

D-A --OkQD-I(x --*) + Ok(I Q)D(z z*)
(11) -(I Q)(XkZk)-I/2(xkzk #e),

where Q := DAT(AD2AT)-AD. Since Q and I- Q are orthogonal projections,
we have

]lD-Zxazll _< O/[[D-l(a a:*)[[ + ok[lD(z z*)[[ + [](XkZk)-l/2(Xkz,k"
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From the definition of p, -pe <_ x * <_ pe and -pe <_ z z* <_ pe. Thus we
have

(12)

By using Vmin mini /xkzki, # (xk)Tzk/(n + U), and (from (9))

we see

(14)

D-III _< 2OkP 1 2

Vmin ’/10kp

q-i(xk)Tzk 2
n q- (xk)T2k _..

_(4 i( n ) (Vmin)2
1 + -:

n +

<

___
(*)_____.

’1 Vmin

n((xk)Tzk)2

(Tt -- b’)2 (Vmin)2

n ) (k)Tk
nt-

(n-/])------ Vmin

The other inequality follows from a similar analysis of

(15)
DAz -Ok(l Q)D(z z*) + OkQD-I(x

_Q(XZ)-/(X ).

Note that if (4) holds until the (k- 1)th iteration, then we have (7) for V1 1 by the
definition of 0k. This also shows that if Algorithm I stops in Step 2, the infeasibility
of x and (y, z) has been reduced at least as much as the duality gap, so we do have
approximate solutions. Indeed, we have almost optimal solutions to a nearby linear
programming problem and its dual.

Finally, the lemma below completes the proof of Theorem 1.
LEMMA 5. Let >_ vf, ")’0 E (0, 1], V1 E (0, 1], and

4 2

300(n + )2’

and suppose (7) holds. If there exist optimal solutions x* of (P) and (y*, z*) of (D)
such that II(x*, z*)llo <_ p then we have (3) and (4) for

4^ 2 ,2( Ii min

100(n + )(xk)Tzk

at the kth iteration.
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Proof. Let v (XkZk)l/2e and D :-- (Xk)/2(Zk)-/2. Then if T satisfies the
hypotheses of Lemma 2, we have

(6)

By the third equality in (2) with # vTv/(n + ), we have

vTv
V_ )D-Ax + DAz v- e

n+v

From this equality, we also have, from

(17)
1 2(D-lx)T(Dzz) -{]]D- zx + Dzz]]

(18) AXT az < V
n+v

By Lemma 4, we see that

< /0’1Vmin 1 5 VTV

100(n + v)vTv Vmin 7)71 Vmin

_< 1/20, and similarly

These inequalities imply that we have (16) for T 1/20. Using the above results and
Lemmas 3 and 4 in (16), we obtain

(19)
(x + ,ax, z + ,az) (x, z)

n+vll vTv 1112< v-V-e avTv n + v

v V-e+ 4 vTv n+u

vTv
n+v

y-le

2
10 -1 2)) a2

n + v c lO _.v 1 + I1(11-11 +

a
19 2

Vmin 01 Vmin
1 4 2o

380 (n + ):

vTv 3 399< 2n + v 4Vmin 400

2 4 2
7o71

300 (n + v)2
<-6
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Hence we have (3). The inequality (4) follows from

4. A pure potential-reduction algorithm. We now consider a potential-
reduction algorithm that does not impose the explicit constraint (4) on the step size.

ALGORITHM II
Step 1. Choose 3’o E (0, 1] and a positive constant 5 (which may depend on
n and ). Set (x1, yl, z) :__ /op(e, O, e). Let k := 1.
Step 2. If (xk)Tzk <_ e then stop.
Step 3. Let # "= (xk)T;gk/(lt-f-l). Compute the unique solution (x, zy, Az)
at (xk, yk, zk) of the system (2) of equations.
Step 4. Find a step size such that

(20) (x + aax,y + aay, z + aaz) < (x, y,z) -.
If we cannot find such a step size then stop.
Step 5. Let (Xk+,yk+,Zk+) := (xk, y,zk) + C(Ax, Ay, Az). Increase k
by 1 and go to Step 2.

The performance of this method is summarized in the following result.
THEOREM 6. Let L >lnn, /0 e (0,1] and / (0, 1). Suppose that ln p-- O(L),

ln(1/) O(L), u >_ v/-, a := /(x)Tz/ll(Ax-b,z-c)ll, and6"= 0/142/(300(n+
u)2). Then Algorithm II terminates in O(u(n+u)2n) iterations. If the algorithm stops
in Step 2, we get an approximate solution; otherwise (if it stops in Step 4) there are
no optimal solutions x* of (P) and (y*,z*) of (D) such that [1(*,*)11 < .

The proof of this result is like that of Theorem 1. The lemma below shows that
it will stop in the required number of iterations.

LEMMA 7. Under the assumptions of Theorem 6, (X1, yl,2l) O(vL). If
(x, y, z) < t/In e then xTz < .

Proof. It follows from

To complete the proof of the theorem, we need to show that if there are optimal
solutions x* of (P) and (y*,z*) of (D) such that II(x*,z*)ll _< p, then there exists
a step size which satisfies (20) for 5 4 2"0/1/(300(n A- )2). We use Lemma 5. Note
that (7) holds automatically since (xk, yk, z) is finite, using (6) and the definition
of a. Hence we only need the following result.

LEMMA 8. If

(x + aAz, z + aAz) < (x, z) 5,
( + ,az)(z + Zz) > ( )(z)rz,
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then

( + aA,y + aAy, z + aAz) < (,y,z) -.

Proof. By (2) we have that

(A(ck +aAix)-b, AT(yk +azy)+(zk+aaz)-c) (1-a)(Axk-b, ATyk +Zk--C).
Thus we get

(x + az3, y + az3y, z +

(xk + a4x, zk + aAz) In (1 (1 a)a]](Axk(xk + Ox)T(
b, ATyk+aZz)+ zk

(,,) .
g. An O(nL)-teraton variant. Algorithms I and II require O(n"L) itera-

tions. Mizuno [12] proposed an O(nL)-iteration variant of the infeasible-interior-point
path following algorithm. We can also construct O(nL)-iteration variants of Algo-
rithms I and II. In this section, we only show the variant of Algorithm II. Although
the O(n/.,)-iteration variant in [12] generates a sequence of infeasible interior points
in a neighborhood of the path of centers, our variant does not confine the sequence
to such a neighborhood.

ALGORITHM III
Step 1. Choose "0 and A in (0, 1] and positive constants 51 and 52.
(xl, yl, zl) := "yop(e, O, e). Let k "= 1.
Step 2. If (xk)Tzk <_ e then stop.
Step 3. If

(2) > ()Vz/Vmin :--" minx/z

then

else

Set

Step A. Let # :-- (xk)Tzk/(n + ). Compute the unique solution
(Zx,zy,Az) at (xt:,yt:,zt:) of the system (2) of equations. Find a
step size a such that

(22) ( + a,ax, + ,au, z + ,a) <_ (,,z) -5.
If we cannot find such a step size then stop.

Step B. Compute the unique solution (zx, zy, zz) of the system of
equations

(23)
A 0
0 AT

Zk 0
I ziy
X z3z ( o )x -(()/n)

Find a step size a such that

(24) (xk + az3x, yk + az3y, zk + azz) <_ (xk, yk, z) 52.
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Step 4. Let (xk+, yk+,zk+l) (xk, y,zk) + a(Ax, Ay, Az). Increase k
by 1 and go to Step 2.

Note that (zx, zy, z) in Step B is a centering step as in [14]; because of the zeros
in the right-hand side vector in (23), this step maintains the current infeasibilities as
well as the "duality gap" xTz.

The performance of this method is summarized in the following result.
THEOREM 9. Let L >_ ln n, 70 E (0, 1] and 71, A E (0, 1). Suppose that ln p

O(L), (/) O(L), > n, := ()/II(A , )11, := .00"A 7071
and 52 "= (1 A)2/4. Then Algorithm III terminates in O(uL) iterations in Step 2
or A. If the algorithm stops in Step 2, we get an approximate solution; otherwise (if
it stops in Step A) there are no optimal solutions x* of (P) and (y*, z*) of (D) such
that II(x*,z*)lloo <_ p.

Since 51 and 62 are constants independent of the input data, the number of
iterations is bounded by O(vL) (see Lemma 7). As shown in 3, we can get an
approximate solution if the algorithm stops in Step 2. To complete the proof, we
need to show that

(i) if (21) holds, there is a step size a that satisfies (22), or there are no optimal
solutions x* of (P) and (y*, z*) of (D) such that II(x*,z*)l{ <_ p,

(ii) if (21) does not hold, there is a step size a which satisfies (24).
From Laminas 8 and 11 below (i) follows. Lemma 10 is used in the proof of Lamina
11. From Lamina 12 (ii) follows.

LEMMA 10. For any n-vector v > 0 and any >_ O,

vTv
b2

vTv

Proof. It follows from

iiV_e n + u

>__ I’2/vTv. [’]

LEMMA 11 Let > n, 70 e (0, 1] 71 (0, 1] and 1 := 00 2 a 21A 7071, and suppose
(7) and (21) hold. If there exist optimal solutions x* of (P) and (y*,z*) of (D) such
that [[(x*,z*)[[oo <_ p, then we have (3) and (4) for

oo( + )
at the kth iteration.

-2 4 2/100(n + u).Proof. As in the proof of Lemma 5, we have (19) for
Using Lemma 10, v _> n, and 2 > AvTv/n, we see thatVmin

( + ,a, z + Az) (, z)

< vv ( ) lv-1 a + [[([[D-x[[ + [[Dz[[n+vTv

n+vd00 19 2 4 2
Vmin 701 k Vmin ]

--.9-v2 a + 42
<

n+v 19-o
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//2
<

(n +
1 --2 4 2+ 7 (n + v)

Inequality (4) follows from the same analysis as in the proof of Lemma 5. F1

LEMMA 12 (Theorem 6 in Mizuno and Nagasawa [13]). Let// >_ 0 and 2 "=

(1 A)2/4, and suppose that (21) does not hold. Then we have (24) for

1 + X/’AkPk
at the kth iteration, where

k kX Z
"k := m/in (xk)Tgk/n

and Pk := ---i=1 Xi zi

The result above is proved in [13] for the potential function with//-- x/-, but it is
valid for the potential function with any//>_ 0 since the duality gap and infeasibility
do not change in Step B.

6. Concluding remarks. In this final section we contrast Algorithms I and II,
discuss the results obtained, and briefly consider other possible primal-dual potential
functions for the infeasible case. We also describe an extension to monotone linear
complementarity problems.

Remark A. Getting information on infeasibility. We note that 0 and p appear in
the algorithms only through their product and the dependence of 5 on 0. Suppose
that we start Algorithm I, II, or III with (x1, yl, z) po(e, O, e) for some P0 > 0,
and that at each iteration we perform a line search to achieve the largest decrease in

subject to satisfying (4) (largest decrease in ).
If there are optimal solutions x* of (P) and (y*, z*)of (D)such that (x*, z*)ll _<

po//o for some 0 E (0, 1], it follows from the inequality (9) in the proof of Lemma 4
that

Opoll(,z)lll <_ 2(xk)Tzk
/o

Hence if this inequality is violated, then we can conclude that there are no optimal
solutions x* of (P) and (y*,z*) of (D) such that II(x*,z*)ll _< Po/7o. Here 70 can
be varied during one run of the algorithm.

Remark B. Comparison between Algorithms I and II. In Algorithm I, we put an
explicit bound on a via (4) to ensure that

(25) ()Tz > II(A b, ATyk + zk a)ll ()Tz
II(A b, ATy + c)ll

for all k. Inequalities of this kind were first used by Kojima, Megiddo, and Mizuno

[3]. In fact, (4) can be relaxed as long as (25) holds at each iteration; if (4) held
strictly at some previous iteration, (25) may hold even if (4) does not. Algorithms II
and III dispense with this explicit constraint by adding a barrier term to . If a is as
in Theorem 6, then is only finite if

(26) II(Aw b, ATyk + zk a)ll (flI)Tzl
II(A  b, ATy + z a)ll
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For 1 < 1, this is a weaker condition than (25), but the complexity bounds include
a factor .-2.

In contrast, the homogeneous self-dual infeasible-interior-point algorithm of Ye,
Todd, and Mizuno [21] maintains

cTxk bTyk < II(Axk bT"k)ll (cTx bTy 1)

in the present notation. Here, fk is the value of the homogenizing variable at the
kth iteration; T 1. Hence in [21] the "duality gap" decreases faster than the
infeasibility, whereas in the current paper as well as in [3], [22], and [12], the "total
complementarity" decreases at most as fast the infeasibility. (Note that, with
infeible iterates, cTxk --bTyk may not equal (xk)Tzk, and may even be negative.)

Remark C. Complexity bounds.
Our bound on the number of iterations for Algorithms I and II is O(n2"5L) (when
), while Zhang [22] and Mizuno [12] obtain O(n2n) (Mizuno has a variant with

O(nn)) and Potra [17] achieves O(n’hn) (the revised version has O(nn)); in contrast,
feasible-interior-point algorithms typically have bounds of O(n’hL) iterations [5], [6],
[15], [16]. Let us examine why the complexity is so much larger in our ce, and why
it decreases for Algorithm III.

Since the analysis for Algorithm II is based on that for Algorithm I, we consider
only the latter. We also assume 3n. Using the arguments of Lemmas 2 and 5, we
have for any 0 < a < 1 satisfying

(x)- , (z)-a ,
for some w (0, 1),

:=( +,z +z) (,z)
vTv e n + 3
n + vTv a

1
V_2

(cf. (19)). In our analysis, we bounded the second-order term above using Lemma 4;
also using Lemma 3 to bound the first-order term, we get

3 vTv VnA- n+
1

_
50 (vTv)(eS) +e( )Vm.dl Vmin

The linear term in (28) would allow a constant decree in by choosing a constant, but unfortunately the quadratic term is much too large. Indeed, the right-hand
side of (28) is minimized by

9(1 T) 4 2 2
01Vminn 1

800 vTv n(n + )"
Notice that 2

nVmin vTv for v a multiple of e, i.e., when (xk, yk, Zk) is on the central
path, and then O(n-2) and hence A O(n-2). Our choice for in Lemma 5
approximates this "optimal" value.
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Now let us see how this analysis changes when the iterate is feasible. Note that

(29)

The last equality follows from the final equation of (2). In the feasible case,
is zero, and, for

iiv_ n + ’11- O(vdn)vTv

the resulting second-order term is smaller than in (28) by a factor of about n2. We
can thus choose a much larger value for a; indeed,

T(rt -1- /])Vmin

for T "= X//9 satisfies all our requirements and yields A <_ -1/16.
The equations in (29) show that IID-axll2 + IIDazll is much larger than

IID-X,4x, + D,4zll 2 when ,4x,T zlz is large and negative. (It cannot be large and
positive by (18), but this does not help us; (17) provides no lower bound.) But from
(11) and (15), we obtain

z:lx,T zlz (D-1 zlx,)T(D zlz)
-(0k)2(x x,*)TD-1QD-I(x x,*)
--(0k)2(Z z*)TD(I- Q)D(z z*)
--0k(x x*)TD-IQ(v #Y-le) + Ok(z z*)TD(I Q)(v #Y-ie).

The first two terms are negative, while the last two are of indeterminate sign. It is
not hard to see that

(Ok)2(X x*)TD-1QD-(x x*) (x x*)TD-IQD-i(xk x*)
-IIQD-I(x,k *)11,

and this can be seen to be the square of the distance from D-ixt: to aiTine set
{x" ADx b}. Similarly,

z*)TD(I Q)D(z z*) (zk z*)TD(I Q)D(zk z*)
I1(I Q)D(zk z*)ll 2

is the square of the distance from Dzk to affine set {z DATy+z Dc for some y}.
The last two terms are bounded by IIQn-l(xk--x*)llllv--#Y-lel] and II(I-Q)D(zk-
z*)llllv #V-lell. If v is a multiple of e ((xk,yk, zk) is on the central path), then

IIv- #v-lell is bounded by V/(Xc)Tzk. Hence if the infeasibility is large compared
to the duality gap, zxTzz will be large and negative, the second-order term in (27)
will be large, and only a small decrease in can be guaranteed. This also explains
why we need to carefillly balance the infeasibility and the duality gap, as in (25)-(26).

We remark that, if the 2-norm of (xk, zk) is much smaller than its 1-norm (as
when, for instance, it is close to a multiple of (e, e)), then the first inequality in (13),
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and hence the bound (14) on IID-lzixll and similarly that on IIDzizll, could be
improved by a factor close to Vf. Then a could be chosen to give a reduction in of
order n-1 rather than n-2.

Finally, Lemma 10 allows us to obtain a better bound on the first term in (27)
when the current iterate is approximately centered, and in this case the second-order
term is smaller and thus a greater decrease in (and ) can be achieved by choosing
a larger value for a. This is the basis for Step A in Algorithm III. Lemma 12 proves
that a constant decrease in (and ) can also be achieved when the current iterate
is far from centered, by using a simple centering step.

Remark D. Some other potential functions. There are two other primal-dual
potential functions that could be used in the infeasible case. The first is

n

’(x, y,z) :-- (n + ) ln(xTz + II(Ax- b, ATy + z- c)ll)- ln(xizi)- n ln n,
i--1

and was suggested for a pure potential-reduction method by Kojima, Noma, and
Yoshise [7] in the context of the monotone complementarity problem. The second is

n

’(x,y,z) :- (n/)ln(max{xTz,ll(Ax-b, ATy+z-c)ll})-ln(xizi)-nlnn.
i--1

Both can be reduced by an amount sufficient to establish a polynomial time bound if
we add a restriction like (4) on the step size, so that (25) holds for all k. However,
in this case there seems to be no reason to choose the more complicated functions
over the simpler . If we relax the constraint, Kojima, Noma, and Yoshise [7] show
that can always be reduced by some amount, but provide no bound (indeed, it
seems hard to do so, even in the case of linear programming). Similar difficulties
arise with . It seems to be very hard to obtain a guaranteed decrease in such a

potential function when the duality gap xTz is much smaller than the infeasibility
II(A b, ATy + z c)l We also mention a modified primal-dual potential function
given by Kaliski and Ye [1] for a monotone linear complementarity problem with a
restriction that some prescribed variables are zero. Their algorithm with the use of
the modified potential function solves a combined Phase I-Phase II primal-dual linear
program in O(nL) iterations.

Remark E. Extension to monotone linear complementarity problems. Consider a
linear complementarity problem with a positive semi-definite matrix M and a vector
q: Find a pair (x, z) _> 0 such that z Mx / q and gTz O. We can easily adapt
Algorithms I, II, and III to the problem. Major changes are as follows.

Eliminate yl, yk, yk-I and Ay.
Replace the system (2) of equations by

-M I zt: Mxt: q )Xt:zk #e

Replace the system (23) of equations by

-M I( 0I xk;k--((xk)T;gk/n)e I"
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Replace the potential function by

(x, z):= (n / , / 1)ln(xTz) Z ln(xizi) nlnn
i--1

-ln(xTz a][z Mx q][).

Then we have results similar to Theorems 1, 6, and 9, whose proofs are basically the
same as in the linear programming case except for Lemma 4. In the proof of Lemma
4, we have

(o + ( -o)* )r(Oz + ( -O)z z) > o,

instead of (8) and (10), respectively. It is well known in interior-point methods for
LCP (and easy to show) that for any n-dimensional vector p, the solution of the
system

-M I 0)
satisfies

[[D-lzx’[[ [[D(zz’- (Xk)-lp)ll <_
[[Daz’ll I[D-l(ax’-(Zk)-lp)ll <_ II(XkZk)-l/2p[[,

where D (xk)l/2(Zk)-1/2. Let (axe, az), (axe, z), and (zx, Zz) be
the solution of the system above when p is -(Xkzk- #e), okzk(x --x*), and
OkXk(z1- Z*) respectively. Then we have

and similarly

IID.azll _< OkllD-l(w *)11 / OllD(z z*)ll / II(XZ)-/(Xz e)ll.

Thus we can prove the lemma following the same arguments as before.
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A FAST HEURISTIC METHOD FOR POLYNOMIAL MOMENT
PROBLEMS WITH BOLTZMANN-SHANNON ENTROPY*

J. M. BORWEINt AND W. Z. HUANG:

Abstract. The authors consider the best entropy estimate to a nonnegative density
given some of its algebraic or trigonometric moments. Using the special structure of this kind of
problem, a useful linear relationship among the moments is derived. A simple algorithm then provides
a fairly good estimate of by just solving a couple of linear systems. Numerical computations make
the algorithm seem reasonable although the theoretical convergence is still an open problem. Some
notes about the error bounds are given at the end of the paper.

Key words, convex programming, constrained optimization, moment problems, entropy, heuris-
tic algorithms
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1. Introduction. The problem we discuss is the following Boltzmann-Shannon
entropy moment problem:

inf

(Pn) s.t.

fT[X(t)log(x(t)) x(t)]dt

fT ai(t)x(t)dt bi, e In
0 <_ x L (T, dt),

where T C m is compact, and in this paper we assume that T [0, 1]m or [-r, r]m,
while dt is the Lebesgue measure on T, and {ai, E In} are (algebraic or trigonometric)
polynomials of order at most n. The In’s are finite index sets such that

n C In+l n 1, 2,

Let k(n) denote the number of the elements in the set In. The limit problem is

inf

(P) s.t.

fT[X(t)log(x(t)) x(t)]dt

fT ai(t)x(t)dt hi, e [Jn= In
0 <_ x L (T, dr).

If {ai, i e [Jn=l In} is weak*- dense in L(T, dt), then the problem (P) has unique
solution 2. The convergence of the solutions of (Pn) to the solution of (P) has
been dealt with in many papers [1], [3]. From duality considerations [2], under some
constraint qualification (CQ) condition, the solution Xn of (Pn) can be expressed as

(1)
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where the {Ai, i E In} can be determined by the nonlinear system

JTexp (i Aia(t)l ak(t)dt bk, k E In.

This system can be solved by various iterative nonlinear or optimization techniques
[4]-[6]. In this note, however, we consider heuristic methods for avoiding such iterative
techniques.

Indeed, the special structure of the Kuhn-Tucker conditions (1) suggests that it
might be possible to obtain the multipliers, Ai, directly without recourse to solving
what is in fact quite a costly convex program. While we cannot fully realize this
ambition, we make the observation that in the next three sections if the underlying
signal were of form (1) exactly, we could then obtain the multipliers from a knowl-
edge of sufficiently many moments (twice as many in one dimension, four times as
many in two dimensions, etc.). This involves solving a very simple linear system of
equations. Heuristically, we argue that every positive smooth function is close to the
exponential of a polynomial and so the solution to our linear system should provide
a good estimator to the actual maximum entropy solution.

As we see in 5, our heuristic estimate performs very well in the sense that (i) it
usually provides a very respectable reconstruction of the underlying signal, and (ii) it
is much quicker to compute since it has removed all nonlinearities and is performed
only once. Our numerical experiments show that it is often more than 10-50 times
faster.

In this paper we see precisely that when the {a(t)} are algebraic or trigonometric
polynomials and T is a real interval or a cube in , we can obtain such a heuristic
estimate. In 2 we determine the estimate given algebraic moments on [0,1]. In 3 we
extend our analysis to algebraic moments in several dimensions. Section 4 provides
the corresponding trigonometric estimates. In 5 we produce substantial numerical
support for our heuristic. Finally, in 6 we make some modest attempts at an error
analysis of the one-dimensional case.

2. Algebraic polynomial case on [0,1]. To explain the simple idea of our
algorithms, we first consider T [0, 1], hi(t) t, and In {0, 1,..., n}. As we have
observed, the optimal solution of (Pn) is "usually" of the form (1). Suppose that the
underlying density 2 is exactly of the form

for some n and we need to find out the arguments A, 0, 1, If we know 2n + 1
moments given by

bk exp Aiai(t) tkdt,
i--0

k O, 1,...,2n,

integrating by parts, we have for k 0, 1,...,

bk= exp Aa(t) tk

i--o

dt
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or

Thus Ao, A1,... ,As in (2) can be obtained by solving the linear system

(4) b Br,

where

bo 1 bl b2 bn ro
2bl 1 b2 b3 bn+l r

B= r=

(n + 1)bn 1 bn+l bn+2 b2n rn

and

n
r0 exp(-’4=o
rk --kk, k 1, 2,..., n.

It is not difficult to show that under a mild condition, which is implied by CQ,
the linear system (4) is solvable.

LEMMA 1. If there exists a nonzero density & on [0, 1], such that bo, b,... ,b2n
are given by

bk c(t)tkdt, k 0, 1,...,2n,

then B is nonsingular.
Proof. Since

--(--1)n

b b2
b2 b3

bn+l bn+2
bl b2
b2 ba

bn bn+

bn
bn+l

b2n
b. ba
ba b4

bn+ bn+2

bn bn+l
bn+ bn+2

b2n-1 b2n
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For any v (Vl V2, Vn)T E :n v = 0, consider

n n

VTDv EEViVj (hi-Fi-1 hi-Fi)
j=l i=1

on

j=

ti+j)dt

01()Vii-1
i----1

So D is positive definite, IDI 0, and so [B is nonzero.
From the lemma we see that if {bk} are consistent then there is a unique solution

for the linear system (4). And thus the parameters A0, A1,... ,An can be obtained
from (5).

For a density other than of the form in (2), we may use this simple method to
get a heuristic estimate of . We can see that in (5), r0 is required to be positive,
which may not be true all the time. But from the first moment

b0 exp Air dt
i=0

=e exp it dt,
i--1

we can still "determine" r0 when 1, 2,..., An are known.

ALGORITHM 1. Let 2n / 1 moments bo, bl,..., b2n be given.
Step 1. Construct"

1 bl b2 bn
1 b2 b3 bn+l

bT

1 bn+l bn+2 b2n

Do

(n -F 1)b,

Step 2. Compute rn n+l which solves the linear system

Bnrn b.
Step 3. Compute A’ .n+l a,8 follows:

n

Ar rk k-l,2, n

A log
f exp(Ein--1 Arti)dt
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Step 4. Construct

The following fact is now obvious.
THEOREM 1. If the prior density 2. is of the form (2) for some E ftn, and the

first 2n + 1 moments are given, then the estimate density constructed by Algorithm 1
is exactly itself.

3. Algorithm generalized to [0, 1]". We first consider T [0, 1] 2. For n
(nl,n2) e Z_, let {hi, e In} be algebraic polynomials of degree at most nl in tl
and n2 in t2, of the form

If we assume that

ttJ2, i=O, 1,...,nl, j=O, 1,...,n2.

(6) 2(tl, t2) exp E Ai,jtlt2
j=o

and the moments are given by

(7) bll,l. g"(tl, t22l 2 dt2dtl

for 11 0, 1,... ,2nl, 12 --0, 1,..., 2n2, then the formula analogue to (3) is

1 jo1 (/n__0 n )bt,t l + 1
exp Ai,jt t dt2

j=0

1 nl n2

=1 j=0

or

Now let

and

(/1 + 1)bl,l exp E Ai,jt2 dr2
j=o

nl n2

i=l j=O

r0,1. exp Ai,jtJ2 t2dt2,
i=0

12 0, 1,..., ft2
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Then we can solve a linear system and obtain A,j, i 0. Switching the order of t
and t2, and integrating by parts in (8), we have a linear system that can be used to
find A,j, j 0. Finally, from the first moment bo,o, we can determine Ao,o.

ALGORITHM 2. Let bd, i 0, 1,..., 2nl, j 0, 1,..., 2n2 be given moments in
(7).

Step 1. Construct

bk,o rk,o
b, r,

dk Uk k O, 1,

bk,n2 rk,n2

bk,o bk,1 bk,n.
bk,1 bk,2 bk,n2+l

Dk k 1, 2, 2nl.

bk,n2 bk,n2+ bk,2n2
Step 2. Solve the linear system

where

do

U

Uo
Ul

Step 3. Compute

I D1 D2 Dn
I D2 D3 D,+

I Dn+l Dn+ DI

Step 4. Compute
nl n2

b (/2 + 1)bo,t + EE
i=1 j=l

and solve the linear system

b BI?j,I

where

b’
b u’

rn
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and

Step 5. Compute

1 bo,1 bo,2 bo,n
1 bo,2 bo,3 bo,n+

1 bo,n.+l bo,n.+2 bo,2n.

1

Step 6. Finally we have

and

j 1,2,...,n2.

Ao,o log b0,o exp E
(i,j)(o,o) 1,jtt) dt2dtl)

xn(tl, t2) exp E Ai,jtt2
j=o

-1"

=-{(ieZ l<_i<_n},

{hi, In} be algebraic polynomials of the form

Then we have

Assume 2 is of the form

ij 0,1,...,

m

k(n) H(nj + 1)..

or

j 1,2,...,m.

is the estimate density.

Anologuously to Theorem 1, we have the following theorem.
THEOREM 2. If the prior density is of the form (6) for some nl, n2 Z+, and

we know the first (2nl + 1) (2n2 + 1) moments given by (7), then the estimate density
Xn constructed by Algorithm 2 is exactly itself.

Now we generalize the algorithm to [0, 1]m. Let T [0, 1]m,
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Here we denote

and

hence

Then for li 0, 1,..., ni, i 1, 2,..., m, the moments are given by

b,. , 2(tl, t, t)tt trdtdt dt

or

bt f[o,1] 2(t)ttdt e In,

where

(11,12, lm) Zm

dt dtl dt2 dtm.

Note that for each j 1, 2,..., m, integrating by parts, we have

bt ly + 1 ,1].- ()

1 E ijb+z Vl In,
+ 1

where

In(j) {i e I iy 0},

t(j) (tl,..., tj-1, tj+l, tin)T e m-1
m--1i(j) (il, ij-l, ij+l, im)T e Z+

dt(j) = dtl dtj-ldtj+l dtm.

The algorithm can be stated as follows.

ALGORITHM 3. Let hi, i I2n be Ikm=l (2nk + 1) the moments given in (7).
Step 1. Construct linear system with yim__l (nk + 1) unknowns:
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where

and solve it. Let

il

for

We have that j 1.
Step 2. If j _< m- 1, construct the linear system with [Ikm__j+ (nk / 1) unknowns:

nj+l nj+2 nm

dl+l lm=rO,lj+2 lm- Z ri+l imbO O,i+,+l+ im-lm,

i+1:1 ij+2:0 im:O

for

lj+l 1,..., nj+, lj+2 0,..., nj+2,.. lm 0,..., nm,

where

J{lj-I lm ’(j+ + 1)b0 0,+- ij+l)il i. bil i,i+lWl+l
il q-...q-i >O

Solve it and let

lj+l

for

lj+l 1,..., nj+l, lj+2 0,..., nj+2,..., lm 0,..., rim.

We have that j j + 1. Repeat Step 2.
Step 3. When j m, compute"

Then the estimate density is
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4. Trigonometric polynomial cases. We first consider the trigonometrical
case on the interval [-r,r]. Let In (-n,...,O,...,n}, ak(t) ekt, k E In,
where - vz-:-. Then the problem becomes

min f_[x(t)log(x(t)) x(t)ldt,
(Pn) s.t. f_ x(t)e’ktdt bk, k -n,...,0,..., n,

0 <_ x(t) e L1 [-r, r].

We consider only the case where x(t) is real. In this case we have

b-k bk Vk.

Moreover, we may assume that 2(t) is of the form

and that we have

A-k --Ak

since 2 is assumed to be real.
As to the integration property, for k 0 we have

bk exp )et ektdt
l=--n

, exp
l=-n

1
e*kt exp lelt

l=--n l=--n

1
k Xtlb+l.
l=-n

Using the property that A-k --Ak, we have the linear system

b C + Br,

where

-bl A1
-2b2 2A2

r--

-nbn nan

0 b bn-
bl 0 bn-2

bn-1 bn-2 0

52

bn+l

53

bn+2

bn+l
bn+2

b2n
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Solving this system, we can determine all Ak, k 7 0. Finally A0 can be obtained from

ao exp ,ke*kt dt
r k=-n

e exp ,ke*kt dr.

We can also express everything above in reN form. Let

(t) exp o + ( cos kt + sin kt)

and the moments

(9)

(10)

(11)

ao (t)dt,

a 5:(t) cos ktdt, k 1, 2,..., n,

bk 5:(t) sin ktdt, k 1, 2,..., n.

Then for 1, 2,..., n, using trigonometric angle formula, we have

a exp ,o + ,k cos kt + #k sin kt) cos ltdt
r

1
n

2 k[,k(a-k a+k) #k(b-k + b+k)],
k=l

and

1
n

b - k[-Ak(b+k b-k) + #k(a-k + a+k)].
k--1

Note that is real, thus

a_ ak Vk

and

b-k --bk Vk,

The next algorithm then follows after some arithmetic calculation.

ALGORITHM 4. Let ak, bk, k 0, 1,..., 2n be given moments in (9).

2al
4a2

2nan

Step 1. Construct:

2bl
4b2

2nbn
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ao
al

an-1

al an-1 a2 a3
ao an-2 a3 a4

A2

an-2 ao an+l an+2

an+
an+2

a2n

0
bl

bn-

-bl bn-1 b2 b3
0 bn-2 b3 b4

B2

bn-2 0 bn+l bn+2

bn+
bn+2

b2n

Solve the linear system

(12) b B1 B2 A1 +A2 s

Step 2. For 1, 2,..., n, let

riA=--

and

8i

Step 3. Compute:

[ a0 ]A0 log
f_ exp(i=l (Ai cos it + #k sin it))dt

In a similar way, we can generalize this to m-dimensional space m. Let T
I-r, r]m, {a(t), i e In} be trigonometric polynomials of the form

ei(kltl+’’’+kmt’) kj =-nj O, nj j 1 2 m.

Let

then

m

k(n) H(2ny + 1).
j---1

Assume

kEIn
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where

t=/(t,t, t,)T E

and the moments are

where

-- {k, k e In} e Ck(n),

bl [_,]. (t)eUdt, E In,

dt dtldt2 dtm.

By the integration procedure, we have

1 +, e \ { 0}, j , ,...,,.bl
kEIn

Supposing that we know M1 the moments bt, I2n, we can get all Ak, k In, using
the following algorithm.

ALGORITHM 5. Let bt, I2n be given moments.
Step 1. Solve the linear equations:

1 +, e (),

j=l.

Step 2. If j < m, solve

lj+ bt ij+ Ab+t ij+
ieIn (j+1){il i =0} ieI (j+1){il ij =0}

It holds that j j + 1. Repeat Step 2.
Step 3. When j m, compute

5. Numerical results. We implemented our algorithms in Fortran 77 to solve
one- and two-dimensional best-entropy moment problems with algebraic or trigono-
metric moment functions.

To make a comparison, we also implemented a classical Newton method combined
with the Armijo step length search technique to solve the dual problem (see [1])

max (I)(A) EieI Aibi fT exp(Eier, Aiai(t))dt(Dn)
s.t. A E

using the same number of moments.
The following notations are helpful in reading the tables and figures below.
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2(t) (or 2(tl, t2))" the prior density function.
sup-ERR: the supremum norm of 2- xn, where Xn is the estimate density
function constructed by the corresponding algorithm.
L1-ERR: the L-norm of 2- xn.
d-GAP: the duality gap defined by V(Pn)- V(Dn).
TIME: execution time (in seconds) used to compute the dual solution A only.

Example 1 (see Table 1 and Figs. 1 and 2). We first consider a step function

(t) 0.5X[0,0.] + 0.1

on interval [0, 1], and use the first 25 algebraic moments to reconstruct 2. In Table 1,
ALG1 means the Algorithm 1 given in 2, NEWTON(k) is Newton’s method starting
from the initial1 point

A (log b0, 0,..., 0) E j25

and making k iterations. OPTIMAL means we use Newton’s method to solve the
problem (P,) and iterate until the termination criteria are satisfied. In our case we
use

IIV(A)llo < (= 0.0001),

and the optimal solution is then of the form

E A’ai(t),
iEIn

where An 6 k() is obtained from OPTIMAL.

TABLE
Numerical results for Example 1.

sup-ERR L1-ERR d-GAP
ALG 1 0.231054 0.040201 0.012864
NEWTON(100) 0.819201 0.041938 0.014519
OPTIMAL 0.234438 0.024977 0.000081

TIME
0.0300
7.6685

Figil

Fig.2

Example 2 (see Table 2 and Figs. 3 and 4). We now consider the function

2(t) 0.3X[1,21 -}- 0.6X[3,51 -}- 0.1

on interval [0, 2r], and use 25 trigonometric moments.

TABLE 2
Numerical results for Example 2.

sup-ERR L1-ERR
ALG 4 0.255256 0.437978
NEWTON(4) 0.249361 0.557484
OPTIMAL 0.225884 0.212427

d-GAP TIME
1.575890 0.’0100 Fig.3
0.555667 0.84’98
0.000035 Fig.4

For a smooth density, the results are much better as we would expect.
Example 3 (see Table 3 and Figs. 5 and 6). We fix a smooth density

2(t) t sin2(10t)
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FIG. 1. Prior and estimate density for Algorithm 1.

200E+00

FIG. 2. Prior and optimal solution to (Pn).

on interval [0, 1], and use 25 algebraic moments.

Note that the objective function we used here is the Boltzmann-Shannon entropy,
it is neither the supremum norm nor the Ll-norm. We use these norms here just to
compare the results and to measure the goodness of our reconstructions. Actually, it
is the d-GAP that measures our success in getting our numerical estimates close to
the optimal solution of (Pn).
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FIG. 3. Prior and estimate density for Algorithm 4.

FIC. 4. Prior and optimal solution to (Pn).

Example 4 (see Table 4 and Figs. 7-13). We now deal with a two-dimensional
function, first consider a smooth function,

2(tl, t2) tlt2(sin(6t)cos(St2))2

on [0, 1] 2 (see Fig.7), and use 81 algebraic moments. To save time, we use the estimate
density generated from our heuristic algorithm as the initial solution of the Newton
method.
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TABLE 3
Numerical results for Example 3.

sup-ERR L1-ERR d-GAP
ALG 1, 0.12938 0.043898 0.008408
NEWTON(15) 0.122698 0.036004 0.009664
OPTIMAL 0.114191 0.026806 0.000465

TIME
0.0400
1.7497

Fig.5

Fig.6

FIG. 5. Prior and estimate density for Algorithm 1.

FIG. 6. Prior and optimal solution to (Pn).



A HEURISTIC ALGORITHM FOR MOMENT PROBLEMS 85

TABLE 4
Numerical results for Example 4.

sup-ERR L1-ERR
ALG 2. 0.24057 0.03226
NEWTON(6) 1.91933 0.01440
OPTIMAL 0.11596 0.01306

TIME
0.21996
52.6195

estimat, sup-error
Fig.8 Fig.9
Fig.10 Fig.ll
Fig.12 Fig.13

FIG. 7. Prior function in Example 4.

Example 5 (see Table 5 and Figs. 14-20). As the final example, we consider a
step function on [0, 1] 2 (see Fig. 14), given by

0.2,

(t, t2) 0.6,
0.8,

0_<t1<0.5, 0_<t2<0.5,
0_tl <0.5, 0.5_t2_1,
0.5_t1_ 1, 0_t2<0.5,
0.5

_
tl _1, 0.5

_
t.

_
1

and use 81 algebraic moments.

6. Notes about error analysis in 1. In this section, we give some error esti-
mates in one-dimensional cases. We consider that T [0, 1] or I-r, r] and (hi(t)} are
algebraic or trigonometric polynomials in only one variable. As we know, Algorithms
1-5 are exact when the underlying density can be expressed as the exponential of a
polynomial of (hi, i E In}. Now we assume that is of almost this form; that is

in some sense, and we wish to determine arguments Ai, E In.
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FIG. 8. The estimate density for Algorithm 2.

FIG. 9. The supremum error function for Algorithm 2.

TABLE 5
Numerical results for Example 5.

sup-ERR L1-ERR
ALG 2. 0.26038 0.06210
NEWTON(5) 0.24297 0.04099
OPTIMAL 0.24160 0.04095

TIME
0.22995
40.3579

estimat, sup-error
Fig.15 Fig.16
Fig.17 Fig.18
Fig.19 Fig.20
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FIG. 10. The estimate density after six more iterations using Newton’s method.

FG. 11. The supremum error function after doing six more iterations using Newton’s method.

We write

while

bk IT 2(t)ak(t)dt, k In,
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FIG. 12. The optimal solution of (Pn).

FIe:. 13. The supremum norm error function of the optimal solution of (Pn).

and we denote B and B by the matrices generated in the algorithms using the data
{i} and {hi} respectively.

By the construction of the algorithms, A can be determined by r, which solves a
linear system

But from the input data {bi} and B, we can only obtain , which solves the linear
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FIG. 14. Prior function in Example 5.

system

B=b.

Since B is nonsingular under mild hypotheses, we can obtain and hence A. We
now need to estimate the error bounds of IIA- 11 in some given norm. From the
nonsingularity of the matrix B, it is easy to see that

(13) r B-l(b Br).

Case (A). Considering the algebraic case first, we have

1 bl b2 bn
1 b2 b3 bn+l

B= b=

1 bn+l bn+2 b2n

bo
2bl

(n + 1)bn

We assume

(14) 2(t)=exp[Aiti+en(t)]=o
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FG. 15. The estimate density for Algorithm 1.

FG. 16. The supremum error function for Algorithm 2.

(15) II(t)llo 5,

for n 0, 1,
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FIG. 17. The estimate density after doing five more iterations using Newton’s method.

FIG. 18. The supremum error function after doing five more iterations using Newton’s method.

Note that when en(’) is differentiable on [0, 1]

1
k+l(1) ( )1 tk+2(t) iAt-1 +n(t) dt

k+l
i=1



92 J. M. BORWEIN AND W. Z. HUANG

FIe:. 19. The optimal solution of (Pn).

FIG. 20. The supremum error function of the optimal solution of (Pn).

1 1
n

(1) iAb+k+--- + 2i----1

tk+e(t)en(t)dt.
k/l
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Considering the kth component of (b- Br) in (13), we have

(6)

(b- Br)k (k + 1)bk + E iAibk+i exp Ai
i=1 i=o

2(1)(1 exp[-e,(1)] e,(1)2(1)

+ en(t)((k + 1)2(t)tk + tk+12’(t))dt

2(1)[1 e(1) --exp[--en(1)]]

+ e(t)((k + 1)2(t)tk + tk+12’(t))dt.

LEMMA 2. Suppose e C1[0,11 is of the form in (14), {ai(t), i e In} are
algebraic polynomials 1, t,..., tn on [0, 1]. Now r, , B, b are as defined before. Then

IIb-Brll <_ mx
where

max max{n, O, 1,...},

hence

where

Proof. First we recall an inequality (proved in [2, Lem. 4.101),

eM- 1
(7) le- 11 _< ---M---Ixl for Ix[ _< M.

By (16), we have

I(b- B)I <_ (1)(ea’ 1)+ le(1)l(1)

/o+ 5n I(k + 1)2(t)t + t+Y(t)ldt

_< IIllo(d 1) + ,llll / I111 / I1’11
and hence by (17),

The result follows now fl’om (13).
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From Lemma 2, we have, for k- 1, 2,..., n,

(18)

1

1<_ llr- 11

for a constant C1 depending on 2 and (max, but independent of n.
To estimate A0 A01, we need the following mean value theorem.
LEMMA 3. If g(t) >_ 0 is integrable, and f(t) >_ 0 is continuous on [0, 1], then

there exists E [0, 1], such that

f(t)g(t)dt f(t g(t)dt.

We now give the error bound for IA0 01. From the algorithm, we know that

bo

fo exp [E_-I iiti] dr"

By (14) and Lemma 3, we have

]ilexp [iti] dt-- flexp [iti-n(t)] exp [(i-i)ti-n(t)]i=1 i--1

e-x 2(t) exp (i- ,)t e.(t) dt
i=1

exp

for some E [0, 1]. Thus

exp[E=( ,X)

and

(19)

(o)

(21)

(22)

n

i=1
n

i=1

<(E 1

i=1

( 1 )
k=l
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Noting that

n
1 flnlE- <1+ -dx= l + logn,

k=l
X

we have the following theorem.
THEOREM 3. Suppose that log2 E C1[0, 1], that the moments are given by

/ob (t)tdt, k O, 1,..., n

and that the estimate density Ycn(t) is computed by Algorithm 1. Then

11ffgn 11o 115cl](exp(2En(ClllBlllo( 1 q- logn) + 1)) 1),

where

En inf log 2 /kt I1

and C1 is a constant dependent only on c.
Proof. By the definition of En there exists/n E ffn+l such that

and

n

log E/kti + n(t)
i=0

II(t) I1 E.
Using Algorithm 1, from (18) and (19), we have

1

for k 1,2,...,n, and

I/ --/l--< CIIIB111 + 1 En.
k=l

Thus we have

IIll(exp(2E(CxllBglll(1 + logn) + 1)) 1),

Case (B). Similarly, for the trigonometric case, we assume is of the form

(t) exp A0 + (Akcoskt + ksinkt) + e,(t)
k=l
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and

for n 0, 1,
In the same way we proved for Lemma 2, using the trigonometric angle formula,

we note that,

ak (t) COS ktdt

sin kt,(t)I_r sin kt’(t)dt

k
sinkty(t) (-j,sinjt+j#cosjt)+e’(t) dt

j=l

1
n

(J(- +) +j,@- +))
j=l

1
(t) sin kte(t)dt.

Hence for k 1, 2,..., n,

n

(b Br)k = 2kak -(aj-k aj+k)jAj
j=l

+ -(--bj-k -t-
j=l

__1 Y(t) sin ktsn (t)dt
k- en(t)(Y,’(t)sinkt + Y(t)kcoskt)dt

and

(23)

When we assume 5:(t) is periodic with the period 2r, that is

(-) (),

then for k n + 1,..., 2n, we have the same inequality as (23). From Algorithln 4,
we have

1

and

1
(25) I zl -< NIIB-

1

1
Xll2(NIi’ll + I111oo).
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Here B is

A1-A2 -B1-B2 ]B B2 A --I- A2
constructed in A_lgorithm 4.

As to I,0 ,k01, note that in the algorithm, we have

Since

e a0

f_ exp(Ejn__ j cos jt + fry sin jt)dt"

Thus

exp , cos jt + fzy sin jt dt
r j--1

i; )2(t)e- exp (( ,)cos jr + (/Sj #)sin jr) en(t) dt
r j=l

=e_XOexp(((j_j)cosjW(fitj_#j)sinj)_n(t) aOj=l
(by Lemma 3).

n

I,Xo .ol }.((, )cosy% + (# #) sinj) e,(t’)
j=l

n

-< (1, 1 + I l) +.
j=l

Combining this with (24) and (25), we have Theorem 4.
THEOREM 4. Suppose that log 2 E Cl[-r, r], 5: is periodic with the period 2r.

Given 4n + 1 moments

ao (t)dt

a 2(t) cos ktdt

bk 2(t) sin ktdt

k 1,2,...,2n.

Let 5c(t) be the estimate density constructed from the Algorithm 4. Then

ll’Ye,n 2il< < l12,11(exp(47rEnilB-111oo(2112’ll + IIll(1 + log n)) + En) 1),

where

{ n }En A
inf Illog- o E(Aj cosjt + #S sinjt)ll (,) e 2n+l

j=l

Proof. Similar to the proof to the Theorem 3. rl
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7. Conclusion. From the error bounds in Theorem 3, we see that the product

is an overestimate for the rate of the convergence of &n to 5. From approximation
theory, Jackson’s Theorem [7] tells us that if

log C[0, 1],

then

o

Moreover, if log is analytic on [0, 1], then

E <_ Cq,
where C is a constant and q < 1. Unfortunately, we have not found any theoretical
bound for liB;111. Numerical results indicate that

(see Tables 6 and 7) and so when the number of moments gets too large, the com-
putational results may not be reliable due to the accumulation of errors. But for the
trigonometric case, when the prior density is smooth enough, we can see from Table
7 that IIB-IlI appears to be dominated by a polynomial, so that using Jackson’s
theorems, the convergence of our algorithm for trigonometric polynomial moments
may follows.

TABLE 6

IIBlllc for algebraic moments and F1 2It 0.5 I, F2 sin2 t, F3 X[0.4,0.6], F4 tsin2(10t).

n--2 0.320E02 0.469E02 0.498E02 0.477E02
3 0.57SE03 0.240E04 0.219E05 0:195El
4 0.206E05 0.105E06 0.121E08 0.732E05
5 0.608E06 0.450E07 0.107Ell 0.363E07
6 0’231E08 0.160E09 0.895E13 0.151E09
7 0.594E09 0.560E10 0.746E16 0.416E10
8 0.223Ell 0.209E12 0.866E19 0.152E12
9 0.667E12 0.717E13 0.904E22 0.642E13
10 0.233e14 0.233E15 0.110E26 0.176E15
11 0.675E15 0.844E16 0.179E29 0.840E16
12 0.250E17 0.289E18 0.355E32 0.274E18
13 0.758E18 0.948E19 ’0.965E35 0.856E19
14 0.257E20 0.326E21 0.451E38 0.326E21
15 0.816E21 0.112E23 0.949E22
16 0.289E23 0.372E24 0.374E24
17 0.885E24 0.124E26 0.123E26
18 0.307E26 0.428E27 0.422E27
19 0.989E27 0.144E29 0.15SE29
20 0.342E29 0.470E30 0.477E30

Although the convergence of these algorithms is still unsettled, they often give
very good estimates for the problem (Pn) and use much less time than Newton’s
method, as we saw in 6. If we use the heuristic solution as an initial estimate, then
often only a couple of iterations are needed to get an almost optimal solution to (Pn).
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TABLE 7
for trigonometric moments and F 1.5t, F2 sin2 t, F3 0.8X[1.4,3.6], F4 tsin2(2t).

n--3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
37

0.40166
0.67313
0.99875
1.27501
1.55475
1.84964
2.16509
2.46792
2.77001
3.07217
3.36068
3.65724
3.96081
4.23835
4.53221
4.79253
5.08312
5.33845

0.63662 0.932E00 0.12861
0.63662 0.359E02 0.23679
1.90986 0.3ilE04 0.50826
1.90986 0.339E06 0.82539
3.81972 0.375E08 0.91805
3.81972 0.443E10 1.24088
6.36620 0.667E12 1.77943
6.36620 0.132E15 2.65173
9.54940 0.229E17 2.93955
9.54930 0.495E19 3.23528
13.36902 0.151E22 4.00094
13.36902 0.599E24 5.59461
17.82575 0.253E27 6.09011
17.82575 0.164E30 6.27491
22.91831 0.194E33 7.28279
22.91831 0.156E34 9.72277
28.64789 0.158E34 10.49603
28.64789 0.107E35 10.53350
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SYMMETRIC QUASIDEFINITE MATRICES*

ROBERT J. VANDERBEIt
Abstract. It is stated here that a symmetric matrix K is quasidefinite if it has the form

K= A F

where E and F are symmetric positive definite matrices. Although such matrices are indefinite, it is
shown that any symmetric permutation of a quasidefinite matrix yields a factorization LDLT.

This result is applied to obtain a new approach for solving the symmetric indefinite systems
arising in interior-point methods for linear and quadratic programming. These systems are typically
solved either by reducing to a positive definite system or by performing a Bunch-Parlett factorization
of the full indefinite system at every iteration. This is an intermediate approach based on reducing to
a quasidefinite system. This approach entails less fill-in than further reducing to a positive definite
system, but is based on a static ordering and is therefore more efficient than performing Bunch-
Parlett factorizations of the original indefinite system.

Key words, matrix factorization, linear programming, interior-point methods

AMS subject classifications, primary 65F05; secondary 90C05

1. Introduction. We call a symmetric matrix K quasidefinite if it has the form

-E AT ]K= A F

where E E nxn and F mxm are positive definite matrices with m, n >_ O.
The fact that quasidefinite matrices are nonsingular is trivial. To see it, consider the
following system of equations:

-E(1.1) A
AT x

The positive definiteness of E allows us to use the first set of equations to solve
for x in terms of y:

x= -E-I(b-ATy).

Substituting for x into the second set of equations yields

y-- (F + AE-IAT)-(c + AE-b).

Again, the positive definiteness of E and F assures that the matrix S :- F /
AE-1AT in (1.3) is also positive definite (and therefore nonsingular). Hence, there
exists a unique solution to (1.1) for any b and c, which implies that K is nonsingular.

The above argument suggests an algorithm for solving (1.1). Namely, first solve
for y using (1.3) and then solve for x using (1.2). However, when K is large and sparse,
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computational efficiency critically depends on maintaining sparsity in the matrix to
be inverted in (1.3). Unfortunately, forming S can entail considerable fill-in. For
example, if A has a single dense column, this matrix is completely full. Of course, one
could try to solve the system in the other order, first solving for x directly and then
solving for y as a function of x, but this approach encounters analogous inefficiencies
when A has dense rows. In fact, both methods perform poorly when A has dense
columns and dense rows.

A preferable approach is to apply an ordering heuristic (such as minimum-degree
or minimum-locM-fill) that prevents fill-in during the factorization of the entire matrix
K. The caveat, however, is that general indefinite matrices are not guaranteed to be
factorizable. The quasidefinite matrix K is indefinite, and so it is not clear a priori
that one can (symmetrically) rearrange its rows and columns and factor the system
in the resulting order. The fundamental result in this paper is that any symmetric
permutation of a quasidefinite matrix is guaranteed to be factorizable.

It should be emphasized that no claim is made that M1 possible fctorizations
are equMly stable numerically. Indeed, it is simple to give examples where one fac-
torization is much worse than another (see 2). However, our aim is to apply the
results presented here to the efficient implementation of interior-point methods for
linear and quadratic programming, and in such cases we argue that there is not much
disparity in the quality of the possible factorizations (where quMity is meured by
the relative sizes of the elements of the factorization). In fact, in the end they are
all bad and yet it is rather remarkable that it is not difficult to obtain results with
precision approximately equal to the square root of machine precision.

In situations where the relative sizes of the elements of matrix factorization vary
widely, it is important to limit the mixing of addition and subtraction operations in the
cMculation of the factors. This observation implies that, in the interior-point context,
one should pivot out all the elements in either the upper left block (or the lower
right block) first. While it is true that such strategies (which were called conservative
strategies in [24]) are the safest, it is often possible to allow a little mixing in cases
where such an allowance has a significant impact on the efficiency of the algorithm.
The main result of this paper is that mathematically this poses no problem (but on
a finite-precision machine one must be cautious about the degree of mixing Mlowed).

We end this section with a simple but important result.
THEOREM 1.1. The inverse of a quasidefinite matrix is quasidefinite.
Proof. Simple calculations show that

A F

where

(1.4) E- + E-AT((F + AE-AT)-AE-,
fi (F + AE-AT)-AE-,

and

’ (F + AE-AT)-1.

Applying the Sherman-Morrison-Woodbury formula to the right-hand side in (1.4),
we see that

(E + ATF-1A)-1
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and it follows that the inverse is quasidefinite.
In the next section, we state and prove our main result. In 3, we apply this

result to the system of equations arising in interior-point methods for mathematical
programming. Then in 4 we present a simple example that illustrates the type of
numerical difficulties that can arise. Finally, in 5, we present some numerical results.

2. The main result. We say that the symmetric nonsingular matrix K is fac-
torizable if there exists a diagonal matrix D and a unit lower triangular matrix L
such that K LDLT. The resulting pair (L, D) is then called a factorization of K.
Furthermore, we say that the symmetric matrix K is strongly factorizable if every
symmetric permutation of K yields a factorizable matrix. Thus, when K is strongly
factorizable, there exists a factorization PKPT LDLT for any permutation P. To
illustrate we present the following two examples.

Example 1. The matrix

(2.1) [01 21 1
is not factorizable. To see this, note that for a 2 2 system LDLT is simply

[ dll /21d1 ]LDLT
12dll ldl +d22

The zero in the upper left corner of (2.1) requires that dll 0, which in turn implies
that

LDLT=[ 0 0 10 d22

for all unit lower triangular matrices L. Hence, it is clear that no factorization of
(2.1) exists.

Example 2. The matrix

2 1

is factorizable but not strongly factorizable, since (2.1) is a symmetric permutation
of this matrix.

When a factorization exists, it is unique. This is a well-known result. See, e.g.,
[8]. In the remainder of this section, we show that symmetric quasidefinite matrices
form a class of strongly factorizable matrices.

THEOREM 2.1. Symmetric quasidefinite matrices are strongly factorizable.
Proof. Fix a permutation matrix P. It suffices to show that the leading prin-

cipal submatrices of PKPT are nonsingular. But these submatrices are of the form
PKsDT, where Ks is a principal submatrix of K and/5 is a permutation matrix. A
principal submatrix Ks is of the form

(2.2) Ks As Fs

where Es and Fs are principal submatrices .of E and F, respectively, and so are
positive definite. Thus Ks is quasidefinite and hence nonsingular, as required.
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There exist symmetric quasidefinite matrices for which some permutations yield
much better factorizations than others. For example, consider

(2.3) 1 1

where e > 0 is a small number. This matrix is symmetric quasidefinite and hence is
strongly factorizable, but the two possible factorizations (corresponding to the matrix
itself and its symmetric permutation) have very different properties. Indeed, factoring
the matrix as given yields

0 1+ 1

where factoring the symmetrically permuted matrix gives

0  101(2.g) D= 0-(l+e) = 1 1

It is clear hat (2.g) is much better than (2.4). To quantify this notion, we
introduce an a priori measure of stability defined as

IIKII
where I1" denotes the L matrix norm andS. denotes the matrix whose elements
are the absolute values of the indicated matrix. If is close to one, the factorization
is stable (see [10, p. 136]). Larger values indicate less stability. For the matrix in
(2.3), T 1 + 1/e where for its symmetric permutation we get T (3 + e)/2, which
is clearly much better.

Our primary interest in symmetric quasidefinite matrices arises in the context of
interior-point methods for linear and quadratic programming. We show in 3 that
matrices such the one considered here do not arise in that context.

3. Application to interior-point methods. Consider the following linear pro-
gramming problem

(3.1) minimize cTx
subject to Ax b,

x0,

where A is an m x n matrix, c is an n-vector, and b is an m-vector. The dual of this
problem is

maximize bTy
subject to ATy c,

y0.

Adding surplus variables w to the primal and slack variables z to the dual, we can
rewrite the problems follows

(3.2) minimize cTx
subject to Az w b,

x,wO
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maximize bTy
subject to ATy + z c,

y,z>_O.

For problems presented in this form, the system of equations that must be solved
at each iteration of the interior-point algorithm has the following form involving a
quasidefinite matrix:

A y-1W Ay p

where X, Y, W, and Z denote diagonal matrices with the components of x, y, w, and z
on their diagonals, respectively (and, as an interior-point method, all the components
of these vectors are strictly positive at every iteration).

For interior-point methods, the main computational burden lies in solving systems
of the form in (3.3). Early implementations for linear programming did not operate
on system (3.3) directly, but rather dealt with the symmetric positive definite system
obtained from (3.3) by solving for Ax in terms of Ay using the first set of equations
and then eliminating Ax from the second set:

(3.4) Ax -XZ-l(a- ATAy)

and

(3.5) (AXZ-1AT + Y-IW)Ay (p + AXZ-a).

The advantage of this approach is that the matrix AXZ-AT y-1w is sym-
metric and positive definite, so that well-known and well-behaved methods such as
Cholesky factorization (which was used in the implementations described in [4], [12]-
[15], [17], [18], [21], [23]) or preconditioned conjugate gradient (used in the implemen-
tations described in [4], [11], [16]) can be used to solve systems involving this matrix.
However, the disadvantage is that AXZ-IAT can be quite dense compared to A if A
has dense columns.

Recent papers have suggested that it might be better to solve indefinite systems
such as (3.3) at every iteration. This suggestion was first put forth by researchers
in Stanford’s Systems Optimization Laboratory ([5], [19], [9]) and by Turner [20].
Subsequently, Fourer and Mehrotra [6] began experimenting with the indefinite system
approach. All of these papers rely on doing a Bunch-Parlett ([3], [2]) factorization of
the indefinite system.

Solving the indefinite system mitigates the fill-in caused when dense columns are
present, but Bunch-Parlett factorizations tend to be more computationally burden-
some. As such, solving the indefinite system offers an advantage when dense columns
are present, but tends to be slower on most other problems.

We apply Theorem 2.1 to obtain a robust procedure that is not hampered by dense
columns. Unfortunately, linear programs as formulated usually do not fit directly into
the form given in (3.1). For example, some of the variables might not be constrained
to be nonnegative (we call these free variables), and some of the constraints might
be equality instead of inequality constraints. It turns out that the algorithm can be
modified to handle free variables as follows. For each free variable xj, simply set the
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corresponding dual slack variable zj to zero everywhere it appears in the algorithm.
Similarly, equality constraints are handled by setting wi equal to zero for each equality
constraint. This makes for a very simple algorithm, but regretably the matrix

(3.6) K=[ -X-1ZA Y-IwAT]
is no longer quasidefinite as zeros have now appeared on the main diagonal. This
problem is handled by introducing a two-tiered elimination scheme. In the first tier,
we select pivot elements associated with some (or maybe even all) of the nonzero
diagonal elements in (3.6). As we shall show, pivoting on these elements in any order
is safe. Furthermore, the reduced system produced by symmetric Gaussian elimination
is eventually guaranteed to be itself a quasidefinite system and so from that point on
we can enter tier two and choose the remaining pivots in any order.

To make the above explanation more precise, we partition X- Z and Y-W into
2 x 2 blocks

E2

putting all the zero elements (and perhaps some nonzeros) of X-1Z into E2 and all
the zero elements (and perhaps some nonzeros) of Y-W into F2. Then we partition
system (3.3)

-El AIT1 A2T1 nXl O"

-E2 A1T2 A2T2 Ax2 62(3.7) AI A2 F Ay p
A21 A22 F2 Ay2 p2

Since E1 and F are positive definite, we move those blocks to the upper left-hand
corner

-E AT A2T Axl
(3.8) A F A12 Ay p

A1T2 -E2 A2T2 Ax2 a2

A2 A22 F2 Ay2 P2

Now, the upper left 2 x 2 block is quasidefinite and so can be used to solve (with
pivots in any order) for Ax and Ayl:

Ayl I_[_E
--i

(TI AIlIAx2
Substituting this into the last equations in (a.8), we get the following system for Ax
and Aye.:

][ -E2A22 A2T2 I [A21F2 All 1 AY2 ]
-1

P2 A21 All F1 Pl
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In Theorem 1.1, we showed that the inverse of a quasidefinite matrix is quasidefinite.
Hence, we introduce the following notation for the inverse appearing above:

All F1 211 1
Then the triple matrix product in (3.9) can be written as

A1T2 --El A1T1-1 A2T1 A1T2IA12 A12AllA21
TA21 AI F A2 A2AI A2 -A21A’

and we see that the system in (3.9) is quasidefinite if and only if

E2 + A21’IA12 and F2 + A2.A
are positive definite. Clearly, the larger the dimension of E1 and F1, the greater the
likelihood for this.

To summarize, our procedure is based on partitioning the rows and columns of A
into two tiers. Elements belonging to the first tier are eliminated first (in any order)
and then elements from the second tier are eliminated. As long as the tiers are chosen
appropriately, this scheme is guaranteed to work. While it is certainly possible to
go through once at the beginning and ensure that enough elements are put into tier
one, experience has shown that simple, conservative heuristics work just as well (as
long as they are conservative). For example, our code, which is called LOQO and is
described in [22], [24], uses such a conservative approach. This code actually uses four
tiers. The first tier corresponds to all variables except those that are free variables
and those associated with dense columns. The second tier consists of all inequality
constraints and the dense columns. The third tier then has the equality constraints
and the fourth tier the free variables. Within tiers, elimination order is determined
by one of the usual heuristics such as minimum-degree or minimum-local-fill. The
heuristic for determining which columns to call dense works as follows. First, out of
the n columns, look at the rn sparsest. Multiply the density of the densest of these
m columns by a number larger than one (10 is the default) and declare a column to
be dense if and only if its density exceeds this threshold.

We now return to the question of numerical stability in the context of interior-
point methods. It was proved in [1] that strict complementarity holds in the limit (at
least in the case of continuous trajectories of the affine scaling algorithm but it seems
to be true in general). In the present context, this means that the diagonal elements of
X-Z and Y-IW all tend to zero or infinity. In fact, numerical experience indicates
that the rate at which the elements tend to zero or to infinity is the same from one
element to the next. Hence, 2 x 2 matrices such as (2.3) do not arise. Instead, 2 x 2
matrices where both the diagonal elements go to zero, both go to infinity, or one goes
to zero and the other goes to infinity are more relevant. For

1 e

we ge r (1 + e + 2/e)/(1 + e) ,. 2/e and for its symmetric permutation r is the
same. On the other hand, for

1
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we get T (1 + 3/e)/(1 + l/e) 3 and for its symmetric permutation T 1. The
other cases are similar. What one observes is that the level of instability is essentially
independent of the permutation.

However, the value of T does not tell the whole story. In the next section, we
consider a specific example that illustrates the situations that can arise.

4. An example. Consider the following linear programming problem:

(4.1) minimize x + x2,

Xl>_0, x2free.

For this problem, the symmetric indefinite system that must be solved at each iteration
involves a matrix whose lower triangular part has the following form:

m
0

1 2 51
2 1 52

where el, 5, and (2 are all positive and tending to zero (at roughly the same rate) as
the iterations progress (the zero on the second diagonal position arises from the fact
that x2 is a free variable). The zero diagonal element could pose a problem and so
any static ordering must anticipate this and defer this pivot till the end. Therefore,
the lower triangular part of the matrix becomes

1
2 (2

2 1 0

This matrix is factorizable since after the first pivot, the reduced matrix is symmetric
quasidefinite. However, to see what happens, "consider applying symmetric Gaussian
elimination to this matrix. After eliminating the nonzeros under the first two columns,
the lower triangle of the resulting 2 x 2 submatrix becomes

+
4 4

In the elimination process, the parenthesized expressions are evaluated before
the other operations. Hence, in finite precision arithmetic, once each of the small
parameters becomes smaller than the square root of the arithmetic’s precision, these
expressions simplify to

4 4 1 1
62 - and 61 -t

1 1 {1 1
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and so (4.2) becomes

-3 4el
which clearly presents a problem for the next stage of the elimination. However, using
exact arithmetic, (4.2) simplifies to

(4.3)

45

1 4 4el

From this exact expression it is clear that the given order and the order obtained
by interchanging the last two pivots generate similar values for T (since both diagonal
entries are of the same magnitude). Hence, our estimate of instability -, defined by
(2.6), fails to differentiate between these two permutations. What has gone wrong is
the common problem of mixing addition and subtraction of large numbers.

In addition, (4.3) suggests that whenever an exact zero appears on a diagonal it
might be a good idea to set the value to either plus or minus the square root of the
arithmetic’s precision. In fact, this is what is done in our code (which is described in

[24]) and we are able to solve (4.1) to full precision.
This example shows that instability can occur. However, when it does, one can

still expect to get results as accurate as the square root of machine precision. This
seems to hold true even for large problems. A partial explanation for this is the fact
that interior-point methods have a certain autoscaling property (i.e., they attempt to
follow the central trajectory), which helps to make the diagonal elements go to zero
or to infinity all at the same rate.

5. Numerical experiments and conclusions. Using our code, we computed
the ratio of the largest to the smallest of the absolute values of the diagonal elements
of D on the last iteration of the Mgorithm. On the eighty or so test problems in
the NETLIB suite [7] this ratio ranged between 1.0e+19 and infinity (infinity means
that an exact zero appeared on the diagonal, which can happen when rank deficiency
occurs due to primal degeneracy). These ratios are tabulated in Tables 1 and 2. Given
such large values for this ratio, it is quite remarkable that the code was able to solve all
but two problems (greenbeb and pilot87) to eight significant figures of accuracy (and
pilot87 stopped just short with seven significant figures). These tests were performed
on an IBM RS 6000, which implements the IEEE floating-point standard and therefore
has 15 digits of precision (53 bits). It is also interesting to note that the two that ran
into numerical trouble were not necessarily the ones with the largest ratios. It turns
out that for many problems in this suite the matrix to which K in (3.6) is converging
is actually a singular matrix (due to primal or dual degeneracy) and so numerical
difficulties will exist regardless of the ordering.

We also computed the value of T, defined by (2.6), for each of the test problems.
For these computations, we scaled the matrix K by dividing each row and each column
by the maximum between i. 0 and the square root of the corresponding diagonal
element. Tables 3 and 4 show the value of T on the last iteration. It turns out that
in every case this was the largest value over all iterations of the algorithm. Again
there seems to be no correlation between those problems that encountered numerical
difficulties and those that had large T values. This lack of correlation gives credence to
the notion that numerical difficulty arises primarily from primal and dual degeneracy.
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TABLE
Ratios of diagonals in factorization (problems l-p).

Problem Primal Dual Significant
name Ratio Iterations infeas infeas figures
25fv47 5.8709e-37 29 4.61e-13 2.56e-13 8
80bau3b Infinity 43 6.43e- 10 1.28e- 11 8
adlittle 2.2458e- -21 14 8.87e- 11 1.74e- 16 8
afiro 4.1738e- -24 13 6.00e- 14 8.98e- 14 8
agg 7.8694e- -41 26 3.98e- 12 3.62e-09 8

1.1431e- -32
4.8834e- -34
8.6392e- -27
1.9200e- -28
5.8329e- -24
1.0244e- -35
3.4315e- -54
1.0681e- -41
5.1782e- -38

Infinit’z
3.3141e--31
8.8349e--27
6.2422e--36
6.7245e--30
2.8169e--47

degen2 1.0067e--20 14 5.94e- 10 3.75e- 16 8
degen3 Infinity 17 9.54e- 10 2.94e- 12 8
e226 8.4768e--33 22 5.12e- 13 9.02e- 14 9
etamacro 2.0071e--31 30 3.19e-13 1.62e-14 8
fffff800 1.7007e--39 36 3.97e- 13 2.53e-08 8

8.9977e--33
1.6286e--22
3.5353e--24
5.1893e--19
6.3007e--23
4.8253e--40
3.3747e--33
2.9347e- -25
8.1336e- -44
2.8818e- -28
2.3749e- -33
3.1747e--33
6.0359e- -31
5.7337e- -28
3.7487e- -26
1.1710e- -44
9.9261e- -31
3.3790e- -25
1.7497e- -36
5.9526e- -36
1.7318e--50
1.1399e--37
1.1636e--36
1.1568e--45
2.8908e--32

agg2
agg3
bandm
beaconfd
blend
bnll
bnl2
boeingl
boeing2
bore3d
brandy
capri
cycle
czprob
d2q06c

finnis
fitld
fitlp
fit2d
fit2p
forplan
ganges
gfrdpnc
greenbea
greenbeb
growl5
grow22
grow7
israel
kb2
lotfi
maros
nesm
perold
pilot4
pilot87
pilotja
pilotnov
pilots
pilotwe

22 1.09e--14 4.99e--12 8
22 5.34e--15 5.24e--12 8
20 8.74e--ll 5.95e--13 9
14 7.95e--ll 6.14e--12 8
14 1.90e--12 6.75e--ll 9
35 2.39e--12 2.23e--12 8
40 1.62e--09 1.94e--ll 8
28 1.26e--08’ 2.09e--13 9
28 1.47e--15 1.71e--10 8
17 1.72e--08 2.48e--16 8
22 7.33e--08 1.97e--ll 9
23 1.07e--12 4.52e--ll 8
32 5.75e--09 3.27e--ll 9
38 1.15e--ll 1.08e--13 8
38 2.24e--10 1.50e--09 8

26 1.00e--13 4.91e--14 8
21 4.81e--08 3.61e--15 9
26 5.68e--10 5.52e--12 8
24 1.50e--08 1.70e--16 8
24 4.24e--ll 1.86e--12 8
29 7.28e-14 1.33e-10 8
23 5.06e--12 3.88e-ll 9
19 1.82e-10 3.61e-14 8
50 2.30e-06 2.86e--12 8
30 1.80e-06 1.82e-10 3
23 2.35e--06 7.18e-14 10
27 7.99e-06 9.88e-15 10
20 2.62e-06 3.69e--13 10
28 3.58e-16 4.36e--15 9
20 2.54e-06 5.84e--10 8
25 1.83e-14 7.60e-12 8
28 3.27e--10 9.37e-10 8
37 9.48e-13 2.61e--14 8
39 1.79e--13 5.11e-ll 9
38 1.81e--ll 1.51e--10 8
45 3.45e--12 7.84e--10 7
38 3.06e--12 5.56e--10 8
29 2.24e--ll 6.77e--ll 8
44 5.17e--12 1.07e--08 8
39 7.47e-12 2.37e--14 8
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TABLE 2
Ratios of diagonals in factorization (problems r-z).

Problem Primal Dual Significant
name Ratio Iterations infeas infeas figures
recipe 1.6775e-31 13 3.21e-08 7.81e-ll 9
scl05 6.9689e26 14 1.89e- 13 1.56e- 12 8
sc205 8.9380e-l-30 17 2.38e-.14 4.35e- 12 9
sc50a 4.2398e26 14 2.02e- 14 9.54e- 13 9
sc50b 2.2211e26 13 1.20e-14 5.61e-13 9
scagr25 3.4668e24 18 5.96e- 13 8.69e- 14 9
scagr7 7.6158e-l-21 15 2.55e- 13 4.72e- 12 8
scfxm 2.0143eJr33 26 6.42e- 10 3.19e- 10 8
scfxm2 4.1487e-{-35 28 2.05e-08 1.80e-ll 9
scfxm3 1.2522e36 28 2.29e-07 3.43e-ll 8
scorpion Infinity 16 1.66e- 10 1.35e- 15 8
scrs8 4.1479e-39 23 1.11e-10 1.90e-16 8
scsdl 3.9397e-{-20 15 1.04e- 11 2.30e- 16 9
scsd6 3.3169e19 17 7.44e-ll 3.50e-16 8
scsd8 9.2737e-{- 19 17 2.43e- 10 8.85e- 16 8
sctapl 6.3855e-21 18 6.23e-ll 3.55e-13 8
sctap2 Infinity 16 2.84e- 10 1.43e-12 8
sctap3 9.0610e18 16 1.76e-10 1.51e-12 8
seba 1.3798e27 19 8.25e-09 4.10e- 12 8
sharelb 8.1766e-33 26 1.25e-10 2.12e-ll 8
share2b 1.1939eJr22 14 6.02e-09 1.19e- 14 8
shell 5.0921e27 25 5.99e-14 3.11e-12 8
ship041 3.2699e26 20 9.49e- 11 1.22e- 15 9
ship04s 6.1811eT25 19 1.76e-10 1.38e-15 8
ship081 3.532le-t-27 20 6.52e- 11 2.02e- 15 8
ship08s 4.0247e-27 20 4.07e- 11 2.60e- 15 9
shipl21 1.9722e-t-27 24 2.35e-10 4.88e-15 8
ship12s 4.9804e-27 22 1.72e- 10 1.27e- 14 8
sierra 1.2960e34 21 1.06e- 11 1.83e- 12 8
stair 1.4413e-30 21 2.63e-ll 1.78e-12 9
standata 4.0684e-30 23 1.34e- 12 8.55e- 14 9
standmps 1.0390e-34 32 3.12e- 13 9.57e- 13 8
stocforl 7.6992e-{-24 17 2.13e-08 5.74e-ll 8
stocfor2 1.0840e28 31 2.83e- 10 1.26e- 10 8
tuff 1.3385e-36 25 2.09e- 12 2.87e- 13 8
vtpbase 9.470le28 28 2.17e- 11 1.66e-06 9
woodlp 1.3333e-24 28 1.94e-06 3.45e- 14 8
woodw 4.6615e28 27 3.07e-09 4.97e-14 9
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TABLE 3
A priori test of stability (problems l-p).

Problem IIKll IILll IIDll last
25fv47 4.32e-
80bau3b 2.16e-
adlittle 1.03e
afiro 3.36e-
agg 4.28e-
agg2 4.29e-
agg3 4.29e-
bandm 1.06e-
beaconfd 1.10e-
blend 1.05e-
bnll 4.18e-
bnl2 5.07e-
boeing1 9.92e-
boeing2 1.03e-
bore3d 3.13e-
brandy 9.43e-
capri 5.61e-
cycle 3.37e-
czprob 1.48e-
d2q06c 7.32e-
degen2 3.51e-
degen3 9.3Te-
e226 9.84e-
etamacro 3.08e-
fffff8 1.13e-
finnis 3.95e-
fitl 3.25e-
fitl 1.42e-
fit2 3.22e-
fit2 2.73e-
forplan 3.09e-
ganges 1.20e-
gfrdpnc 2.35e-
greenbea 1.00e-
greenbeb 1.41e-
growl5 5.21e-
grow22 5.21e-
grow7 5.21e-
israel 9.22e-
kb2 6.02e-
lotfi 4.83e-
maros 5.10e-
nesm 9.35e-
perold 7.85e-
pilot4 6.85e-
pilot87 1.10e-
pilotja 1.56e-
pilotnov 1.19e,

pilots 2.66e-
pilotwe 7.50e-

-02 1.08e-}-19 1.08e-1-19 2.51e-+-16
-02 3.98e-1-13 3.96e-1-13 7.28eTll
-02 1.76e+09 3.03e--10 3.24eW08
-00 2.87e+12 2.04e--12 4.04e+12
-02 3.62e-t-14 5.54e--16 4.68e-t-14

6.50e--13
1.13e--14
7.63e--13
2.09e--15
2.42e- -12
9.67e--13
4.51e--26
1.49e- -14
1.29e- -14
3.33e- -14
7.65e- -15
1.05e-,14

2.03e- -15
1.20e- -13
1.48e- -18
1.29e-08
3.33e--09
1.33e- -13
1.91e- -13
6.53e- -15

1.34e+17 1.34e- -17
4.78e+10 7.31e- -12
1.50e--ll 5.17e- -11
4.68e--08 8.24e- -09
7.94e--11 7.94e- -11
1.83e--17 2.44e- -20
6.84e--16 6.29e- -16
7.44e--12 6.01e+12
3.21e--22 3.61e-{-22
3.01e--14 2.39e+14
5.86e--16
5.67e--16
9.28e--15
3.11e--12
1.48e--13
1.53e--22
1.58e- -16
1.21e- -12
1.83e- -17
1.02e- -17
1.90e- -16
1.36e- -17
2.06e- -17
9.69e- -15
2.27e- -15

-02
-02
-03
-03
-02
-02
-02
-02
-03
-03
-02
-02
-03
-02
-03
-01
-01
-02
-03
-05
-01
-03
-05
.03
.05
,03

-01
-03
-02
-02
-00
-00
-00
-03
-02
-03
-04
-01
-04
-04
-03
-06
-07
-02
-03

1.20e-1-14
2.08e-1-14
1.38e-t-13
2.72e-1-13
2.54eT12
1.45e-i-14
4.51eT26
5.93e-l-17
1.50eT14
2.98e-I-14
9.69e-1-16
1.06e-+-14
2.16e-1-18
1.24e-t-13
1.88e-1-19
4.44e+08
6.28e-l-09
1.74e-1-13
9.76e-1-12
8.10e-1-15

2.14e-12
3.68e+12
9.54e-t-ll
5.00e-12
1.09e+11
9.55e+Ii
2.63e-24
1.03e+12
5.81e+11
2.51e-ii
3.85e+15
5.63eWll
2.24e+15
9.19e+10
5.42e-1-15
1.70e-08
1.25e-{-09
1.71e+11
7.12e-10
8.91e-i0
3.39e+15
1.67e+10
3.24e+07
1.24e-l-08
2.90e+06
2.35e-l-17
2.02e+16
1.12e-I-10
8.68e-l-20
8.63e--I- 12

7.55eT16 1.01e-l-14
2.20e-t-18 4.55e-t-13
2.84e-1-18 1.64eT13
1.04e--I- 16 9.73e-+-13
2.54eT17 8.56e-1-13

1.53e-t-24 3.17e+20
1.23e-}-16 4.56e-t-13
1.21e-+-12 5.46e+10
1.91e-t-19 2.12e+15
4.35e+17 6.18e-l-14

4.01e+16 2.54e-+-16
5.51e-1-16 2.60e-1-16
6.36e-1-15 3.72e-t-15
3.82e--I- 12 1.86e-l-09
2.55e-1-13 1.55e-I-11
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TABLE 4
A priori test of stability (problems r-z).

Problem IIKII IILII IIDII last
recipe 9.15e+02 5.90e+15 5.68e-{-15 3.15e-I-13
scl05 5.52e-{-00 3.66e-{-13 3.66e-13 3.83e-I-13
sc205 5.52e-00 1.88e-{-15 1.88e-I-15 1.88e-{-15
sc50a 5.50eTO0 1.50e-13 1.29e-{-13 1.24eT13
sc50b 1.00e-{-Ol 6.51e-12 6.51e-{-12 3.24e-I-12
scagr25 1.70e-l-01
scagr7 1.70e-I-01
scfxml 8.26e-t-02
scfxm2 8.24e-!-02
scfxm3 8.26e-+-02
scorpion 6.85e+00
scrs8 3.59e+02
scsdl 4.32e+00
scsd6 5.79e-I-00
scsd8 4.31e-I-00
sctapl 2.89e+02
sctap2 4.65e-{-02
sctap3 4.65e+02
seba 1.34e+03
sharelb 2.05e+03
share2b 7.89e+02
shell 1.80e+01
ship041 7.10e+01
shipO4s 4.90e-01
ship08] 7. lOe+Ol
shipO8s 4.10e-I-01
ship121 5.70eTOl
ship12s 3.10e+01
sierra 1.00e+05
stair 3.40e-{-01

1.99e--12
1.43e--11
1.86e--16
9.11e--17
1.57e--18
6.49e--07
8.15e--19
2.30e--09
2.43e--09
1.62e--10
7.26e--09
4.63e--09
5.09e--09
3.71e--13
7.36e--16
5.47e--11
6.40e- -11
6.57e- -09
8.03e- -08
2.08e- -08
7.76e- -08
1.93e- -09
3.18e- -08
4.82e- -10
1.70e- -15

standata 1.34eT02 6.19e+13
standmps 1.05eT03 8.54e+12
stocforl 1.10e-t-03 2.22e+12
stocfor2 1.20e-t-03 8.15e-}-13
tuff 1.92e-03 5.09e-17
vtpbase 2.91e-02 2.41e-1-14
woodlp 1.91e-04 5.40e-i-12
woodw 6.24e-l-04 6.61e+12

1.90e+12 3.61e-{-11
9.15e-l-10 5.38e-l-10
9.30e-}-17 2.34e-15
4.55e-{-19 1.15e-I-17
7.87e-19 1.98e-{-17
6.34e+07 2.47e-{-07
8.08e-i-19 4.80e-{-17
2.30e-}-09 2.00e-09
2.09e-l-09 1.43e-{-09
1.04e-}-i0 1.15e+i0
2.58e-l-09 1.37e+09
1.46e-{-10 9.49eT08
1.76e-l-10 1.04e+09
3.71eT13 2.78e-10
1.12e-l-17 2.26e+14
3.43e--11
4.88e--11
3.25e--08
1.42e--07
1.53e--08
1.01e--08
5.94e--08
1.44e--08
4.68e--10
1.70e--15
6.14e--13
8.48e--12
3.48e--12
1.33e- -14
1.16e-17
2.32e- -14
6.54e- -13
3.16e- -15

2.68e-11
1.55e-{-11
3.86e+08
6.86eT07
5.21e+06
5.76e-+-07
9.70e+07
2.70e+07
1.43eT06
2.00eT14
5.43e-11
9.36e-I-09
1.05e+10
5.46e-{-11
1.31eT15
1.16e-l-12
7.57eTll
3.55e-I-11
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ON THE PRIMAL-DUAL STEEPEST DESCENT ALGORITHM
FOR EXTENDED LINEAR-QUADRATIC PROGRAMMING *

CIYOU ZHU

Abstract. The aim of this paper is two-fold. First, new variants are proposed for the primal-
dual steepest descent algorithm as one in the family of primal-dual projected gradient algorithms
developed by Zhu and Rockafellar [SIAM J. Optim., 3 (1993), pp. 751-783] for large-scale extended
linear-quadratic programming. The variants include a second update scheme for the iterates, where
the primal-dual feedback is arranged in a new pattern, as well as alternatives for the "perfect line
search" in the original version of the reference. Second, new linear convergence results are proved
for all these variants of the algorithm, including the original version as a special case, without the
additional assumptions used by Zhu and Rockafellar. For the variants with the second update scheme,
a much sharper estimation for the rate of convergence is obtained due to the new primal-dual feedback
pattern.

Key words, extended linear-quadratic programming, large-scale optimization, projected gra-
dient, primal-dual feedback

AMS subject classifications. 65K05, 65K10, 90C20

1. Introduction. The primal-dual steepest descent algorithm (PDSD) is one in
the family of primal-dual projected gradient algorithms proposed by Zhu and Rock-
afellar [1] for large-scale extended linear-quadratic programming, which arises as a
flexible modeling scheme in dynamic and stochastic optimization [2]-[10].

Let L(u, v) be the Lagrangian function defined as

(1.1) L(u, v) p.u + 1/2u.Pu + q.v 5v.Qv v.Ru,

where p E IRn, q IRm, R ]1mxn and the matrices P IRnxn and Q Imxm are
symmetric and positive semidefinite. Let U and V be nonempty polyhedral convex
sets in IRa and IRm, respectively. The primal problem of extended linear-quadratic
programming is to

(7)) minimizer(u) over all u U, where f(u)"-- sup L(u, v).
vEV

Associated with this primal problem is the dual problem

(Q) maximizeg(v) over all v e V, where g(v):-- inf L(u, v).
uEU

The problems (P) and (Q) are called fully quadratic if both the matrices P and Q
are actually positive definite. The basic properties of the objective functions f and g,
and the duality relationship between (7)) and () are included in the following two
theorems.

*Received by the editors July 20, 1992; accepted for publication (in revised form) October 10,
1993. This work was supported by Eliezer Naddor Postdoctoral Fellowship in Mathematical Sciences
at the Department of Mathematical Sciences, The Johns Hopkins University, Baltimore, Maryland
21218-2689.

Mathematics and Computer Science Division, Argonne National Laboratory, 9700 South Cass
Avenue, Argonne, Illinois 60439 (czhu@mcs. al. gov).
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THEOREM 1.1 [5] (Properties of the objective functions). The objective functions
f in (P) and g in () are piecewise linear-quadratic: in each case the space can be
partitioned in principle into a finite collection of polyhedral cells, relative to which the
function has a linear or quadratic formula. Moreover, f is convex while g is concave.
In the fully quadratic case of (7)) and (Q) f is strongly convex and g is strongly
concave, both functions having continuous first derivatives.

THEOREM 1.2 [5], [2] (Duality and optimality). (a) If either of the optimal values
inf(/)) or sup(Q) is finite, then both are finite and equal, in which event optimal
solutions and exist for the two problems. In the fully quadratic case, both the
optimal values inf(P) and sup(Q) are finite and equal, and the optimal solutions
and are unique.

(b) A pair (, ) is a saddlepoint of L(u, v) over U Y if and only if solves
and solves (Q), or equivalently, f()- g(V).

Hence the extended linear-quadratic programming can be cast in the form of
finding a saddlepoint (fi, ) of the Lagrangian L(u, v) over U V. With the notations

Py,Q(r) sup{r.v- 1/2v.Qv} for r e lR",
vV

u.Pu} for s E IRn,flU,p(8) sup{s.u
uEU

the objective functions in (7)) and (Q) can be written as

(1.3)
f(u) =p.u / u.Pu / Pv,Q(q- Ru),

lv.Qv (RTv p).g(v) =q.v Pu,P

According to Rockafellar [5], the p terms here can represent "sharp" constraints as
well as penalty terms of piecewise linear-quadratic nature. These terms provide rich
possibilities in mathematical modeling.

The extended linear-quadratic programming problems in multistage or stochastic
optimization are usually of very high dimension on one hand, while on the other hand,
possess special structures, such as the so-called Lagrangian decomposability [7] (cf. also
2). A foundation for numerical schemes regarding these problems has been laid out
in Rockafellar and Wets [2] and Rockafellar [7] and elaborated on for problems in
multistage format in Rockafellar [8]. The PDSD algorithm [1] is designed specifically
to take advantage of these results and to cope with the high dimensionality. The
algorithm works with local structure in the primal and dual problems simultaneously.
Computations for problems in multistage format could be handled through the system
dynamics in such a way that no huge R matrix should be formed explicitly. A novel
kind of primal-dual feedback is introduced between the primal part and the dual
part of the algorithm to trigger advantageous interactive restarts [1]. The algorithm
is capable of solving extended linear-quadratic programming problems of both the
primal and dual dimensions up to 100,000 effectively on a DECstation 3100 [1].

The convergence of the PDSD algorithm was proved in [1] as a special case of
the results on the family of the primal-dual projected gradient algorithms. However,
the estimation on the rate of convergence there is of asymptotic nature and seems
far behind its practical performance. Moreover, the results were obtained under some
additional critical face conditions [1]. The primal-dual feedback, which plays an impor-
tant role in the practical performance of the algorithm, has no effect in the derivation
of these theoretical estimations.
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In this paper, we propose new variants for the algorithm and prove improved
results on the rate of convergence. First, in 2, we propose a second update scheme
for the iterates, where the primal-dual feedback is arranged in a new pattern. We
also give "fixed" or "adaptive" step length rules as alternatives of the "perfect line
search" used in the original version. All these variants, including the original version
of the algorithm, are put in a unified framework. Then, in 3, we prove new linear
convergence results for all these variants without the critical face conditions. The
results are of a global nature, and the estimates on the rates of convergence are much
improved compared with the ones in [1]. For the variants with the new update scheme,
sharper estimates for the rates are obtainable due to the new primal-dual feedback
pattern. Finally, in 4, we discuss numerical test results and other possible update
schemes.

2. The primal-dual steepest descent algorithm. The family of primal-dual
projected gradient algorithms in [1], as well as the finite-envelope algorithm devel-
oped earlier by Rockafellar and Wets [2]-[7] are all designed for solving large-scMe
extended linear-quadratic programming problems arising in multistage or stochastic
optimization, where the problems exhibit the Lagrangian decomposability (or double
decomposability) [7]. The latter means that for any fixed u E U it is relatively easy to
maximize L(u, v) over v E V, and likewise, for any fixed v V it is relatively easy to
minimize L(u, v) over u U. This is the case, for example, when the matrices P and
Q are block diagonal, and the sets U and V are corresponding Cartesian products of
polyhedra of low dimensions. These subproblems of maximization and minimization
calculate not only the objective values f(u) and g(v) but also, in the fully quadratic
case when L is strongly convex-concave, the uniquely determined vectors

(2.1) F(u) argmaxL(u, v) and G(v) argminL(u, v).
vEV uEU

The mappings F and G play a central role in the PDSD algorithm.
From [7] and [1] we cite several fundamental properties that are useful later in

this paper. In notation, we write

IlwllM -[w.Mw]7
for the norm corresponding to a symmetric positive definite matrix M. It reduces
to the ordinary Euclidean norm when M is the identity matrix. In this latter case,
the subscript is dropped. We use the related operator norm for matrices and use
[wl, w2] to denote the line segment between two points Wl and w2. We impose the
blanket assumption that the problem is fully quadratic for the rest of the paper and
refer consistently to

fi the unique optimal solution to

the unique optimal solution to (Q).

In the case when the problem under consideration is not fully quadratic, an outer loop
of proximal point iteration can be used to create fully quadratic inner loop problems.
See [2], [7], and [11] for related discussions.

Let p1/2 and (1/2 be the "square roots" of P and Q, respectively, defined via

orthogonal factorization. Define

(2.2) - "= -(P, Q, R) "= IIQ-5 RP-5
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PROPOSITION 2.1 [7] (Optimality estimates). Suppose u and v are elements of
U and V satisfying f(u) g(v) <_ for a certain > O. Then u and v are -optimal
in the sense that If(u)- f(fi)[ < and [g(v)- g()[ < . Moreover,

PROPOSITION 2.2 [7] (Regularity properties). The functions f and g are contin-
uously differentiable everywhere with

V/(u) VuL(u,F(u)) and Vg(v)= VvL(G(v), v),

while the mappings F and G defined by (2.1) are Lipschitz continuous with

IIF(u’) F( )II  llu’  llP
II (v’)  (v)llP  rllv’ vll 

for all u and u’,

for all v and v’.

PROPOSITION 2.3 [7], [1] (Modified gradient projection). For arbitrary u E U
and v V,

G(F(u) u P-projection of Vpf(u)
F(G(v)) v Q-projection of VQg(v) on

where Vpf(u) P-1Vf(u) symbolizes the gradient of f relative to the P-norm, while
VQg(v) Q-iVg(v) symbolizes the gradient of g relative to the Q-norm. Moreover,
the vector G(F(u)) -u is a feasible descent direction of f at u unless u t. Similarly,
the vector F(G(v)) v is a feasible ascent direction of g at v unless v .

The PDSD algorithm first searches on line segments In, G(F(u))] and Iv, F(G(v))]
in primal and dual variables, respectively, to get some intermediate points as candi-
dates for the next iterates. (Proposition 2.3 above suggests the name "projected
gradient.") Then a novel kind of primal-dual feedback is incorporated in the up-
dating. In the case of "forward feedback," the next iterates are chosen between the
intermediate points and their images under the mappings F and G, while in the case
of "backward feedback," the next iterates are chosen between the intermediate points
and the images of the current iterates under the mappings F and G. This kind of in-
teractive effects ties the primal and dual part of the operation closely and has proved
to be important to the performance of the algorithm.

In the following, we introduce new variants of the PDSD algorithm. The sec-
ond update scheme for the iterates corresponds to the backward feedback for which a
sharper bound for the rate of convergence will be obtained. We also give alternatives
for the "perfect line search" used in the original version. We put all these variants,
including two different update schemes and three step length rules, in a unified frame-
work. We refer to the algorithm with, say, update scheme (2) and step length rule
(iii), as PDSD-2(iii). Under this convention, the PDSD algorithm in [1] should be
referred to as PDSD-I(i).

PRIMAL-DUAL STEEPEST DESCENT ALGORITHM.
Step 0 (initialization). Set :- 0 (iteration counter). Specify starting points

u E U and v E V. Choose one of the step length rules in Step 2. (If rule (iii) is
ctosen, then also choose some constant 5 (0, 1) and let a_

_
1.) Choose one

of the update schemes in Step 3. Construct primal and dual sequences {u} c U and
{v} C V as follows.
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Step 1 (optimality test). If

rain{ f(u’), f(G(vv)) } max{g(v’),g(F(u)) } O,

then terminate with

fi argmin{ f(u)]u u, or

argmax{g(v) lv vu, or

u a(v) },
v F(u) }

being optimal solutions to (7)) and (Q).
Step 2 (line search). Use one of the following step length rules chosen at initial-

ization to determine c and 3v for generating intermediate points

e+ :=( .) + .a(F()),
+1 :=(1 .)v + F(G(vv))

in primal and dual variables, respectively.
(i) Perfect line search:

(ii) Fixed step lengths"

c min 1, and { 1}/’=min 1,2

(We adopt the convention 0-1 +cx) in this paper.)
(iii) Adaptive step lengths:

Step 3 (update the iterates). Use one of the following rules chosen at initialization
to determine the next iterates.

(1) Update with forward feedback:

uTM "= argmin{ f(u) lu ft

vu+l :-- argmax{ g(v) lv
or u G(@u+l) },
or v F(2v+) }.

(If both the arguments give the same objective value, use the first one in updating for
decisiveness. The same rule applies also to the next set of formulas.)

(2) Update with backward feedback:

%tu+l argmin{ f(u) lu + or

vu+l :-- argmax{ g(v) lv u+l or



PRIMAL-DUAL STEEPEST DESCENT ALGORITHMS FOR ELQP 119

Then return to Step 1 with the counter increased by 1.
Observe that the primal-dual feedback also takes place in the optimality test. It

follows from Proposition 2.2 that F(uV) and G(v) t as u" fi and v" - .
With the optimality test in Step 1, the algorithm will terminate if either u fi or
v V by Theorem 1.2.

In Step 2, there are three step length rules to choose from. By Theorem 1.1 and
Proposition 2.2, the objective functions in the line searches are piecewise quadratic
and continuously differentiable. In the typical decomposable case when P and Q are
diagonal, and U and V are "boxes" representing upper and lower bounds, one can
further get the explicit expressions for the derivatives of these functions. By taking
advantage of all these properties, even the perfect line search will not be prohibitively
difficult. In our numerical experimentations, the perfect line search takes approxi-
mately two-thirds of the time in each iteration.

An interesting result of Theorem 3.1 in 3 is that the same estimated rate of con-
vergence as for the perfect line search (i) can be reached by certain fixed step lengths
in rule (ii). However the parameter 7 of the problem, which determines the length of
steps in (ii), is usually unavailable. Therefore we provide a third rule with adaptive
step lengths that resembles the Armijo stepsize rule for unconstrained minimization.
However, here we use certain duality gap, instead of the slope of the line search func-
tion, in determining the step lengths. Theorem 3.2 in 3 shows that the adaptive
step length is well defined, that the step lengths will be fixed after a finite number
of adaptations, and that an estimated rate of convergence very close to the one with
perfect line search is obtainable.

Update scheme (1) in Step 3 can also be written as

+1, if f(+l) _/(G(+I)),(2.3) u+l"-
G()+1) otherwise,

,-bl, if g(?q-1)

__
g(F(-t-1)),(2.4) v+l :=

F(z2+1) otherwise.

We say that there is an interactive restart in the primal variable if u+1 G(9+1), in
which case, the primal iterate is updated by using the dual information. Similarly, we
say that there is an interactive restart in the dual variable if vTM F(fi+l), in which
case, the dual iterate is updated by using the primal information. Update scheme (2)
can be written in the same manner as

if f(?2+1) f(e(v)),(2.5) u+’= G(v) otherwise.

g+l, if g(?+l)

__
g(F(u)),(2.6) v+l := F(u) otherwise,

with the interactive restarts defined accordingly. Although the practical performance
of the algorithm with these two different update schemes is very close in our tests, a
sharper bound for the rate of convergence of the algorithm with scheme (2) will be
obtained in the next section.

To conclude 2, we give a lemma that is used later in deriving convergence results.
The proof of the lemma follows closely the idea in the proofs of Rockafellar and Wets
[2, Prop. 3 and Thm. 5].

LEMMA 2.1. For any u E U,

(2.7) f((1 a)u + aG(F(u))) f(u) <_ (f(u) g(F(u)))(- + .22)
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.for all E [0, 1]. Similarly, for any v V,

g(v) g((1 )v + F(G(v))) <_ (f(G(v)) g(v))(- + 22)

for all [0, 1].
Proof. For any u0 e U, denote vl := F(uo) and u2 :-- G(vl). Then the Lagrangian

L(u, v) can be written in the expanded form at (u, v) as

L(u, v) L(u, v + VvL(u, Vl ).(v Vl 1/2 (v Vl ).Q(v Vl ),

where the term VvL(u, Vl)’(V Vl) can be further written as

VvL(u, Vl).(v Vl) V.L(uo, v).(v v) (v Vl).R(u UO).

Note that vl F(uo) means Vl is the argmax of L(uo, v) on V, which in turn implies
WL(u0, vl).(v- vl)

_
0 for all v V. Hence

(2.9) L(u, v) <_ L(u, vl (v vl ).R(u uo) 1/2 (v vl ).Q(v vl ).

Now for any u e [uo, u2] and v-- F(u), it follows from (2.9) that

(2.10) L(u,F(u)) L(u, Vl)_
-(F(u) Vl).R(u uo) 1/2 (F(u) vl).Q(F(u) v)

_< max {w.R(u uo) 1/2w.Qw}

2II(Q-RP-)P(u- uo)l2

< uoll

However, L(u, F(u)) f(u) and

L((1 a)uo + au2, Vl)
_

(1 a)L(uo, v) + aL(u2, Vl)
(1 a)f(uo) + a.q(vl)

for 0 <: c <_ 1. Thus, by taking u (1 a)uo + au2 in (2.10), we get

f((1 a)uo + au2) f(uo) + a(f(uo) g(vl)) < }c2211u2 uoll 2p.

On the other hand,

f(uo) g(Vl L(uo, vl) L(u2, Vl)
VuL(u2, vl)’(uo u2) + 1/2(uo u2)’P(uo u2)

by the definition of vl and u2. Observe that VuL(u2, Vl)’(UO U2) k 0 since u2 is the
argmin of L(u, v.) on U. Therefore

(2.12) f(uo) g(v) >_ 1/2(uo u).P(uo ua) lluu uoilp.
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Combining (2.11) and (2.12), we get

f(uo + (u2 no)) f(uo) <_ (f(uo) g(vl))(- +

for 0 <_ a _< 1, which yields (2.7). Inequality (2.8) can be proved similarly.

3. Global linear convergence of the PDSD algorithm. In this section,
we prove linear convergence results for all the six variants of the PDSD algorithm
formulated in 2. We first give results for the algorithms with (i) perfect line search
and (ii) fixed step lengths. Define the function 0"[0, +oc) (0, 1) as

(31) O(s)=
1-s if s< ,

ifs>_ .
THEOREM 3.1 (Convergence of PDSD with step length rules (i) and (ii)).

(a) The sequences {f(u)} and {g(v)} generated by PDSD-I(i) or PDSD-I(ii)
converge linearly to the common optimal value f(t) g() in the sense that

f(u’+1) f()

_
(1 0(’):2))(f(u")

g(:D) g(v’-t-1)

_
(1 0(’2))(g(’D)

Moreover,

(3.4) "+ 11, / ,"+ vll, -< 2( 0(")/2)) ’-t-1 (f(O) 9(0)).

(b) The sequences (f(u)} and (g(v)} generated by PDSD-2(i) or eDSD-2(ii)
converge linearly to the common optimal value f() g(9) in the sense that

(3.5) f(u,+l) g(v,+l < 1 0(72) (f(u) g(v)).
1 + 0(’),2)

Moreover,

(3.6)
1 + 0(’2) (f(uO) g(uO)).

Proof. It follows from (2.7) that

(3.7) f((1 a)u’ + aG(F(u’))) f(u’) <_ (f(u’) g(F(u’)))(-a +

for all a e [0, 1]. But min{ -a + 0 <_ _< 1 } -0(r2) with

{1}argmin{-a-t-y2a2[0<a<l}--min 1,
Hence for the fixed step length a min{1, 5- } in rule (ii),

(3.8) f((1 )u + aG(F(u))) f(u) <_ (f(u) g(F(u)))(-0(’72)).

Obviously (3.8) is also true for the step length a argminae[0,1]/((1- a)u +
G(F(u))) in rule (i), since the perfect line search should not make the first term
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of (3.8) any larger. According to the update scheme in Step 3, we have f(uTM) <_
f((1 oz,)u + ozvG(F(u’))). Therefore

(3.9) f(u+I) f(uv’) <_ (f(u") g(F(u’)))(-0(72)).

Similarly it follows from (2.8) that

(3.10) g(v") g((1 )v + F(G(v"))) <_ (:(G(v")) g(v"))(- + 722)

for all E [0, 1], which yields

(3.11) (v.) .(v+) <_ (f(G(v.)) (v)) (-0(v-)).

Combining (3.9) and (3.11), we get
(3.12)
f(u’) g(v’) f(u,+l) + g(vTM) > O(72)(f(u’) g(v’) g(F(u’)) + f(G(v’))).

With the th duality gap and the th auxiliary duality gap g defined as

(3.13) e. :- f(u’) -g(v’) and g, := f(G(v’))- g(F(u’)),

respectively, (3.12) can be written in the form

or, equivalently,

(3.14)

If update scheme (2) is used in Step 3 of the algorithm, then f(u’+1) < f(C(v"))
and g(v’+1) > g(F(uv)). Hence e+l < g. Therefore (3.14) implies

Er,q--1

__
(1 0(72)), 0(72)a,+1,

from which (3.5) follows. Using (3.5) for 0, 1,..., we get

f(u,+l) g(V+1) __< (11+0(72))--0(72) ,+i

(:(uO) g(vO)),

which yields (3.6) by Proposition 2.1.
If update scheme (1) is used in Step 3 of the algorithm, then the relation a+ <_ gv

is not necessarily true. However, by Theorem 1.2,

f(u)>_f()-g()>_g(v) for all ueU, veV.

Hence it follows from (3.9) and (3.11) that

f(uv’+l)- f(uv) <_ (f(v)- f(,))
(:") (:"+ <_ (() (v")) (--0(’)).
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These two inequalities yield (3.2) and (3.3), respectively. Moreover, observe that
g > 0. Hence by (3.14), we have

f(u+) .(v+) < ( o()) (f(u) ()).

Using (3.15) for u 0, 1,..., we get

f(u+) g(vv+l) _< (1 0(’)’2)) r’+l (f(u) g(v)),

which yields (3.4) by Proposition 2.1. [:1

Next we give convergence results for the algorithm with adaptive step lengths
(iii). We must show, in the first place, that these step lengths are well defined. Let
the function t" [0, +cxz) --, (0, 1) be defined as

(3.16) {1 1}t(s) min ’ss

Obviously 0(s) > t(s) for all s E [0, +cxz), and the equality holds when s >_ 5.
THEOREM 3.2. (Convergence of PDSD with step length rule (iii)).

(a) For any choice of 5 E (0, 1), the step lengths a and in the PDSD algorithm
with rule (iii) are well defined. Both a and % are nonincreasing as u increases, and

(3.17) a > 6 min 1, and /3>Smin 1,2
for all u. Moreover, both au and u will be fixed after a finite number of iterations.

(b) The sequences {f(uu)} and {g(vU)} generated by PDSD-I(iii) converge linearly
to the common optimal value f(t)--g() in the sense that

f(uu+l) f() <_ (1 5(.y2))(f(uu) f()),
g() g(vu+l) <_ (1 (.),2))(g() g(VU)).

Moreover,

(3.20) -4-IIv’+1 l] < 2(1 tSt(72)) ’+1 (f(uO) g(uO)).

(c) The sequences {f(u)} and {g(v)} generated by PDSD-2(iii) converge linearly
to the common optimal value f(t)= g(9) in the sense that

(3.21) f(u’+I) g(v’.’+) <
1

1 + (f(u)

Moreover,

(3.22) . + (f(uO) g(uO)).

Proof. First, we claim that for all nonnegative a _< min{1, -},

(3.23) f(( )u + cG(F(u))) f(u) <_ (f(u) g(F(u)))(-).
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This follows directly from (2.7) and the fact that

-c+7<---- for all0<<min 1

Hence the step length c -15 in rule (iii), where j is the first element in the
ordered nonnegative integer set {0, 1, 2,...} satisfying

f((1 _lbYlu + (_bJa(F(u))) f(u) <_ (f(u) g(F(u)))(-_bJ),
is well defined. Obviously (a) is nonincreasing.

According to the claim and the step rule, we have either a a_ or c_ 6J- >
min{ 1, } with j >_ 1, because otherwise cu_15J- instead of c_15J will be taken
as the step length c. Suppose c_ > i min{1, 5-}" Then in either ease,

a=a_tiJ >bmin 1,
Note that O/--1 1 > 5. This proves the first inequality in (3.17) by induction. The
second inequality in (3.17) regarding can be proved similarly, and the last conclusion
in part (a) is now obvious.

Combining (3.24) and (3.25), we have

f((1 a,)u + aa(F(u))) f(u) <_ (f(u) g(F(u))) min 1,-2
Therefore, by observing f(u+i) <_ f((1- c,)u + aG(F(u))) in the updating, we
get

(3.26) <_

Similarly, we have

(3.27) g(v’) g(v’+1)

_
(f(G(v,)) g(v)) (-50(,.)).

Now (3.26) and (3.27) lead to the conclusions in (b) and (c) in the same manner as
(3.9) and (3.11) lead to the conclusions in Theorem 3.1.

Theorems 3.1 and 3.2 provide global linear convergence results for all the variants
of the PDSD algorithm formulated in 2 without any additional assumptions. The
parameter 9" IIQ-1/2Rp-/211 of the problem plays an important role in the esti-
mations regarding the rates of convergence of the algorithm. It also characterizes the
Lipschitzian constant for the mappings F and G in Proposition 2.2. In fact, 9’ can be
viewed as a normalized measure of the "coupling" between the primal and dual vari-
ables of the problem. In the extremal case when 9’ 0 (which implies R 0), we have
F(u) for all u and G(v) fi for all v. Hence the algorithm will terminate in one
iteration. On the other hand, a large 7 implies a di]flcult problem for the algorithm.

It follows from Theorem 3.1 that for problems with large 9’, the duality gap
e f(u) -g(v) of the iterates generated by PDSD-I(i) or PDSD-I(ii) decreases
at least with the ratio

(3.28) 1 0(9’2) 1
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while the one generated by PDSD-2(i) or PDSD-2(ii) decreases at least with the ratio

1 -/(72) 1
(3.29) 1- 1

1 + 0(72) 272.

These are much improved estimates compared with the earlier results in [1, Thm. 4.2]
with an asymptotic ratio

1-
1

1
1

4(7 + 1)4 + 5( + 1) + 2( + 1) 4s

under the critical face conditions. However if the iterates eventually reach the corre-
sponding critical faces, [1, Thm. 4.2] still gives a better asymptotic ratio

1 )2 1
1-

0.5(72 + 1)+0.5
1

0.2572
(for large7

under the perfect line search. This is consistent with the observation that the algo-
rithm with perfect line search often gives better progress per step towards the end of
iteration than other line search rules in our numerical tests.

The fixed step length in rule (ii) is related to the parameter 7 of the problem,
which is usually unavailable. According to Theorem 3.2, the convergence ratios in
Theorem 3.1 for problems with 72 _> could be approached with the adaptive step
lengths in rule (iii). Moreover, these step lengths will eventually be fixed after a
finite number of iterations. Comparing the estimations in Theorem 3.2 with the ones
in Theorem 3.1, one may get the impression that a choice of 5 close to 1 would
eventually give better ratios per step. But such a choice will, at the same time,
increase the number of trims in identifying the proper step length. Hence in the
practical implementation of rule (iii), one must compromise between these two ends.
Besides that, one can also start the trial of j there with some negative integer instead
of 0. Then the step length would be allowed to increase if a larger progress in the line
search is possible.

4. Numerical test results and other update schemes. Although the esti-
mated rates for PDSD-2 are better than the ones for PDSD-1, we find in our numerical
tests that their practical performances are actually very close. As a comparison, we
ran PDSD-I(i) and PDSD-2(i) on the transverse family of the test problems 0.4-9.4
used in [1], where both the primal and the dual dimensions were 5140. The stopping
criterion in the optimality test for the practical implementation of the algorithm is

(4.1) min{ f(u), f(G(v)) } max{ g(v),g(F(u)) } <_ ,
where e > 0 is a prespecified threshold for the duality gap. The results in terms
of CPU times, as well as numbers of iterations, are given in Table 1. For instance,
45(8/6) in the iterations column of PDSD-2(i) for Problem 0.4 means that the algo-
rithm terminates successfully in 45 iterations, with 8 interactive primal restarts, and
6 interactive dual restarts during the process. (The tests were run on a DECstation
3100 with double precision, where the software had been updated since the test in [1].)

We also tried the algorithm without the primal-dual feedback in the update, i.e.,
take

lt+l :-- +1 and v+l : +1
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directly in the updating of Step 3. Then the algorithm will generate two unrelated
sequences in primal and dual variables, respectively, until the stopping criterion (4.1)
on the duality gap is satisfied. We refer to this extra version for test purposes as
PDSD-0. (In the case of perfect line search, it can be proved by using [1, Prop. 5.1]
that the dual part of this extra version reduces to a special case of the finite gen-
eration algorithm [2].) The corresponding results are shown in the columns headed
PDSD-0(i). The notation ** in these columns signifies that the algorithm failed to
meet the termination criterion in 100 iterations, in which case the figure for CPU time
is preceded by * since it only indicates the time of the first 100 iterations. The test
results show clearly the importance of the primal-dual feedback. Both PDSD-I(i) and
PDSD-2(i) perform much better than PDSD-0(i).

TABLE 1

Test results on problems 0.4-9.4 [1].

CPU time (sec.) Iterations

Prb. Size PDSD-I(i) -2(i) -0(i) PDSD-I(i) -2(i) -0(i)
0.4

1.4

2.4

3.4

4.4

5.4

6.4

7.4

8.4

9.4

5140

5140

5140

5140

5140

5140

5140

5140

5140

5140

110 141 *337
183 172 *356
147 224 "341
35 42 212

72 72 *346
51 66 178

62 74 82

64 72 92

189 180 "341
62 65 110

32(7/6) 45(8/6) **
52(4/6) 50(3/6) **
42(8/4) 67(10/3) **
9(4/4) 13(3/3) 68

19(7/4) 22(6/4) **
a(6/4) 20(7/2) 52

16(5/7) 23(7/7) 24

lS(8/3) 22(6/3) 28

55(5/5) 54(3/4) **
17(6/7) 20(4/1) 35

There are other possible variants for the algorithm. Notice that the iteration of
PDSD-2(i) can be written as

Uu-I-1 ": argmin{ f(u) lu e [u’, G(F(u))] or

Vu-t-1 :----- argmax{ g(v) lv e [v’, F(G(v’))] or

This suggests a third update scheme with four perfect line searches in each iteration:

(4.2) u+1 := argmin{ f(u) lu e [u,G(F(u))] or

(4.3) Vu-t-1 argmax{ 9(v) v e [v’,F(c(v))] or

u e [G(v’), G(F(G(v’)))] },
v e [F(u’),F(G(F(u’)))] }.

Obviously, it should converge at least as fast as PDSD-2(i).
Recall that the intermediate points resulted from line searches on [u, G(F(u’))]

and [v’,F(G(v’))] are denoted by + and +1, respectively. Let + and +
be the corresponding line search results in primal and dual on [G(v), G(F(G(v’)))]
and [F(u), F(G(F(u’)))], respectively. With reasoning similar to the one leading to
(3.8), we are able to get

(4.4)
(4.5)
(4.6)
(4.7)

f(u,) f(?+l)

_
(f(u,) g(F(W,)))O(,,/2),

g(e’+) g(u’) > (f(G(v’)) g(v’))e(,),
f(G(v,)) f(+i) _> (f(G(v,)) g(F(G(v,))))9(9/2),
g(’+) g(F(v’)) >_ (f(G(F(u’))) g(F(u’)))t().
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Now (4.4) and (4.5) yield

(4.8) f(+) .(-+) <_( o(-/))(f(-)
o(,.)/2) (f(G(v’))

while (4.5) and (4.6) yield

f(e+) g(.+) <( o(.)) (:(G(v.)) g(F(u)))
O(’)(f(G(F(u"))) g(F(G(v")))).

Eliminating the term f(G(vv)) g(F(u")) in (4.8) and (4.9), we get

(4.10) (1 0(2))(f(+l) g(O+l)) + 0(.)(f(fiv+l) g(Ov+))
<_ (1 O(2))2(f(u") g(v)) O(2)(f(G(F(u))) g(F(G(v)))).

According to the update scheme, the duality gap E+I should be no larger than either
f(v+i)_ g()+l) or f("+l)- g("+) or f(G(F(u)))- g(F(G(v))). Hence we
obtain an estimate

E+< (1 0(/2)) 2- 1 + (0(2)) 2

from (4.10) for the third update scheme in (4.2) and (4.3). For problems with large ,
this is a slightly better result compared with (3.5) for PDSD-2(i) at the cost of two
additional line searches.
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A POSITIVE ALGORITHM FOR THE NONLINEAR
COMPLEMENTARITY PROBLEM*

RENATO D. C. MONTEIROt, JONG-SHI PANGS:, AND TAO WANG$

Abstract. In this paper, the authors describe and establish the convergence of a new iterative
method for solving the (nonmonotone) nonlinear complementarity problem (NCP). The method uti-
lizes ideas from two distinct approaches for solving this problem and combines them into one unified
framework. One of these is the infeasible-interior-point approach that computes an approximate
solution to the NCP by staying in the interior of the nonnegative orthant; the other approach is
typified by the NE/SQP method which is based on a generalized Gauss-Newton scheme applied to
a constrained nonsmooth-equations formulation of the complementarity problem. The new method,
called a positive algorithm for the NCP, generates a sequence of positive vectors by solving a sequence
of linear equations (as in a typical interior-point method) whose solutions (if nonzero) provide descent
directions for a certain merit function that is derived from the NE/SQP iteration function modified
for use in an interior-point context.

Key words, complementarity problems, interior-point methods, nonsmooth equations
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1. Introduction. The idea of solving complementarity problems by staying in
the interior of the feasible region can be traced to a paper published in 1980 by
McLinden [18]. Although no explicit algorithm was formulated, the idea of tracing an
interior path as a possible solution procedure was quite evident in this paper and the
existence of the "central path" was demonstrated in the case of a complementarity
problem with a maximal monotone multifunction. Unfortunately, this paper was not
widely known. Of course, McLinden’s idea is central to many of today’s interior-point
methods for solving a wide variety of mathematical programming problems.

In recent years, interior-point methods for solving complementarity problems have
been the subject of many studies [4], [6]-[14], [19], [20], [26], [28], [31]-[35]. Among
these, the monograph [9] presents a unified treatment of the original family of (feasible)
interior-point methods for the linear complementarity problem (LCP) that requires all
iterates to be strictly feasible; this volume also contains an extensive list of references
for the interior-point methods up to the year 1990.

A proposal by Lustig [16] and the subsequent computational study [17] have led
researchers to investigate the family of infeasible interior-point methods. The main
feature of these methods for solving a complementarity problem is that the iterates
are positive vectors, albeit not necessarily feasible to the problem, and have some
desirable limiting properties. There are many papers dealing with these methods for
solving linear programs; for the linear complementarity problem, we mention [31] and
[34]. Most recently, the paper by Kojima, Noma, and Yoshise [15] presents a wide class
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of infeasible interior point methods for solving a monotone nonlinear complementarity
problem (NCP).

Inclusive of the early work of McLinden, all interior-point methods for solving
complementarity problems to date have invariably relied on a certain monotonicity
assumption (or more generally, a P0-property) see [8], [9], [15] and [i, 5.9]. This fact
helps to explain why the interior-point methods proposed so far for solving nonlinear
programs are restricted to the class of linearly constrained convex programs [21]-[23].
In essence, such a monotonicity assumption (or P0-property) is needed to ensure the
nonsingularity of a key matrix that is used to define the main computational step
of the methods. The major objective of this paper is to propose an interior-point
method for solving a general, nonmonotone NCP. In a subsequent paper, we study
the specialization of this method to the Karush-Kuhn-Tucker optimality conditions
of a general nonlinear program formulated as a mixed NCP.

Our proposed method is an infeasible interior-point potential reduction algorithm;
it involves two major ideas. One is to maintain the positivity of the iterates while a
certain merit function is being decreased; this joint task is accomplished by means of
the modified Armijo technique described in [22]. The other idea is to make use of the
iteration function in the recent NE/SQP method [2], [27] to define a suitable merit
function. The resulting algorithm does not rely on any monotonicity assumption of
the problem. Instead, a key condition, called s-regularity, plays an important role in
the convergence analysis.

This interior-point method, which we call a positive algorithm for the NCP to sig-
nify that the iterates are positive vectors but not necessarily feasible to the problem,
consists of solving a sequence of linear equations each defined by a symmetric positive
definite matrix; the unique solutions of these equations, if nonzero, provide descent
directions for a special logarithmic merit function, which is a combination of the
NE/SQP iteration function and the positivity conditions. The NE/SQP method also
maintains the nonnegativity of the iterates; but it does so by imposing this require-
ment as constraints in the direction-finding subproblems that are then either (convex)
quadratic [27] or linear programs [2]. Consequently, the positive algorithm may be
considered as providing an interior-point approach to alleviate the direction-finding
task in the NE/SQP method.

2. Preliminaries. Given a function f" Rn Rn, which is assumed to be con-
tinuously differentiable in an open set containing R the nonlinear complementarity+
problem, denoted NCP (f), is to find a vector x Rn such that

x>_O, f(x) >_O, xTf(x)-O.
The reader is referred to [5] for a comprehensive review of the theory and applications
of this problem. In [27], the NE/SQP method was proposed as a solution procedure
for this problem. Clearly, the NCP (f) is equivalent to the following nonnegatively
constrained system of nonsmooth equations:

(1) H(x) :: min(x, f(x)) O, x >_ O,

where min denotes the componentwise minimum of two vectors. The NE/SQP method
generates a sequence of nonnegative iterates by successively solving a sequence of
nonnegatively constrained least-squares subproblems whose solutions provide descent
directions for the merit function

O(x) H(x)TH(x).
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Exploiting the idea of staying in the positive orthant, we describe an iterative al-
gorithm for solving the NCP (f) in which each direction-finding step requires the
solution of a single system of linear equations.

It would be useful to summarize the key properties of the norm function 0. Clearly,
0 is nonnegative; its zeros are precisely the solutions of the NCP (f). The function 0 is
generally not Frchet differentiable at an arbitrary vector, but it has a strong Frchet
derivative at all its zeros [25, Prop. 1]. Moreover, 0 is directionally differentiable
everywhere with the directional derivative at a vector x along the direction d given
by [24]

O’(x,d)= E xidi+ E ximin(di,Vfi(x)Td)+ E fi(x)Vfi(x)Td"

Motivated by this expression, we define three fundamental index sets associated with
an arbitrary vector z E Rn"

{i: < {i: {i: >
For notational convenience, we let Jl(z) Ix(z) U Ie(z). We note immediately that
if x Rn is nonnegative, then for all vectors d Rn,

O’(x, d) <_ E xidi + E fi(x)Vfi(x)Td"
iJi(x) ielf(x

This inequality is the key to the descent step in the algorithm to be described later.
To write the inequality in a more compact form, we define the n x n matrix A(x)
whose ith column is given by

e ifieJf(x),
A(x)i-

Vf(x) if/

where e is the ith coordinate vector. In terms of this matrix, the above inequality
becomes

O’(x, d) <_ H(x)TA(x)Td.
It is important to note that the directional derivative O(x, d) is generally not a

continuous function in x for a fixed but arbitrary d and neither is the matrix-valued
function A(x). However, the next result gives an important generalization of the
inequality (2). A variant of this result can be found in [27, Lem. 4]. For the sake of
completeness, we give a simpler and more direct proof of this result here.

PROPOSITION 2.1 Let x* Rn be arbitrary. Then for any sequence {xk} c++
R+ converging to x* and any sequence {hk} C_ Rn\{O) converging to O, there holds

(3) limsup
O(xk W hk) O(xk) H(xk)TA(xk)Thk < O.

k-oo [[hk[[

Proof. For each i 1,..., n, let

1 1 2(xk Hi(xk)[A(xk)i]ThkAHi(xk, hk) =-- -H2i (xk + hk) -H
1 hk 1Afi(xk,hk) =_ -f(xk + )-- -f(Xk) fi(xk)Vfi(xk)Thk,
1 1

xi h=_ + -
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We claim that for all k sufficiently large,

(4) AHi(xt, ht) < max(Afi(xk, ht:)

Indeed, there are three cases to consider: whether i e I(x*), e Ix(x*), or E Ie(x*).
Assume first that i If(x*), that is fi(x*) < x. Using the fact that both sequences
{x} and {xk + ha} converge to x* and a simple continuity argument, we obtain

k kk and fi(xk + ha) ( x -F h for all k sufficiently large. Using the definitionf (x <
of the functions g(.) and g(.), we then obtain

AHi(xa, hk) Afi(xa, ha);

hence (4) holds. For the case in which e Ix(x*), that is fi (x*) > x, we can similarly
show that

AHi(xk, hk) Axi(xk, ha);

so (4) also holds. Consider now the case in which i e I(x*), that is fi(x*) x > O.
k kThen, for all k sufficiently large, we have fi(xa + ha) > 0 and xi + h > 0. This

implies that

H(xa + hk) min{f(xk + ha), (xk + hk)2}.

Using this relation and considering whether e If(xa) or i e J(xa), we can easily
verify that (4) holds. We can now complete the proof of (3). Indeed, using (4) we
obtain that

Since

limsup
AHi(xk’ ha) < 0 Vi 1,...,n.

k- Ilhall

n

O(xk + ha)- O(Xk) H(xk)TA(xk)Thk Z AHi(xk’hk)’
i---1

relation (3) follows. El

3. Some important functions. The merit function to be used in the algorithm
is defined as follows. Let c > 0 and > n be given scalars. Define

and let

{x e R 0}++ O(x) >

n

c(X) c log O(x) -F log(0(x) -}- eTx) log xi
i--1

Vx E

where e is the vector of all ones. The scalar c is a penalty parameter that will be
changed in the algorithm if it is deemed to be too small; unlike c, is fixed throughout.
The third term in the function c is the logarithmic barrier function to prevent the
iterates from reaching the boundary of the nonnegative orthant. The middle term is
used to balance the third term; this is analogous to the potential function introduced in

[30] for linear programs that have been used extensively in many primal-dual interior-
point methods; see also [15] for a related merit function.



A POSITIVE ALGORITHM FOR THE NCP 133

Clearly, we have

log O(x) + ( n)log(0(x) + eTx) Vx e

n

c(x)

_
(c + if) log O(x) E log xi

i--1

VxE.

These inequalities have two important implications that we summarize in the result
below.

PROPOSITION 3.1. For a fixed c > O, the following statements hold:
(a) if {xk } C_ f and limk-o c(xk) --oc, then limk_.o O(xk) 0;
(b) for any a > 0 and t E R, there exist constants a > 0 and b > 0 such that

n[xER++,c(x)<_t, 0(x)>_a] a <_ xi <_ b Vi l,...,n.

The function c is directionally differentiable everywhere with the directional
derivative at the vector x along the direction d Rn given by

c
O’(xd)+

n

(O’(x, d) +O(x) + ex i=l xi

Recalling the inequality (2), we define the forcing function

z(x,d) H(x)TA(x)Td +
n

(A(x)H(x) + e)Td- E d-A
O(X) J- eTx

i=l Xi

whose role in the algorithm will become obvious momentarily. Clearly, by (2), we
have

X(5) c( d) <_ Zc(X, d)

for all x R_+ with O(x) > 0 and all d R. Consequently, given such a vector
x, if we can find a vector d such that zc(x, d) < 0, then d is a descent direction for
the function at x. To generate such a direction, we consider the system of linear
equations

(6) (A(x)A(x)T + X-2)d + w(x) O,

where

wc(x) (x) A(x)H(x) + (A(x)H(x) + e) x-1
(x) + ex

with X being the diagonal matrix with xi’s on the diagonal and x-1 being the vector
whose ith component is equal to 1/xi. The system of linear equations (6) is equivalent
to the least-squares problem

minimize (llA(x)Tdll2 + IIX-dll) + zc(x,d),

where the minimization is over all vectors d Rn with the vector x fixed.
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Noting that the matrix

(7) M(x) A(x)A(x)T + Z-2

is symmetric positive definite, we let dx be the unique solution of (6). Then we have

zc(x, dx) -(IIA(x)TdxlI22 + IIX-ldll) <_ 0;

moreover, zc(x, dx) < 0 if and only if wc(x) O. Consequently, if wc(x) 0, then
dx is a descent direction for the function at the point x. Nevertheless, if Wc(X) is
equal to zero, then d 0 and we need to generate an alternate direction. In this
case, we double the penalty constant c (actually, any scaling exceeding 1 suffices) and
solve another system of the form (6) with the modified c.

With a (nonzero) descent direction dx successfully computed, we then perform a
line search starting at x with the objective of decreasing the merit function c by a
sufficient amount while preserving the positivity of the next iterate. Details of such a
line search step can be found in [22]. The main procedure is then repeated with the
new iterate replacing the old one if termination with regard to a prescribed rule still
has not occurred.

We close this section with an immediate consequence of Proposition 2.1.
PROPOSITION 3 2 Let x* E be arbitrary. Then for any sequence {xk} c Rn

converging to x*, any sequence {dk} with {(Zk)-ldk} bounded, and any sequence
{/k } of positive scalars converging to zero, there holds

(8) limsup
c(Xk + Akdk) -Pc(x)- AkZc(xk’d) < O.

k-* "k
k k k k/Xki)Proof. Since {(Xk)-ldk} is bounded, {/kk} -- 0 and x +Akd x (l+)kd

it follows that xk + kdk is positive for all k sufficiently large. Using the fact that

log(1 + s) s + o(s), where lim o(s___) O,
8--0 8

we obtain that for each 1,..., n,

lim
lg(xk + )kdki) --lgxi

lim
log(1 + ,kkdk/xk) )kdk/Xk

Using this limit, Proposition 2.1 and the definition of c(’), we can now easily derive
(8). 0

4. The positive algorithm. Summarizing the ideas outlined in the previous
section, we now present the details of the long awaited algorithm for solving the NCP
(f), where f is an arbitrary continuously differentiable function.

Step O. (Initialization) Let > n, 6 > 0, and a, a, p E (0, 1) be given constants.
Choose a scalar co > 0 and a vector x > 0 arbitrarily. Set k 0.

Step 1. (Direction generation) Compute wk wc (xk). If liTk II <-- 6, set

Ck+l 2Ck and Xk+l Xk.

Replace k by k + 1 and return to the beginning of this step. If Ilwkll > 6, let dk be
the unique solution to the system of linear equations:

(9) M(xk)d + wk O.



A POSITIVE ALGORITHM FOR THE NCP 135

Step 2. (Armijo line search) Determine the maximum stepsize

T --sUp{T" Xk -I-Tdk
_

0}

and let

o’r if T <
k > 1/lldkll if Tk

Let mk be the smallest nonnegative integer m such that

(10)

Set

c (xk + kpmdk) c (xk) < akpmzc (x, d).

C+I=Ck and xk+l xk + -kp"d.
Step 3. (Termination check) If x+1 fails a termination check (for example, if

O(xk+l) > e for a prescribed tolerance e > 0), return to step 1 with k replaced by
k+l.

We make several remarks about the above algorithm. First, the use of the scalar
5 to guard against a zero vector wc (xk) is an extension of the discussion in the last
section. As we shall see from the convergence analysis in 5, it is not enough to just
check whether the vector Wc (xk) is zero or not; we actually need to ensure that this
vector is not too small in norm for the direction dk to be useful. Second, the maximum
stepsize T nd the scalar a (0, 1) together will ensure that the next iterate xk+

remains a positive vector. Finally, a standard argument in an Armijo line search and
the inequality (5) will ensure that the integer mk cn be determined in a finite number
of trils; this proof is omitted. Moreover, in ce m 1, we must have

(11) c (xk + kPm-dk) c (xk) akPm- (xk, dk)Zc

by the definition of mk.
It would be useful to compare the positive algorithm with the framework proposed

in [15] for solving the NCP (f). For this purpose, we consider this problem being
defined by the following conditions:

u- 0,

(13) x_O,

(14) y >_ 0,

(15) xTy--O.

The positive algorithm generates a sequence of iterates {x }, which induces a corre-
sponding sequence {yk} via the relation y f(xk) for all k. Hence, the combined
sequence {(xk,yk)} satisfies the conditions (12) and (13) but not necessarily (14) or

(15); in fact, the latter two conditions are the goal of the positive algorithm. On
the other hand, the methods described in [15] generate a sequence {(xk, yk)} that
satisfies (13) and (14) but not necessarily (12) or (!5), which is the goal of these other
infeasible interior-point methods for solving the NCP (f).
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5. Convergence analysis. In this section, we analyze the limiting properties
of an infinite sequence (xk} generated by the positive algorithm. By the infinite
nature of this sequence, we have (xk) > 0 for all k. We divide the analysis into two
cases, depending on whether the penalty constant Ck is updated infinitely often or
only finitely many times. We first take up the latter case.

Finite update of c. The next result analyzes the case in which Ilwkll > 5 for all
indices k sufficiently large.

THEOREM 5.1. Suppose that the penalty sequence {Ck} is updated finitely many
times in the positive algorithm. Then,

(16) lim 0(xk) 0.

Consequently, every accumulation point of {xk}, if it exists, must be a solution of the
NCP (f).

Proof. Since {ck} is updated finitely many times, there exists an index k0 > 0
and a constant c > 0 such that ck c for all k >_ k0. Assume by contradiction that
(16) does not hold. Then there exist a constant > 0 and a subsequence
such that K c_ {ko, ko + 1,...} and

(17) inf O(xk) >_ .
k6/C

Inequality (10) and the fact that zc(x,d) < 0, for all k > ko, imply that
k > k0} is decreasing. Moreover, (17) and Proposition 3.1(a) imply that {c(x
k 6 K:} is bounded below. Hence, this sequence converges and, by (10), we have

(8) lim kpmz(xk, d) O.

We next show that

inf
zc (xk’ dk)l > O.(19)

Indeed, we know that {x}keC C {x R (x) < t 0(x) > }, where t =_ (xk)++
By Proposition 3.1(b), {xk}ketC is bounded and for all k ],

>a, i=1,.., n(20)

for some constant a > 0. Using this fact, we can easily show that

(21) IIM(xk)ll IIM(xk)-lll < T Vk e 1C

for some constant T > 0. Hence, using the fact that IIw(xa)ll > 5, we obtain that for
all k 6 K:,

]Zc(Xk, dk)l IWc(Xk)Tdk IIW(xk)TM(xk)-W(Xk)II
Ildkll Ildkll IIM(x)-xw(x)ll

IlM(xk)ll-lllw(xk)ll 2 II(xk)ll

Hence, (19) holds. Combining (18) and (19), we obtain

(22) lim ttdkll o,
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We next show that

(23) inf ’k dk > O.

Indeed, if k E E is such that T o, then

-klldkll >_ 1

by the definition of k. On the other hand, if Tk < cx, then using (20) and the fact
that xk + Tdk has some component equal to zero, we can easily deduce that

(24) Tlldkll >_ a.

Consequently, (23) holds since k aT for all k _> 0. Combining (22) and (23), we
obtain limk(ec)--, pm O. Hence, mk

_
1 for all k E K: sufficiently large. Since

{xk}kiE is bounded, we may take K:’ c K: such that limk(ec,)_o x x* Rn
++

and mk _> 1 for all k KT. By (11), we obtain

zc(xk,dk)

or equivalently,

(25) c(xk + AkP) c(Xk) )kWc(Xt)Tpk > --(1 a) Zc(Xt’ dk) > (1 a)6
,kt [[dk[[ T

where Ak =-- -Pm-lldll and pk =_ d/lldll" Note that relation (22) implies that

limk(e:)--,o Ak 0. Also, it is easy to verify that {(Xk)-lpk} is bounded. Hence, by
Proposition 3.2, we know that the limsup of the left-hand side of (25) is nonpositive
and this violates (25). We have thus obtained a contradiction and therefore (16) must
hold.

We point out that other choices for the matrix M(x) used in the computation of
the search direction are possible. In addition to the symmetry and positive definiteness
of M(x), all that is required is that the condition number cond(M(x)) of the matrix
M(x), defined as

cond(M(x))- IIM(x)ll IIM(x)-ll,

be uniformly bounded on any compact subset of R_+; cf. (21). The above convergence
proof of Theorem 5.1 (and thus the limit (16)) remains valid under this condition.
Note that this condition is much weaker than the requirement that cond(M(x)) be
uniformly bounded on the whole Rn Our choice of M(x) in (7) satisfies the first++.
condition but not the latter one.

It is important to point out that Theorem 5.1 is established under absolutely no
assumption on the function f other than its continuous differentiability. Note also
that the theorem does not require the boundedness of the sequence {xk}; indeed,
as the following example shows, this sequence may be unbounded if no restriction is
imposed on the function f.

Example. Let

(x) e-, x e R.
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For x > 0 sufficiently large, it is easy to obtain the functions H and we as follows:

S(x) e-x and

we(x) -2c+ 1-e-x
x_.e_2x X

Note that lim_, w(x) -2c; hence, provided that 2c > 5, we must have Iwc(x)[ >
5 for x > 0 sufficiently large. Consequently, corresponding to such an x, the search
direction at x is

-v(x)
dx e_2X + x-2 > > 0

e-2x -t- x-2

Thus, if we initiate the positive algorithm with x sufficiently large and the constant
co > 5/2, the algorithm will generate an increasing sequence {xk} with Ck remaining
constant. This sequence cannot be bounded for otherwise its limit point would be
a strictly positive solution of the NCP (f); but the only solution to the NCP (f) is

Boundedness of iterates. The above example is not surprising because generally,
if the NCP (f) has no solution, then although the limiting value of the sequence
{0(xk)} is zero, the sequence of iterates {xk} must be unbounded. Consequently,
some conditions on f must be needed for the latter sequence to be bounded. The
following discussion pertains to this boundedness issue of {xk }.

We recall some properties of a vector-valued mapping. A mapping F Rn -- Rnis norm-coercive on a set X C Rn if

lim IIF(x) II-

F is coercive on X in the Hadamard sense if

lim IIx * F(x)

where a, b denotes the Hadamard product of two vectors a, b E Rn, i.e., (a, b)i aibi
for all i. It is easy to see that a mapping F is norm-coercive on X if and only if for
all t _> 0, the level set

(x e x IIF(x)ll

_
t}

is bounded; moreover, coercivity in the Hadamard sense implies norm-coercivity. Ex-
amples of mappings that are coercive on Rn in the Hadamard sense include the/

strongly copositive mappings and the uniform P-functions. The former are those
mappings F for which there exists a constant "1 > 0 such that

max xiFi(x) > for all x e Rn
(i(n "

and the latter are those mappings F for which there exists a constant "2 > 0 such
that

max (xi- yi)(Fi(x)- Fi(y)) >  211x- yl12 for all x, y e R.
l<i<n

Given a mapping F Rn --, R, a principal subfunction of F is defined as follows.
For an arbitrary index set ( C_ { 1,..., n} with cardinality k and complement and an
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arbitrary vector a Rn-k, the function G" Rk Rk defined by G(x) Fa(x, a)
is a k-dimensional principal subfunction of F.

COROLLARY 5.2. Suppose that the penalty parameter ck is updated finitely many
times in the positive algorithm. Then the sequence {xk} is bounded under any one of
the following conditions:

(a) there exists a scalar t > 0 such that the level set

Lt := fxeRn 0(x) < t}++

is bounded;
(b) f is (globally) Lipschitzian on Rn and every k-dimensional principal subfunc-+

Rn-ktion fa(" a) of f is norm-coercive on R for every fixed vector a E +
(c) f is (globally) Lipschitzian and coercive in the gadamard sense on R_.
Proof. By Theorem 5.1, the sequence {0(xk)} converges to zero. Hence, for all

k sufficiently large, xk is contained in the level set Lt. Consequently, (a) implies the
boundedness of {zk}. By the proof of [24, Lem. 4], it follows that (b) implies (a).
Finally, we show that (c) implies (b). But this is an easy. consequence of the identity

a, I,(x.. I,(a.. + a, a,) a,))

and the Lipschitzian property of f, which implies that

limsup Ilae (f (xa, as)- f (aa, ae))l <

Thus, by the coercivity of f on R_ in the Hadamard sense, it follows that the principal
subfunction fa(.,a) must be coercive on R_ in the Hadamard sense. As a conse-
quence of an observation preceding this corollary, it follows that this subfunction is
norm-coercive on R. D

Our next result concerns the LCP that corresponds to the NCP (f) in which
f is an affine mapping. The proof of this result requires a fundamental continuity
property of the solution set of the LCP regarded as a multifunction of the constant
vector of the problem [1, Thm. 7.2.1]. To explain the latter property, consider the
LCP defined by the vector q Rn and matrix M Rnxn:

(26) x >_ O, q + Mx >_ O, xT(q + Mx) O.

We let SOLM(q) denote the (possibly empty) solution set of this problem. As a
multifunction in q, SOLM is locally upper Lipschitzian in the following sense: for a
fixed but arbitrary q, there exist a constant L > 0 and a neighborhood V of q such
that for all q V,

SOLM(q’) C_ SOLM(q) -b LIIq-

where B denotes the (closed) unit ball in Rn with the Euclidean norm. There are
two immediate consequences of this result: one is that if SOLM(qk) is nonempty for
a sequence of vectors {qk} converging to q, then SOLM(q) is nonempty; moreover, if
the latter solution set is bounded, then all solution sets SOLM(qI) with ql sufficiently
close to q are uniformly bounded; see [1].

COROLLARY 5.3. Suppose that the penalty parameter ck is updated finitely many
times when the positive algorithm is applied to the LCP (26). Then SOLM(q) must
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be nonempty. Moreover, if this solution set is bounded, then there exists a constant
L > 0 such that for all k sufficiently large,

d(xk, SOLM (q)) _< L’II min(xk, q +
where d(x, S) denotes the distance from the vector x to the set S; in particular, the
sequence {xk} is bounded.

Proof. Let yk min(xk, q / Mxk). Then Theorem 5.1 implies that the sequence
(yk} converges to zero. The definition of yk implies that the vector zk xk -yk E
SOLM(qk) where

qk q + Myk yk

which clearly converges to q. Hence, the desired conclusions follow easily from the
aforementioned consequences of the locally upper Lipschitzian property of the solution
set of an LCP. [3

Remark. The boundedness conclusion of the sequence {xk } in Corollary 5.3 does
not follow from Corollary 5.2. The reason is that the solution set SOLM(q) is equal
to the level set

{x Rn n
+ (x) < 0} { e R+’(x)= 0},

which is different from any of the sets Lt with t _> 0. Clearly, the polyhedrality nature
of the LCP has much to do with the validity of Corollary 5.3.

Infinite update of c. We return to the NCP (f) and analyze the other case of the
positive algorithm, namely, when Ilwck (xk)ll > 5 fails for infinitely many k. Our goal
here is to demonstrate that if x* is the limit of any subsequence {xk k } for
which

and if x* is an s-regular vector in the sense defined in [27], then x* solves the NCP
(f). For the sake of clarity, we review this concept in the definition below.

DEFINITION. A vector x >_ 0 is said to be s-regular if the following system of
linear inequalities has a solution in the variable d:

where

xi +di =0

fi(x) + Vfi(x)Td 0

xi+di >_0

fi(x) + Vfi(x)Td >_ 0

fo e () o (x),
o -(x),
fo e (),
o (x),

xi + di <_ 0 for Ie+(x),
fi(x) + Vfi(x)Td <_ 0 for e I+(x),

Z](x) {i. f(x) < > o),

+/-y(x) {i f,(x) < x 0),
Z$(x) {i f(x) x > o),

o (x) { f(x) o).

In [27, Prop. 3], a sufficient condition for a nonnegative vector x to be s-regular
was established in terms of certain matrix-theoretic properties of the Jacobian matrix
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Vf(x). We will postpone the discussion of this condition until the next subsection. In
what follows, we proceed to establish a convergence result that complements Theorem
5.1. Given a subset X c_ Rn and a point x E X, we recall the set of feasible directions
at x with respect to X"

(x, X) =_ {d e Rn 5 > 0such that x + ad e X for all a e [0, ] }.

LEMMA 5.4. Suppose that the penalty sequence {ck} is updated infinitely often
and that x* is the limit of a subsequence {xk k a} for which

]lwkll < 5 for all k a.

Then, the sequence {u k a}, where u =- A(x)U(x) has an accumulation point
and any accumulation point u of this sequence satisfies

(27) dTu >_ 0 Vd e (x*,R).

Proof. Since xk - x* and there is only a finite number of distinct index sets
If(xk), it is easy to see that the sequence {uk k } has an accumulation point.
Assume that u is one such accumulation point and let us show that (27) holds.
Indeed, let B {ilx > 0} and N =_ {ilx 0}. Noting that ’(x*, R_) {d e
R dN >_ 0}, we conclude that (27) is equivalent to the condition

(28) u 0, u >_ 0.

We now show that (28) holds. Indeed, using the assumption that Ilwkll <_ 5 for all
k a and the definition of w, we obtain

(29)

where

t
k - Vk

O(xk) (xk)-I
ak

<_
5t(__,xkj

for all k E a,
Ck

v
e(x) (e + u

ck (O(xk) / eTxk)
for all k.

Observe that the sequence vk 0 since ck oc Hence, from the fact that x ken

x > 0 and c c, and relation (29), we obtain that u limkeU 0.

Moreover, from (29) and the fact that XN 0, we obtain that Uv / Vv _> 0 for all
k e a sufficiently large. Hence,

+ > 0,
k

and the result follows. D
Observe that condition (27) can be viewed as a weak stationarity condition for

the point x*. If the accumulation point x* is nondegenerate; that is, it satisfies

x fi(x*) for all 1,..., n, then we can conclude that x* is a stationary point for
the function 0(x) as the following corollary states.

COROLLARY 5.5. Let the assumptions of Lemma 5.4 hold and assume further
that x* is nondegenerate. Then, we have

(30) 0’ (x*, d) >_ 0 for all d e JZ(x*, Rn+).
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Proof. Using the fact that x* is nondegenerate, we conclude that Ix(xk) Ix(x*)
and Ii(x) Is(x*) for all k sufficiently large. It is now straightforward to see that the
sequence {uk k E } converges and that its limit point u satisfies dTu 0 (x*, d)
for all d Rn. The result now follows from Lemma 5.4.

The above two results say nothing about x* being a solution of NCP (f) or,
equivalently, that x* satisfies 0(x*) 0. To conclude that x* is a solution of NCP
(f), we need to assume that x* is an s-regular vector. Before showing this fact, we
state a preliminary result that gives several conditions that are related to s-regularity.

LEMMA 5 6. Let x Rn be given and for all d Rn define
ming (d) =_ (x,d) f(x)Vf(x)Vd + min{f(x)Vf(x)Td, xd)

iell(x) iele(x)

+ Z xidi,

+
i() i() ()

Let gx (x,R) -- n be any homogeneous function of degree 1 (i.e., gx(Ad)
g(d), for all > 0 and d JZ(x,R)) satisfying

_max(d)<gx(d)<g (d) for alldeg(x,R),

and consider the following conditions on x:
(a) x is an s-regular vector;
(b) there exists a d e (x, R) such that

f/(x) [f/(x) + Vfi(x)Td] < 0 for all e Ii(x),
(31) max {xi[xi + di] f/(x)[f/(x) + Vf(x)Td]) < 0 for all e Ie(x),

x[ + d] < o ]o atZ e/(x);

(c) there exist scalar / > 0 and vector d e f(x, R) such that 7O(x) + gx(d) < 0;
(d) if (x) > 0 then there exists d e f(x,R) such that gx(d) < O.

Then, the following implications hold:

(a) ==v (b) (c) == (d).

Proof. The implication (a) (b) follows from the definition of s-regularity and
the fact that d ’(x, R_) if and only if di >_ 0 for all such that xi O. To show
the second implication, assume that (b) holds. Summing the relations in (31) over all
i 1,..., n, we obtain that

20(x) + gaX(d) _< 0,

which obviously implies (c) with 7-- 2. The equivalence of (c) and (d) can be easily
proved using the fact that gx is homogeneous of degree 1.

We are now ready to state the main result of this subsection.
THEOREM 5.7. Suppose that the penalty sequence {ck) is updated infinitely often.

If x* is the limit of a subsequence (xk k e to) for which

IIwll 6 or all k t
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and x* is s-regular, then O(x*) O.
Proof. Assume for contradiction that 0(x*) 0. Let u be an accumulation

point of the sequence (uk k E a} as defined in the statement of Lemma 5.4. Then, it
is easily seen that the function gx(d) =- dTu satisfies the assumptions of Lemma 5.6.
Hence, since x* is an s-regular vector and O(x*) O, it follows from Lemma 5.6(d)
that there exists a vector d (x*, R) such that dTu < O. Since this contradicts
Lemma 5.4, we must have O(x*) O.

The class of s-regular functions. We may combine Theorems 5.1 and 5.7 to give
a unifying convergence result for the positive algorithm. For this purpose, we define
the following class of functions.

DEFINITION. A function f" Rn --. R is said to be s-regular if every nonnegative+
vector is s-regular.

A function f with the property that Vf(x) is a P-matrix for all x >_ 0 must be
s-regular; in particular, any uniform P-function f on Rn (and hence, any strongly
monotone function) is s-regular. The proof of these observations hinges on the fol-
lowing result, which is a paraphrase of Proposition 3 in [27]. (The reader may want
to consult [1] for discussion of the various matrix classes involved here.)

PROPOSITION 5.8. Let x be a nonnegative vector. Suppose that (i) the principal
submatrix

(32) VI) f) (x)

is nonsingular, and (ii) the Schur complement of this matrix in

(33)

is an S-matrix.

-v &+ (x) -v f (x) v f (x)

(Here, the index sets are all evaluated at the given x.) Then x is an s-regular vector.
We observe that if x _> 0 is such that Vf(x) is a P-matrix, then conditions (i) and

(ii) of Proposition 5.8 are satisfied. Indeed, if Vf(x) is a P-matrix then the matrices

(32) and (33) are both P-matrices. In particular, (32) is nonsingular, showing that
condition (i) holds. Moreover, since the Schur complement of any principal submatrix
of a P-matrix is a P-matrix and since every P-matrix is an S-matrix, condition (ii)
follows.

An interesting example of an s-regular function that is neither P nor monotone
is the negative identity function. Indeed, if f(x) -x, then I+ (x) I(x) for
all x > 0. Consequently, any nonnegative vector is s-regular and f is an s-regular
function. More generally, if f is a function for which these two index sets are empty
for all nonnegative vectors and whose Jacobian matrix Vf(x) is nondegenerate for all
x >_ 0, then f must be s-regular.

The following theorem is immediate from the previous results.
THEOREM 5.9. If f is an s-regular function, then every accumulation point of a

sequence of iterates produced by the positive algorithm is a solution of the NCP (f).
A referee of this paper correctly points out that the above theorem does not pro-

vide conditions under which a sequence of iterates produced by the positive algorithm
will have at least one accumulation point. The difficulty with this deficiency of the



144 R.D. C. MONTEIRO, J.-S. PANG, AND T. WANG

theorem lies in the case where the scalar c is updated infinitely often; indeed, in the
present version of the algorithm, whenever ck is updated, we do not change the iterate
xk, and essentially, do nothing. It might be necessary to modify the algorithm to yield
a more desirable result.

If the function f has the property that the function 0 has bounded level sets,
then the only way for the sequence {xk} to have no accumulation point is that
limk(xk) cx. Although we cannot rule out this possibility when {ck} is
unbounded, it does seem rather unlikely to occur in practice. To substantiate this
statement, we have implemented the positive algorithm for solving a variety of comple-
mentarity problems. The results are reported in the next section. In all the numericM
tests we have conducted, the P-values at termination were consistently substantially
smaller than the %values at initiation, even in cases when the positive algorithm failed
to solve a particular problem.

6. Numerical results. We have carried out some numerical experiments with
the positive algorithm applied to two sets of complementarity problems: one experi-
ment consists of NCPs arising from various equilibrium models that are documented
in detail in [27]; the other is a set of randomly generated LCPs. For the first set of
NCPs, we also compared the positive algorithm with the NE/SQP method described
in [27] because the latter method was also based on the formulation (1) of the NCP
and was highly successful in terms of robustness and speed. Our experiments show
that the positive algorithm is faster than the NE/SQP method on the test problems
but less robust. The improved speed is not surprising since in calculating each search
direction, the positive algorithm solves only one system of linear equations whereas
the NE/SQP method solves a convex quadratic programming with lower bound con-

straints; indeed, the simplicity of the direction generation is the single most important
feature of the positive algorithm.

The positive algorithm was implemented in a FORTRAN-77 computer code and
the experiments were conducted on a SUN SPARCStation IPX with 16 megabytes of
memory and one CPU processor. Double precision arithmetic was employed in the
calculations. In each iteration, we solved the system of linear equations (9) for the
search direction by using the LU decomposition; the subroutines in [29] were used.
We terminated the algorithm when the 0-value was less than 10-12 The parameters
of the algorithm were set as follows:

n + 1, 5 10-6, a p 0.5, and c 0.95.

We set the initial penalty parameter co 103. The numerical results for the positive
algorithm applied to the equilibrium problems are summarized in Table 1.

In Table 1, n denotes the dimension of the NCP, niter the number of iterations,
and aver.nls the average number of steps needed in the Armijo line search. In the
column of niter, the numerators are the numbers of systems of linear equations solved
by the positive algorithm, and the denominators are the numbers of quadratic pro-
grams solved by the NE/SQP method as reported in [27]. The column of 0-values
gives some indication of the speed of the positive algorithm at the tail of the iter-
ations. In these runs, all the starting points were chosen to be the vector of ones,
except for the Hansen-Koopmans problem where the NE/SQP method started from
(xl,... ,xl0, y, Y2, z, z2) (0.3,..., 0.3, 0, 0, 0, 0) while the positive algorithm started
from (Xl,..., Xl0, y, y2, z,.z2) (0.3,..., 0.3, 0.1, 0.1, 0.1, 0.1); the reason for this de-
viation is that the positive algorithm must start from a positive vector.
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TABLE 1

Problem n niter aver.nls
Kojima-Shindo 4 8/7 2.000

Mathieson 4 6/3 1.167
Nash-Cournot 10 9/9 1.000

Hansen-Koopmans 14 22/10 1.667
Spatial price 42 21/20 1.050
’Traffic equi. 50 28/20 3.357

last three 0-values
8.01D-08/2.10D-12/5.05D- 17
3.59D-08/8.24D-11/1.91D-13
4.62D-02/2.23D-06/6.07D-15
1. lSD-0S/1.S5D-12/2.01D-16
1.14D- 11/1.57D-12/2.16D-13
2.36D-09/6.10D-12/8.34D,15

The column of niter demonstrates the relative efficiency of the positive algorithm
versus the NE/SQP method. Since one single system of linear equations was solved in
the former algorithm, versus a quadratic program in the latter, the advantage of the
positive algorithm in terms of speed should be evident. Indeed, we have compared
these two algorithms on the largest of these problems, the traffic equilibrium problem,
on the VAX 6000 computer at the Homewood Computing Facility Center at The Johns
Hopkins University. The positive algorithm and the NE/SQP method used 3.94 and
8.35 CPU seconds, respectively. For the NE/SQP method, the FORTRAN package
QPSOL [3] was used to solve each quadratic subprogram.

There are three test problems reported in [27] that were not included in the present
experimentation. These are the PIES model, the Walrasian equilibrium problem with
production, and the generalized von Thiinen model. These problems are mixed NCPs
as defined in [1]; the present version of the positive algorithm needs to be modified to
deal with this class of problems. This is a topic for further study.

The set of LCPs to which the positive algorithm was applied can be classified
into four types, each according to the properties of the matrix M. Specifically, the
generation of M was as follows. In each case, M was completely dense.

1. M ATA. Each entry of the matrix A was generated uniformly from the
interval (0,50), with a probability of 0.5 for the entry to be given a negative sign. This
matrix M is symmetric positive semidefinite.

2. M is diagonally dominant. We set M A, where A was generated in the
same way as above except that each diagonal entry was set to be one plus the sum of
the absolute values of the off-diagonM entries in the same row.

3. M A2. Here A was generated as before. This matrix M is indefinite.
4. M is a positive matrix. Each entries of M was generated uniformly from the

interval (1,50).
For each matrix M generated, we constructed a solvable LCP as follows. First we

generated a random number from the interval (0,1); if this number was greater than
0.5, then we set x’ 0.0, otherwise we generated a number from the interval (0,50)
and set x* to be that number. Therefore, roughly half of the components of x* were

* -Mi, x*zeros. We then formed the vector q as follows. If x > 0, then q where
M,. denotes the ith row of M; otherwise q -Mi,.x* + r, where r is a random
number in (0,50) scaled by 0.3. Clearly the resulting LCP (q, M) has at least one

solution, namely, x*. For M of the first two types, x* is the unique solution.
After each LCP was generated, we scaled the problem in the following way: let

s be the sum of all entries of M and q, we scaled M and q by the factor 50Is. The
positive algorithm was then applied to the scaled LCP. It turned out that such a
scaling was quite useful in ensuring the effectiveness of the algorithm.

The parameters of the algorithm were given the same values as before. We sum-
marize the numerical results in Tables 2 and 3 for the cases M ATA and M
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TABLE 2
M ATA, n 100.

Problem 1 2 3 4 5
nter 28 33 30 32 26

aver. nls 1.037 1.031 1.034 1.032 1.040
Initial 0 40308.4 35554.7 36078.4 43694.5 32757.5
Final 0 2.0D-14 3.8D-14 3.9D-14 1.5D-14 3.9D-13

Problem 6 7 8 9 10
niter 41 35 23 31 25

aver. ’nls 1.025 1.029 1.045 1.033 1.041
Initial 31538.1 35382.4 29677.3 45676.6 31909.8
Final 0 1.0D-13 4.1D-14 6.5D-13 9.2D-15 7.0D-13

TABLE 3
M is diagonally dominant, n-- 100.

Problem 1 2 3 4 5
nier 11 9 10 10 11

aver. nls 1.300 1.125 1.222 1.444 1.300
’Initial 0 46418.3 42027.2 47092.5 53837.2 36841.5

Final 0 1.6D-14 3.4D-13 2.6D-13 1.9D-14 3.1D-14

Problem 6 7 9 10
niter 13 10

aver. nls 1.583 1.333
Initial 0 45390.3 44541.4
Fihal 0 180D-14 2’.3D-13

1.111
36948.6
1.0D-14

10 9
1.111 1.125

4860’1.9 43534.8
2.5D-14 8.3D-13

diagonally dominant, respectively. The entries in the tables are self-explanatory (n is
the dimension of M). As we have mentioned, the matrix M is completely dense; this
is the reason why we have not attempted to solve problems of larger size in these two
cases; in other words, data storage has imposed a restriction on our ability to use the
Sun workstation for solving larger problems of this kind.

Observe that in the above two cases, all 10 problems in each group were success-
fully solved; more importantly, the computational statistics were very encouraging.
In contrast, the results for the remaining two cases were not as good. In each of these
cases, we ran LCPs of size n 10, 20, 30. Ten problems were tested in each category.
When M A2, the following results were obtained. For n 10, seven problems were
solved to satisfaction; for n 20, one; and for n 30, two. When M is positive, we
obtained the following results. For n 10, six problems were solved to satisfaction;
for n 20, four; and for n 30, three. Invariably, when a successful run occurred,
the results were good (i.e., small number of iterations, good speed at the tail, and
small number of line searches). When an unsuccessful run occurred, it was due to the
excessive number of iterations (80 was the maximum we set) and the small magni-
tude of the search directions; for these failed runs, the 0-values were consistently in
the range of 10-4 and 10-s, which were small but not enough for successful termi-
nation according to our rule. There was good reason to believe that the iterates at
termination of these unsuccessful runs were not s-regular vectors for the functions.

In summary, our computational results suggest that the positive algorithm holds
promise in practice for solving complementarity problems that satisfy certain regu-
larity conditions. For problems that do not necessarily satisfy the latter conditions,
the algorithm requires further study and modification is needed.
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7. Some concluding remarks. In this paper, we have presented and tested a
positive algorithm for solving the general nonlinear complementarity problem. Some
limiting properties of this algorithm were derived. At this time, although some theo-
retical issues remain with the algorithm, the computational experience we have gath-
ered suggests that this algorithm is quite competitive with a previous algorithm on
a set of equilibrium problems and has the potential for solving certain nonmonotone
NCPs effectively.
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A PRACTICAL INTERIOR-POINT METHOD
FOR CONVEX PROGRAMMING*

FLORIAN JARREt AND MICHAEL A. SAUNDERS:

Abstract. The authors present a primal interior-point algorithm for solving convex programs
with nonlinear constraints. The algorithm uses a predictor-corrector strategy to follow a smooth
path that leads from a given starting point to an optimal solution. A convergence analysis is given
showing that under mild assumptions the algorithm simultaneously iterates towards feasibility and
optimality. The matrices involved can be kept sparse if the nonlinear functions are separable or
depend on only a few variables.

A preliminary implementation has been developed. Some promising numerical results indicate
that the algorithm may be efficient in practice, and that it can deal in a single phase with infeasible
starting points without relying on some "big M" parameter.

Key words, convex program, interior-point method, implementation, sparsity
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1. Introduction. Soon after Karmarkar’s proof of polynomial-time complexity
of an interior-point method for solving linear programs [15], many related methods
for linear programs were presented and analyzed. Several numerical implementations
were also developed and shown to be efficient on large real-life problems (e.g., [19],

Concurrently, Karmarkar’s method was modified and applied to nonlinear convex
programs by Sonnevend [35], and detailed complexity analyses were given in [8], [10],
[11], [21], [25], [29], [30], showing that for certain classes of nonlinear constraints
essentially the same speed of convergence can be expected as for a linear program.
However, the conversion of these theoretical results into numerical algorithms has
been very slow so far.

In this paper, we first outline a predictor-corrector method and analyze its con-

vergence under mild conditions. In particular, we do not assume that there exists
an optimal solution or that the Karush-Kuhn-Tucker (KKT) conditions hold at an

optimal solution. We then consider practical aspects of this method. Our main aim is
to provide some assurance, supported by numerical experiments, that interior-point
methods are in practice--not just in theory--an efficient tool for solving certain classes
of convex (and possibly nonconvex) problems.

This claim regarding practical efficiency stands in contrast to the experience ob-
tained from implementations of the (closely related) sequential unconstrained mini-
mization technique (SUMT) of Fiacco and MCCormick [2] in the 1960s. We therefore
outline some of the new theoretical developments that may be used to stabilize the
performance of interior-point methods. Our main argument is that a careful applica-
tion of the theoretical results also gives rise to a reevaluation of the practical relevance
of interior-point methods for solving nonlinear (convex) programs.

Received by the editors July 31, 1991; accepted for publication (in revised form) August 5, 1993.
Institut fiir Angewandte Mathematik, University of Wiirzburg, 8700 Wiirzburg, Germany

(jarre@vax.rz.uni-wuerzburg.d400.de). This work was supported by a research grant from the
Deutsche Forschungsgemeinschaft.

Systems Optimization Laboratory, Department of Operations Research, Stanford University,
Stanford, California 94305-4022 (mike(C)sol-michael.stanford.edu). This work was partially sup-
ported by Department of Energy grant DE-FG03-92ER25117, National Science Foundation grant
DDM-9204208, and Office of Naval Research grant N00014-90-J-1242.

149



150 F. JARRE AND M. A. SAUNDERS

1.1. The problem and assumptions. The problem under study is to find an
optimal solution x* for the convex program

(CP) min{ fo(x) x e P },

where the feasible domain P is given by

(1) P:={xeAIfi(x)<O, l<i<m},

(2) A:= {x etn dx=b},

where the matrix A E jm2n and the vector b E ffrn2 are constant data. The
distinction between A and A will be clear from the context. The following assumptions
are made.

Assumption 1. The functions fi S (0 < _< rn) are continuous and convex
on a common closed set S D P and are twice continuously differentiable in the interior
S of S.

Assumption 2. The first and second derivatives are known. We denote them by
column vectors and square matrices

gi(x) Vf(x), Hi(x) V2A(x).
Assumption 3. The matrix Hi(x) + gi(x)gi(x)T is positive definite for all x

S. (This assumption is for convenience; it may be relaxed to assuming positive
definiteness on the null space of A.)

Assumption 4. We are given a starting point x E S. We do not assume that x
is feasible (i.e., we do not require x E P), and we allow P to be empty or unbounded.
We also allow the objective to be unbounded for x P.

Assumption 5. Nonnegative quantities/3 are known such that f(x) </3 for all
and such that S contains the "enlarged feasible set" { x lf(x <_/3i }.

2. A simple barrier method. We start by presenting a simplified version of
our algorithm where we assume that the relative interior of the feasible set P is
nonempty and bounded. (By continuity of fo(x), this means that the objective is also
bounded for x P.) These assumptions are dropped in 3 and later.

2.1. Outline of a predictor-corrector method. The principle of a barrier
method for approximating the solution of problem (CP) is based on the ideas in [2]
and [3] and can be outlined as follows:

For # #0, #1, #2, (where #0 > #1 > #2... and pk ._+ 0), find

x(tt) := arg min fo(x)+ #(x),

i.e., minimize the true objective function f0 perturbed by/z, where
(x) is a smooth convex barrier function for the set P tending to
infinity as x approaches the boundary of P and being finite in po.

Here, and in the remainder of this paper, we refer to the relative interior of the feasible
set P (relative to the affine manifold Jr) and to the boundary of the relative interior.
The boundary is therefore given by those points x P for which fi (x) 0 for at least
one i.

Throughout, we use the logarithrnic barrier function

m

(3) (x) log(-fi (x)).
i=1
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It is straightforward to see that is smooth and convex if the fi are also.
It is well known (see, e.g., [2]) that the minimizers x(#) are unique if, for example,

P is bounded, is strictly convex, and f0 is convex. For any # > 0 the barrier
term #(x) ensures that x(#) is feasible for (CP). Fiacco and McCormick showed
under weak assumptions that the minimizers x(#) form a smooth curve that leads
to an optimal solution of (CP) as the perturbation #(x) of the objective function is
"phased out," i.e., as # --. 0.

A general outline for a predictor-corrector barrier method can be stated as follows.
We assume #0 > 0 and x(#) are given.

Set k 0.
Do until convergence

Compute the tangent x(#k).
Select #k+l < #k.
(Predictor step) Estimate x(#k+) by linear extrapolation:

:= +
(Corrector step) Estimate x(#+) by approximately minimizing
fo(x) + #k+(x) in ,4, using Newton’s method with starting
point (#k+).
Setk=k+l.

End
In this outline we suppressed a few details that we mention briefly, postponing fuller
discussion to 3.

1. We must choose #k+ such that the prediction (#k+l) is guaranteed to be
feasible.

2. Newton’s method must be secured by a linesearch (since the function that
defines x(#) is not defined outside P).

3. We must find an initial point x(#) minimizing fo(x)+ #(x) in

2.2. Theoretical results. Under certain conditions, the strong theoretical re-
sults that were proved for interior-point methods for linear programs can be extended
to interior-point methods for nonlinear convex programs; see, e.g., [10], [11], [17],
[21], [29], [30], [35], [36]. The most general framework for convex optimization via
interior-point methods is presented in [30]. We reproduce some of the results in [30],
since they explain important features of our method and clarify its relationship to the
SUMT method of Fiacco and McCormick [2]. The results in [30] hold for programs
(CP) with self-concordant barrier functions.

Let the logarithmic barrier function (x) for problem (1) be defined as in (3) and
let -- satisfy () := (x + h). Thus, depends on two given parameters
x E po and h

DEFINITION. The function is self-concordant if satisfies

(4) ’"(0) < 2"(0)3/2

for all strictly feasible x and all h
This condition is satisfied for example if the functions fi are linear or quadratic,

or if f(X) -det X and X is a positive definite matrix. Condition (4) bounds the
relative change of V2(x) in a small neighborhood of x (since ’", which describes
the (absolute) change of ", is bounded by a suitable power of ").

Self-concordance of the logarithmic barrier function then implies the following
results (see [30], [12]).
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1. (Inner ellipsoid for P) The canonical norm associated with a point x po is
given by IlhllH (hTHh) /2, where H V2(x) and h e n. The unit ball of the
H-norm describes an inner ellipsoid for P: If Ah 0 and IlhllH _< 1 then x + h P.

2. (Outer ellipsoid for P around ) If arg min (x) and IlhllH > 1 + 3m
then + h P. Here, m is the number of convex constraints for P. The point Z is
the analytic center of P [35].

3. (Newton’s method) Let Ax be the Newton step for minimizing , so that

for some multiplier y m.. For any x po the H-norm of the Newton step satisfies

IIAXlIH <_ (the square root of the number of constraints). If IIAxllg _< 1 then
has a minimum (i.e., P is bounded), and if IIAXlIH <_ 0.2 then Newton’s method for
minimizing is quadratically convergent with constant at most 2. More precisely, if
A2 is the (following) Newton step starting at x + Ax and/ is the Hessian of at
x + Ax, then IIAII/ <_ 211Axll.

4. (Distance to optimality) Finally, fo(x(#))- fo(x*) <_ m#. (This result also
holds for nonself-concordant barrier functions, merely using convexity of fi, 0 _< _< m;
see Appendix A.)

With the above results one can show that for a linearly decreasing sequence
one step of Newton’s method suffices to approximate the next center to sufficient
accuracy. More precisely, assume x(#) is given. If #+ (1- 1/8v/)#k, the
iterates xk remain in a close neighborhood of the points x(ttk), and the method is

linearly convergent.
This result is somewhat surprising, since as # - 0 the iterates x(#) approach the

optimal solution x*. In general, this lies at the boundary of P, and the logarithmic
barrier function has a singularity at the boundary (it approaches infinity). Moreover,
we will see that the Hessian of is usually rank deficient in the limit. Nevertheless
(assuming exact arithmetic) the subproblems of approximating x(#+) are all of the
"same difficulty" in that they all require just one Newton step.

The latter property depends on the particular choice of the barrier function (the
logarithmic barrier function) and in general does not hold for other barrier fimctions
(see also [8]). However, the stepsize (1 1/8x/) to guarantee the property is much
too small to be useful in an implementation. Of practical interest are the results for
the norms II. IIH, which are used below.

3. Modifications. We now drop the temporary assumption of the last section
and allow P to be empty or unbounded, and the objective to be unbounded for x P.
The analytic center then no longer exists, and it is necessary to redefine the points
x(#) below. For convenience we assume that Jt =/R, i.e., m2 of 1.1 is zero. The
results also hold for ,4 n; the necessary modifications are straightforward but
tedious.

3.1. Shifted constraints fi(x,#). A given initial point x S might not
be feasible for (CP). Moreover, the (relative) interior of (CP) may be empty, as is

occasionally the case for (poorly formulated) linear programs. In both cases, the
barrier approach presented in the last section is not possible. To define a barrier
function at x we "enlarge" the feasible set P by subtracting certain nonnegative
quantities/ from f such that f(x) -f,i < 0, i.e., such that x is in the relative
interior of the "enlarged" feasible domain { x e jt f/(x)-/i _< 0 }. Both the
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"enlargement" of the feasible set and the "weight" of the barrier function (relative to
the objective function f0) will be parameterized by the same parameter #. Because
of this double role of tt--as a parameter for optimality and for infeasibility--it is
convenient to restrict # to the interval (0, 1], and to fix #0 1. To eliminate again
the restriction on the initial weight of the objective function, we introduce another
parameter p below.

Define t maxl<i<m{1, f/(x)},/i max{f(x) + t, 0} for 1 < < m, and

The number 1 in the definition of t is arbitrary; it may be replaced by some other
number; see 5.2. Note that f(x, #) depends implicitly on , and hence on the initial
point. However, to keep the notation short we do not list i as an extra parameter of

fi. The shift implies that

fi(x, 1) <_ -t, 1 _< i <_ m,

so that for tt 1 the initial point x is at least t 1 away from each constraint.
The above computation of i is not affine invariant. Neither is it invariant under

multiplication of fi by a positive constant. To reduce the latter dependence we suggest
multiplying fi by

1 1
or

]]gi(x)]12 + 1 Ilgi(x)l2 + IlUi(x)]]

(with some matrix norm . ) the very first step of the algorithm. Note that

3.2. Shifted sets P. For [0, 1] we consider feible domains P defined by

(6) P,:={xeAI(x,)0, lim}.

Note that P0 P and that x is in the interior of P1 (i.e., x e P). The algorithm
below follows a path of poims x() e P from 1 to 0+. In contrt to
the simple outline given earlier, the feible sets P for the subproblems of finding
x() will not remain constant. For the sets P we define a barrier function of the
variables x and the parameter by

(x, ,) log(- (x, ,)).
i=1

The change in concept by considering a shifted barrier function (x, ) is not sub-
stantial, and in some ces the theoretical results for (x) that were outlined in 2.2
also hold for (x, #) with e [0, 1] fixed. For example, if the functions (x) are lin-
ear or convex quadratic, then so are the functions fi(x, ), and the self-concordance
properties of the logarithmic barrier function also hold for (x, ). (More general
"compatible" functions, defined and analyzed in [30], also allow a shift of the
above form.) We point out that for other convex functions this is not always true
and if the domain of the constraint functions is not all of n we need to use special
care in applying such a shift . A certain function fi may be convex (or have a

self-concordant logarithmic barrier function) in the domain { x l(x) 0 } but not
in { x (x) } if i > 0. In particular, for constraints that have a singularity
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at their boundary, the shifts i should be kept at zero. The following brief example
illustrates this situation.

Consider the pair of convex inequalities y- x/ <_ 0, -y <_ 0 with initial point
(1, 1). In this case, the constraints y- x/ <_ 1, -y <_ 0 shifted as above do not
properly define the enlarged set; the point x 0, y 0.5 lies at the boundary of the
domain of a constraint function, but none of the constraints is active. Henceforth, we
assume that the shifts i satisfy our assumption in 1.1.

The following lemma relates the feasible domains P, to P.
LEMMA 3.1. The following relations hold:

1. P c P,I C P,. forO_< #l _< #2 _< l;
2. P N>0P;
3. If P is not empty, the interior P is not empty for all # E (0, 1];
4. If P is empty, there is a in [0, 1) such that P, is empty for all # [0, )

and the interior P is not empty for all # (, 1].
Proof. The proof is straightforward. D
For the case of linear constraints, much stronger results hold than those presented

here; see, e.g., [4]. In an analysis by Gill et al.[7] a different shift strategy is examined,
and it is shown that an interior-point algorithm based on a shifted barrier function is
superlinearly convergent if the objective and the constraints are linear. In this paper,
however, the shifts are merely used to define a barrier function at the initial point.

A slightly more complicated construction to achieve "feasibility" of the initial
point is as follows. If points i are known such that fi(i) < 0, we may consider the
functions f(x, #) :- fi(x / #( x)). In this case, Lemma 3.1, Parts 1 and 2 no
longer hold but the sets P still converge to P and Parts 3 and 4 still hold. We will
not discuss this modification further but concentrate on the case (5).

3.3. The perturbed center. Section 3.2 dealt with a shift of the constraints
such that the initial point becomes feasible. In this section we aim at making the
initial point a "center" of the shifted set by introducing a perturbation to the barrier
function.

Note that the set of linear perturbations of ,
( (x, #) :- (x, #) / wTx, w e Rn fixed ),

forms a family of strictly convex barrier functions for P. Under mild conditions
(see Lemma 3.2 below) each barrier function defines a smooth path of minimizers
argmin(f0(x) 4- #(x,#)) leading from some point in p0 to an optimal solution of
(CP). Also, for any #0 > 0 and any x Po there is a unique w such that the path

starts at x when # runs from #0 to 0. Therefore, the functions define a vector
field that flows to the optimal set, a fact that is used extensively later on and is well
described for the case of linear constraints in [22]. The minimizers of the perturbed
barrier functions are called perturbed centers, and the paths of the vector field are
referred to as perturbed center paths.

The "perturbed center" without perturbation (i.e., with w 0) is the analytic
center introduced above. It exists if, for example, the set of optimal solutions is
bounded and is self-concordant. For the analytic center a number of nice properties
can be shown; in particular are the following.

1. The two-sided ellipsoidal approximation of the set P around its analytic
center carries over to the level sets P,, :- (x e P, fo(x) <_ ) centeredat the
point x(#). Here, A :- fo(x(#))4- #. The sub level set P, has the barrier function
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--log(A- fo(X))- E log(--fi(x, #)). Its derivative is zero at the point 2 x(#), and
hence the ellipsoidal approximation holds with a similarity ratio of at most l+3(rn+ 1).

2. The numbers #/fi(x(#), #) define dual feasible variables that can be used in
a test for optimality (see also Appendix A.2).

Both properties hold in a somewhat weaker form if the perturbation w is small
[11]. We emphasize, however, that the name perturbed "center" is somewhat mis-
leading if the perturbation w is large. In this case, the perturbed center may be
arbitrarily close to the boundary, and the name "center" is no longer justified. As
we see below, our algorithm may also become inefficient when it follows a perturbed
center curve that is too close to the boundary. Unfortunately, no reliable norm is
known to determine when w is large, and in 5.1 we can only give a sometimes overly
pessimistic criterion for judging when w may be considered sufficiently small.

For our barrier method we consider the functions P -- ,
m

(7) (flt(x) := fo(x)- E log(-f(x, #))- wTx,
i=1

that combine a multiple of the objective function and the perturbed barrier function.
For # E (0, 1] we define x(#) as follows:

x(#) is a perturbed center if x(#) E P and if it is a minimum of ,.
(If P is empty then the definition is valid only for # (5, 1], where 5 is as in
Lemma 3.1.) We note that for certain degenerate cases (e.g., when the set of op-
timal solutions is unbounded) the analytic center may not exist, while the perturbed
center is well-defined. The gradient and Hessian of are denoted by g(x, it) and
H(x, it) as follows:

P(S) 9(x, ) V,(x)
m

 0(x) +

m

(9) H(x, it):= V2q;,(x) P-P-Ho(x) + E Hi(x) gi(x)g(x)T

# =1
-f(x, It) + fi(x, #)2

Clearly, H(x, it) is positive semidefinite if the f are convex. From our assumptions
it follows that H is positive definite. Note that x x(it) is a perturbed center if and
only if it is a zero of the following characteristic equation:

o.

(If x satisfies g(x, it) 0, then by convexity it is a minimum of . Conversely, if x
is a minimum of q in the open set P, then g(x, it) 0.)

The particular perturbation we choose is

(11) w := pgo(x) + .= -f(x, 1)gi(x)’
where p > 0 determines the initial weight of the objective function. In theory, any
value of p > 0 is possible to obtain convergence; a practical choice is described in

5.3. (Both w and p are fixed throughout the algorithm.) Thus, by definition of w,
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the point x is the first center: x x(1). It was our goal to define a path for all
problems that have an optimal solution, with the path leading to an optimal solution.
However, if the problem is solvable but "highly degenerate" (in that it has neither an
interior nor a bounded set of optimal solutions), then the perturbed center might not
exist as the example following Lemma 8.1 shows. For less degenerate cases we prove
the following lemma.

LEMMA 3.2. Let (CP) have an optimal solution. The following statements hold
if the interior po of P is not empty, or if the set of optimal solutions is bounded.

1. A unique perturbed center exists for all # E (0, 1].
2. The perturbed center x(#) is bounded for all # e (0, 1].
3. It becomes feasible in the limit: lim__,0 minxep IIx(#)- xl12 O.
4. lim__,0 fo(x(#)) fo(x*) 0 if x* is an optimal solution to (CP).

Proof. See Appendix B.
We note that the analytic center exists only if P is nonempty and the set of

optimal solutions is bounded. Our assumptions for Lemma 3.2 are weak in the sense
that they do not require a constraint qualification. The centers x(#) still converge to
an optimal solution x* (under our assumptions) even if the KKT conditions do not
hold at x*. To our knowledge, neither the limit of the perturbed center nor the limit
of the analytic center of shifted sets P has been analyzed so far for nonlinear convex
constraints.

The function #(x) is (at least for p- 1)just the objective function fo(x) to
which a multiple (#) of the barrier function is added, as in the outline of 2.1. Our
choice of in (7), rather than the seemingly more natural choice #, was more
convenient since the property of self-concordance is not invariant under multiplication
of the barrier function by #.

4. A modified barrier method. The general idea of the method is as follows.
Starting from # 1 and x(1) x, a sequence of iterates is generated in some
neighborhood of the path of perturbed centers x(#). The iterates xk are regarded
as approximations to points x(#k), where #0 1, #k > 0, #k __, 0. The algorithm
proceeds in three steps per iteration.

Step 1. Compute the tangent x to the perturbed curve passing through the
current iterate xk at # #k.

Step 2. Choose adaptively a steplength (0, 1) to follow the tangent starting
from xk. Let the resulting point &k xk- #kx be a prediction for x(#k+l). Set
#k+l #k(1 C). The steplength c is chosen such that &k Pk+l and such that

Newton iterations starting from k for finding x(k+l) can be expected to converge
rapidly.

Step 3. Perform a small number of Newton steps with linesearch to bring the
iterate closer to the path of perturbed centers. The result of this "corrector step" is
xk-}-l.

It is in Step 3 where our method differs from most implementations of interior-
point algorithms for linear programming [6], [19], [20]. For primal-dual methods for
solving linear programs it appears that the extra effort taken in Step 3 to move away
from the boundary towards the center does not pay [34]. For nonlinear problems
our results indicate that "centering" stabilizes the algorithm. Furthermore, since

our algorithm works in primal space only, the stopping test is reliable only in a

neighborhood of the analytic center x(#).
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4.1. The tangent. Let v(x, #) be the derivative of g(x, #) with respect to #:

P 3f(x,:=

If H(x(#), #) is positive definite, the perturbed center is unique and the tangent to
the curve of perturbed centers at x(#) is defined by the linear system

(13) H(x(#), #)x’(#) -v(x(#), #).

Verification of (13) is straightforward by differentiating g(x(#),#) 0 in (8) with
respect to #. In general (if there is at least one active constraint with a nonzero
Lagrange multiplier at the optimal solution) it holds that lim,__,0 #2H(x(#), #) exists
and is nonzero. In our implementation we therefore use #2H(x,#) and #2v(x,#)
instead of the unbounded quantities H(x, it) and v(x, it).

Note that w does not occur in the definition of the tangent. If the current iterate
is some point xk that is not on the path of perturbed centers, then the above quantity
is the tangent to some other perturbed center curve that also leads to an optimal
solution x*.

In Step 1 above we determine x’ from (13) with xk in place of x(it) and # its,
i.e. from the system H(xk, itk)x’ -v(xk, #k). The steplength a in Step 2 depends
on how well Newton’s method converges. We focus on the Newton step first.

4.2. The Newton step. The Newton step Ax for finding x(#) starting from
x E P is given by the system

(14) H(x, it)Ax -g(x, it).

From [30] (see 2.2) we know that Newton’s method (without linesearch) for finding
the center x(it) converges quadratically if is self-concordant and if

(15) /"= (AxTH(x, it)Ax) 1/2 (-g(x, it)TAx)I IIxlIH < 0.2.

In our program we used /< 0.5 as a stopping test for Newton’s method. This choice
of / guarantees that we are reasonably close to the center in the sense that if we
continue iterating Newton’s method without linesearch it is guaranteed to converge.
(Compare also with 4.5.) Unfortunately, for 1 or "7 > 1 the H-norm of the
Newton step does not contain any information about the closeness of the iterate to
the boundary of P, since it is easy to construct examples for which "7 --+ 1 while x
approaches the boundary of P, or conversely for which - O(V) even if P is a
ball and x is the center of this ball.

We note that a Newton step for finding x(itk+l) may not be necessary for conver-
gence, since as mentioned above, all the "perturbed center curves" end in the optimal
set. Hence one could continue by following the tangents of different curves. However,
the step along the tangent may bring the point &k close to the boundary of Pk (and
iterating too close to the boundary of P slows down convergence; see 7.1), so that
a Newton correction is indeed useful. (The proofs that methods without any cen-
tering converge to an optimal solution are quite involved, even in the case of linear
constraints; see, e.g., [37] and others. We will not discuss this issue here.) In our
program we compute an inexact Newton correction by using the same factorization
of H as already used for the computation of x. The linesearch during the Newton
step is controlled by the merit function k+l (x).
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4.3. The steplength c during extrapolation. Our goal is to choose c E (0, 1)
as large as possible such that the extrapolation &k xk oqkx is strictly feasible,
i.e., &k po with+ #k(1 --O), and such that Newton’s method for finding
the (next) center converges rapidly.

An obvious possibility to guarantee the second condition is to choose the step-
length during extrapolation small enough so that the first Newton step Ax starting at
the predicted point satisfies a relation of the type (15). However, this generally results
in very short steps a. In our implementation we constructed a "trust region" for the
choice of a and first approximated the maximum possible steplength ama such that
x + amxX is still feasible and then took r percent of amax. If it turned out that
Newton iteration converged quickly we increased r for the next extrapolation and,
conversely, if Newton iteration was slow we decreased r. More precisely, we initialized
r 0.7 for example, and if Newton’s method took more than, say, four iterations we
set r max{r/2, 2r 2}; if it took less than three iterations we set r (r + 1)/2.
We allowed a rather large number of (inexact) Newton iterations, since we used the
old Hessian, which made each Newton step cheap but less effective.

4.4. Stopping test. Let e be the desired final accuracy in the objective function.
A possible stopping criterion is # _< p(1+ IIVfo(x)ll)/m. This stopping test is "exact"
at points on the path of analytic centers in that fo(x)- fo(x*) <_ (1 +
(see Appendix A.2). Here, we included a factor IIVf0(x)l to make the test invariant
under multiplication of f0 by some positive scalar, and added 1 for the (unlikely)
case that IIVf0(x)l 0. Thus, e is essentially the relative accuracy in the objective
function. However, since the constraints have been shifted, the final iterate is not
always feasible; it is only guaranteed that fi(x)

_
#i. We therefore included factors

(1 + IIVfi(x)ll) and stopped the algorithm as soon as

# <_ fi :-- mAn{ p(1 + IIVfo(x)ll)/m, m.ine(1 -t-IIVf(x)ll)/(i + ) },

which guarantees a relative accuracy of e for the constraint violation as well as for the
objective value.

4.5. Convergence. Before concluding this description we briefly state some con-
vergence results of our algorithm under the further assumption that the barrier func-
tion a is self-concordant for all # > 0.

If the stopping criterion at each iteration for Newton’s method is IlhllH
_

c ( 1
(see also (15)), and if the quantity r in 4.3 is chosen such that it is bounded away
from zero, then the following are true.

1. If (CP) satisfies the assumptions of Lemma 3.2, then as # 0 the iterates
xk satisfy the same limit relations (for k --. ) as stated for x(#) in Lemma 3.2.

2. If (CP) has no optimal solution, either xu cx), or we find that # 5 > 0,
with 5 as in Lemma 3.1 Part 4. (Both cases are hard to identify in an implementation
and need special attention.)

Proof. See Appendix B. [:]

The importance of these results is that we believe they yield a very reliable
heuristic for our algorithm, even if we do not know that the barrier function is self-
concordant.

5. Important details for the initialization. The following additions to our
algorithm do not change the convergence results, but they may be essential for the
efficiency of the algorithm.
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5.1. Decreasing the perturbation. Recall that w defines the perturbed cen-
ter. In this section we are concerned with the influence of the magnitude of w on the
rate of convergence of our method. Ideally we would like the perturbation w to be
zero, in which case the points x(#) are the analytic centers. Also if w is close to zero,
one can prove for self-concordant barriers that the tangent to the curve x(#) closely
approximates the curve in some interval [#1, #2] that does not depend on the problem
data. For large w (measured in the norm given by H(x, #)-1) this is no longer true.

Our numerical experiments suggest that in practice also, a large w slows down con-
vergence. It is therefore important to initialize the method such that w is moderate in
size. The perturbation w may be considered moderate if [[w[[ wTV2cfll (x0, 1)-lw
is strictly less than 1. "Usually," e.g., if the barrier function is self-concordant and if
there is a unique optimal solution, one can show that H(x(#), #) ---, c as # --. 0, and
that w measured in the above norm tends to zero. If there is more than one optimal
solution, this is generally not true, but in this case, the eigenvectors that belong to
finite eigenvalues of H(x(#), #) are--in the limit--parallel to the set of optimal solu-
tions, i.e., the component of w orthogonal to the set of optimal solutions tends to zero
as well. Unfortunately, the condition IIW[[H < 1 is only a sufficient condition, and it
may be overly pessimistic in some cases.

The size of w depends on the choice of starting point and on the shifts 3i and, in
some examples, the initialization outlined in this paper does yield large perturbations
w. In these cases it is necessary (to obtain a reasonable rate of convergence) to reduce
the size of w before starting the algorithm. We used the following procedure.

1. Before starting the predictor-corrector iterations, set w 0 and introduce
additional constraints of the form (xi x)2 _< 1012t2 (with t as in 3.1).

2. Perform a number of Newton steps for finding the (analytic) center of P1
with the additional constraints and stop when IIAXlIH (AxTH(x, I)Ax) 1/2 satisfies
a given bound. Let the result be 0.

3. Remove the additional constraints again and redefine w for the new starting
point .0 as outlined in 3.3.

This process can be motivated as follows. Suppose for the moment that the set
P1 is bounded. In this case the analytic center of P1 exists (w 0). As a set P we
define the set P1 with some additional bounds that are much larger than the size of
P1. (More precisely, the sets P1 and P[ are the same; only the constraint functions
defining them are not identical. We note here that it is not quite exact to talk about
a center of a set P, but rather about a center of a set of (nonlinear) inequalities
describing P. The center depends on the constraint functions.) Let 2 be the analytic
center of P. After removing the additional constraints, 2 is a perturbed center of
P1, and the norm of the perturbation is indirectly proportional to the distance of 2
from the (removed) additional constraints. The additional constraints were necessary
since we do not know whether P1 is bounded. In particular, this procedure does not
assume that a bound of the form "llx- xll <_ 106t for all feasible x" is known a
priori; the additional constraints are used only while decreasing w to guarantee that
Newton’s method converges, and they are later removed.

5.2. Warm start. If we expect that the initial point x is "almost" optimal, we
may apply the following "warm start" procedure. Define the quantity t preceding (5)
as max{10-4, f(x)}, for example, rather than max{l, f(x)}. (The number 10-4 is
arbitrary.) Then fix p >_ 1 to minimize the norm of the gradient of al (x).

Our motivation for this warm start is the following. From the given x we de-
termine approximate Lagrange multipliers as 1/( f(x)). The definition of t
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implies that these are positive and bounded by 104. The initial parameter p is then
determined as the "best" weight factor for the objective function.

The reason why we do not suggest this start as standard is that with the fairly
large bound of 104 for the approximate multipliers, the perturbation w may become
quite large.

5.3. The weight factor p. In the definition of the center (7) we did not elabo-
rate on the choice of the weight factor p in the objective function. However, a good
choice of p is very important. For one-dimensionM examples it is easy to see that a

poor choice can result in the curve of centers passing the same point x twice (which
is not attractive when following the curve numerically). We applied the following
heuristic in our implementation.

1. If the constraints have not been shifted, i.e., if/ 0, then we choose p such
that the H-norm IIX’IIH of the tangent x’ at the first iteration is 1.

2. If the constraints have been shifted, i.e., if/3 =fi 0, we compute a "tangent"
x1’ for the case p 0 (this is the component of the tangent resulting from the shift
/) and a "tangent" x2’ by setting p 1 and /3i 0 for all in (4.1) (this is the
component of the tangent resulting from the objective function). We then choose

P-- x2’ II/11 xl’ so that both components are of the same magnitude.

6. Further comments.

6.1. Solving the linear systems. The search directions in our algorithm (ex-
trapolation and Newton step) are given by linear systems (13)-(14) involving the
Hessian H(x, #). We are concerned with the stability and the sparsity of these sys-
tems. It is well known that the Hessian becomes ill-conditioned if x approaches some

point on the boundary of P at which less than n linearly independent constraints are

active. Also note the inherent sparsity of H if the functions f each depend on few
variables only or if there is a small number of separable functions fi. (For separable
fi the Hessian is a diagonal matrix, but the gradient gi and thus also ggT could be
full, so that rank-one update techniques could be used for example.)

Let p 1 and/ 0 for the moment. To illustrate how we would deal with H in

a large-scale implementation, note that H (9) can be written in the form

H(x,#) =/:/(x, #)+ JTD-2J,
mwhere (x, #) -Ho(x)+-= _f(,) Hi(x), J gl (x) gin(x))T is the Jacobian

of the constraints and D diag(f(x)). Solving a system with H is equivalent to
solving a system with

which can be seen when taking the Schur complement of-D2 within K. This system
in turn is equivalent to a system involving

K’ 0 jT

I J 0

(Take the Schur complement of D-2.) Systems of the form K are considered in Gill
et al. [6]. The basic idea is that it is better either to factorize K directly or to
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take the Schur complement of just certain parts of the diagonal matrices, such that
the Schur complement does not become excessively ill-conditioned and does not suffer
excessive fill-in caused by dense rows or columns of J.

6.2. Inherent stability. In view of the ill-conditioning of the linear systems
to be solved during the algorithm, one must question the numerical stability of the
method. In our numerical examples (see, also, [13]) we did not encounter any difficul-
ties. In particular, we were always able to compute the solution of the problems to
the full accuracy given in the literature [27], [28], [33], [9]. The observed robustness
may result from two facts that were addressed in [13].

First, we observe that our method will converge to an optimal solution even if the
linear systems are solved inexactly. Clearly, inexact Newton’s method with linesearch
is known to converge eventually at each iteration when minimizing the strictly convex
function as long as the Newton steps are approximated by using uniformly positive
definite approximations / to H. (For the (very poor) approximation / I, for
example, the inexact Newton method reduces to the method of steepest descent,
which does converge, though very slowly.) Similary, the tangent direction need not
be computed exactly, since the predicted point is corrected by Newton’s method in
the next step.

Second, the corrector step brings the iterate "away from the boundary" towards
the center x(#). Since x(#) is in some sense approximately "equally far away" from
all active constraints, we anticipate (and for nondegenerate linear programs this can
actually be proven [12]) that the Hessian is better conditioned near x() than near
the boundary of P. Thus the corrector step is likely to reduce the condition number
of the linear systems.

We believe that these facts imply an "inherent stability" of our method that would
not arise, for example, if the method did not use a centering (corrector) step.

6.3. Note on primal-dual methods. The method outlined above works in the
primal space only. We briefly mention the relationship to primal-dual methods.

It is straightforward to convert the KKT conditions of a convex optimization
problem into a nonlinear complementarity problem (NCP) that involves primal and
dual variables. The functions defining the NCP are monotone (they are the gradients
of convex functions), and interior-point algorithms for solving NCPs with monotone
functions have been proposed in [17], [18]. Implementations of such primal-dual meth-
ods proved to very effective when applied to linear programs [19], [20], and it may be
expected that the same also holds for nonlinear problems.

We give a brief comparison of our method to a primal-dual method and con-
sider the search directions first. For simplicity we assume that the objective function
fo(x) -cTx is linear and that p- 1. In all interior-point methods, the main focus is
on two directions, the centering direction and the affine scaling direction. Assume we
are given a current iterate x and a parameter value #. We construct a dual variable y
by setting y #/(#/ f(x)). This construction implies that (x, y) is the analytic
center in primal-dual space if x is the analytic center in the primal space. Further-
more, let J(x) be the Jacobian of (fl,..., fro). The Newton direction Ax for finding
the analytic center, and the tangent direction x of our algorithm, are given by

H(x, #)Ax -(c + J(x)Ty), H(x, #)x’ -(c + J(x)Ty2),

where Y diag(y). It turns out that if y is given as above, the centering direction
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of the primal-dual method (after taking the Schur complement) is given by

H(x, tt)Ax -(c + J(x)Ty + J(x)Ty2),

i.e., it combines the Newton and tangent directions, and the affine scaling direction is
exactly the tangent direction above. If the dual variables are obtained in a different
way, then the search directions will also be different, but nevertheless we may recog-
nize a close relationship between the two methods. The additional degree of freedom
in the choice of y may be an advantage for the primal-dual method. On the other
hand, the primal method offers a simple heuristic for the control of the steplength
during extrapolation, and a natural merit function for the linesearch during New-
ton’s method. Moreover, the strong theoretical results proved in [12], [30] about the
convergence of primal methods for convex programs have not been proved (yet) for
primal-dual methods.

6.4. Relationship to classical barrier methods. Our method has much in
common with the traditional barrier methods suggested by [3], [2] and implemented
in SUMT in 1964. It is natural to ask why these methods did not retain their initial
popularity.

As mentioned earlier, it is very important which barrier function is chosen. Only
the logarithmic barrier function combines all the theoretical properties that were listed
in 2.2; they do not hold for other barriers like 1/fi(x).

Some of the early barrier methods also used logarithmic barrier functions by
following some perturbed path as above. The smoothness of the perturbed path was
well known then, but no theory existed to explain the importance of the central path.
In particular, the two-sided ellipsoidal approximation around the analytic center was
not known. This approximation implies that the centers x(#) are approximately
equally far away from all active constraints--measured in the canonical norm II. IIH"
As we illustrate with some examples below, it may be of great importance to find a
point on the central path first and to follow the central path rather than some random
perturbed path that depends on the initial point.

Another difficulty that arises during the implementation of a barrier method is
how to choose the steplength once the search direction is known. Where is the break-
even point between progress in the objective function and staying far away from
all constraints, i.e., what is the appropriate merit function for a linesearch? In the
approach above, for the linesearch during the centering step, a natural merit function
is given (the log-barrier function), and for the extrapolation the heuristic outlined
above is fast and robust, at least for all examples that were tested.

As pointed out in [26], [38], the Hessians of the barrier functions become increas-
ingly ill conditioned as the iterates approach an optimal solution x* if there are less
than n linearly independent constraints active at x*. This difficulty also occurs when
solving degenerate linear programs by interior-point methods. The large number
of numerical experiments carried out to date suggests, however, that with a careful
choice of algebra for solving the linear equations this difficulty can be overcome. We
may hope that this is also the case when solving nonlinear problems. In addition, the
fact that computers today use a much higher arithmetic precision than was typical
25 years ago makes current codes less sensitive to ill conditioning.

Finally, as pointed out in [5], an approach used in early barrier methods of enforc-
ing equality constraints by a quadratic penalty function (rather than linearizing them
at each step) might have introduced further numerical instability. The theoretical re-
sults of 2.2, such as the ellipsoidal approximations, do not hold for quadratic penalty



AN INTERIOR METHOD FOR CONVEX PROGRAMMING 163

functions. It is not yet clear whether barrier methods are effective for nonconvex
problems (such as ones with nonlinear equality constraints).

Many implementations of interior-point methods for the conceptually simpler
problem of solving linear programs have been tested in the recent past. These im-
plementations documented the great importance of, good sparse-matrix techniques.
Without the latter, interior-point methods for large linear programs are completely
unattractive, and the same may be true for nonlinear problems. It may be antici-
pated, however, that interior-point methods applied to certain classes of "inherently
sparse" (e.g., separable) nonlinear problems with cheap first and second derivatives
will be able to exploit the additional structure and yield fast speciM-purpose solvers.
For a simple characterization of "inherently sparse" programs based on the notion of
"partially separable" functions, we refer to [1].

7. Numerical experiments. The method of 4 was implemented in MATLAB
[24] and tested on a few problems with up to 300 unknowns without exploiting spar-
sity or special structure of the problem. As mentioned before, the use of sparse-matrix
techniques will be crucial for the efficiency of this method. The development of effi-
cient interior-.point methods for linear programs took several years and similar efforts
may be needed for developing an interior-point method for nonlinearly constrained
problems. The goal of the implementation here was merely to illustrate the behavior
of the method in terms of number of iterations and Newton corrections, and to test
various parameters (such as and p) that define the barrier function.

The statistics gathered read as follows. Each iteration involves computation of
the tangent and a small number (1-10) of inexact Newton steps. The tangent and
the Newton steps are computed from a linear system that involves the Hessian of. We used each Hessian (or rather its factorization) for five inexact Newton steps
before we recomputed a new Hessian, so that sometimes more than one Hessian was
computed in an iteration. Each Hessian is used for several inexact Newton steps; its
computation and factorization dominates the overall computation.

7.1. Problem Manne. The following two problems are taken from [27]. Prob-
lem Mannel involves 300 variables, a logarithmic objective function, 100 nonlinear
constraints, 100 linear inequalities, and 400 simple bounds. Problem Manne2 is iden-
tical except that it has only 300 simple bounds.

Results are given in [27] for MINOS. Mannel took 7 major iterations, 183 minor

iterations, 497 function evaluations, and 12 seconds on an IBM 370/168, while Manne2
required 11 major .iterations, 355 minor iterations, 859 function evaluations, and 34
seconds. MINOS performs best if a high number of linear constraints or bounds are
active at the optimal solution, thus reducing the size of the (dense) systems that are
solved in each iteration. For Mannel, the size of the dense systems grew to 25, and for
Manne2 they grew to 99 (since some of the active bounds in Mannel were removed).

In contrast, the size of the systems to be solved in each iteration of the interior-
point algorithm is always 300, i.e., the number of variables. For both Mannel and
Manne2, these systems are sparse and of diagonal structure, with at most seven
nonzeros per row.

In Table 1 we report the results of our method for both examples. As a starting
point we chose the (infeasible) vector of all ones. (The objective and some of the
constraints are not defined for x 0.) Unlike MINOS, the interior-point method
performed slightly better on Manne2 than on Mannel, giving hope that for certain
problems in which the active constraints do not significantly reduce the dimension of
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the MINOS subproblems, interior-point algorithms may become an attractive alter-
native.

Problem

TABLE 1
Results for problem Manne.

Large w Mannel Manne2 Small problem
Iterations 38
Hessians 40
Newton steps 115
max Ifil 2.05
p 4.1
Final tt 3.4e-9
Objective 9.287556
Constraint violation 4.9e-9

19
24
76
2.05
4.1

5.7e-9
9.287556
8.1e-9

15
20
61
2.05
3.8

2.2e-8
9.330183
3.1e-8

11
13
38
2.05
0.29
8.7e-9

2.670098
1.1e-8

Problem Manne was one for which our initialization in 3.3 resulted in a vector
w of norm (wTH-lw) 1/2 , 15. By the procedure in 5.1 we decreased the norm of
w to about one before starting the iterations. For comparison we also list the results
for Mannel without reducing the size of w. In this case convergence was very slow,
and for many iterations the maximum steplength amax during extrapolation was less
than 0.25. (At each iteration we anticipate a steplength of say amax >_ 0.9 that would
reduce # by at least 90%.)

We also give results for a smaller version of problem Mannel with only 30 un-
knowns, to show that the number of iterations grows only moderately with the number
of variables for this particular problem.

7.2. Problem 385, Schittkowski. This is a problem with 15 unknowns, 10
convex quadratic constraints, and a linear objective function. It is taken from [33],
where it was solved with NLPQL [32] using 693 function evaluations and 242 gradient
evaluations. Running times or numbers of arithmetic operations are not reported in

[33]. The starting point (zero) was strictly feasible and/ was zero. (Hence, P was
constant and also the final point was strictly feasible.) Our implementation took 11
iterations to solve the problem, a total of 11 evaluations of the Hessian, 27 Newton
steps (each of which requires the evaluation of the gradient of ), and 64 additional
gradient evaluations for the linesearch steps. The steplength c was 0.80 on average,
ranging from 0.70-0.92. The Hessians of the constraints are diagonal, but to preserve
the sparsity of the Hessians of , the dense outer products of the gradients in (9)
must be treated separately (for example as in 4.4).

7.3. Problem 386 Schittkowski. This is the same as problem 385 above (ex-
cept that two entries in the coefficients of the constraints are changed) with an ad-
ditional concave constraint. In [33], 900 function evaluations and 327 gradient eval-
uations were required to solve the problem to 6 digits of accuracy. To explore the
limit of applicability of our method we tested this problem with different parameter
settings.

1. Using the standard method, the Hessian of became indefinite in the eighth
iteration and our algorithm failed.

2. In a second run we set the Hessian of the concave constraint equal to zero

(this corresponds to a linearization of this constraint at each iteration) but kept all
other second-derivative information. The method converged to the true solution in
10 iterations using 10 evaluations of the Hessian of and 28 Newton steps.
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3. In a third run we set the Hessians of all constraints to zero. In this case,
the Hessian of was indefinite to begin with (since there were only 11 linearized
constraints in a 15-dimensional space) and the method failed again.

7.4. A linear problem. Here we briefly describe the results of applying our
method to a linear program. In [9], Iri and Imai considered a diet problem with 17
variables, 11 constraints, and 17 simple bounds, which they solved with a primal-dual
interior-point algorithm in 18 iterations to 7 digits of accuracy. (More recent interior-
point algorithms for linear programs may be more efficient.) Our code is not primarily
intended for linear programs; we are merely interested in its behavior compared with
nonlinear programs. For this purpose, we tested our method with different starting
points and with small and large w. Table 2 gives results for x A(1,..., 1)T with
different values of A. (The optimal solution has nonnegative entries of size _< 6.5.)
We list the initial IlWllH and max lil, as well as the number of iterations, Hessian
evaluations, and inexact Newton steps. In all cases we set e 10-7 in the stopping
test and obtained the same accuracy as in [9]. We see that varying w and x did not
have a great effect.

TABLE 2
Results for a linear program.

0
0
1
1
I0
10

-100
-100

IIwlIH max I1 Iter. Hess. Newt.
0.63 4.27 12 15 33
8.6 4.27 14 14 33
0.73 0.74 12 15 34
4.4 0.74 12 13 29
0.45 0 13 16 35
6.1 0 15 15 32
0.65 588 13 16 36
9.9 588 17 17 40

8. Conclusions. The design of fast and stable implementations of interior-point
algorithms is marked by conflicting principles.

1. It is desirable to maintain some polynomiality results, since they limit the
dependence of the method on the data of a particular problem.

2. It is preferable to perform only few (if any) centering steps, since they do not
give much progress towards optimality.

3. The linear systems involved should be kept well conditioned.
4. Given a search direction (the tangent at x(#)), it is desirable to take a large

step (close to the boundary of the feasible set) to make fast progress towards opti-
mality.

A typical example of how these concepts conflict with each other in the above
method is the number of centering steps and the steplength along the tangent. With-
out centering there exist no polynomiality results and the Hessians become very ill
conditioned, yet the best theoretical complexity can be proven for methods that use
only centering, and those methods are completely unattractive in practice. The closer
the extrapolation along the tangent to the boundary, the more ill conditioned the Hes-
sian of the barrier function and the worse the theoretical complexity, suggesting that
one should not take too large steplengths. The concept of numerical stability based on
the condition number of a matrix however is not perfect. For example, interior-point
methods for linear programs evidently perform best when taking steps of 99.995% to
the boundary [19], in spite of the ill conditioning introduced by these large steps. It
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is an open question how far the extrapolation should go for nonlinear programs, but
in view of the nonlinearity in the constraints we believe it is more efficient to take
shorter steps in our algorithm.

Appendix A. Some results on the sets P.
A.1. Uniform convergence in Kr. Part 2 of Lemma 3.1 also holds in the

following stronger form.
LEMMA 8.1. Let Kr := { x I]xl12 <_ r } and Be := { x x y + z, y e P, l]zl12 <_

e }. Then for all finite r and all positive e there is a positive # such that

P N I( C Pc,

which implies that P converges uniformly to P in any ball K. The restriction to
a bounded set Kr is necessary, since there are examples for which P P1 for any
#>0.

Proof. We prove the first statement by contradiction. Suppose there was a finite
r and a positive e such that for all # > 0, P N K P. Let #k __. 0, #k E (0, 1) be
a sequence and xk (P N Kr)\P. Since Ilxkll _< r there is an accumulation point
5. Clearly P (otherwise there exists i0 rio (5) > 0 and then by continuity of

rio, there exists 5, a > 0 fo (5 4- Ks) > a, contradicting the definition of a?). By
construction we also know that a po, in contradiction to P C po.

That the more general statement "P C P for small enough #," is not true can
be seen from a simple counterexample. Take the convex function f(x, y) y2/x 1
with domain S := { (x, y) lx >_ 1 }, defining P := { (x, y) e S ly2/x

_
1 }. It is easy

to verify that P { (x, y) x >_ 1, lYl <- V’x + #x } P1 for any # > O.
We may modify the above example such that po is empty by using the function

y2/x <_ O. Thus, P shrinks to the set { (x, 0) x >_ 1 }. Note that min{ y (x, y) e P }
exists in this case, but not so min{ Y (x, y) e P } for # > 0, and neither does
a perturbed center exist for 0 < # < 1. (This example shows another surprising
property. If fl and f2 are convex functions that each have a minimum on a common
closed set S, then f +f2 may not have a minimum on S; e.g., take y2/x and (y-1)2/x
on the above set S.) []

Despite these counterexamples, the vague intuition that P might not be much
"bigger" than P can be formalized in the following simple lemma.

LEMMA 8.2. If P5 is nonempty and bounded for some 5 e [0, 1), then so is P.
Proof. The proof is straightforward. E]

A.2. Proof of near-optimality of the analytic center The following result
justifies the stopping test used in our program. We prove the inequality fo(x(#))
fo(x*) <_ m# for the case that x(#) is the analytic center and p 1 (modification of
Lemma 3.8 in [10]).

Let a x(#) and z x* x(#). Set

,I,(t) + E log(#i fi(Y + tz)).

By definition, of x(#),
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By the convexity of f(x), 0 <_ <_ m, it holds that

Combining the last two relations it follows that

A(x(,))- A(x*) <_ -vA()rz -,

m

< ()- ,( + )
i=I

(5) m.

The last inequality follows from the feasibility of + z: f( + z) _< 0 (and of course

() < 0).
If the barrier function is self-concordant, a similar estimate follows from the el-

lipsoidal approximations in [12] for the perturbed center if IlWllH
_

0.2.

Appendix B. Convergence of the centers. We are now ready to show the
results stated in Lemma 3.2.

B.1. Proof of Lemma 3.2.

Part 1. From our assumption " Hi + ggT > 0" it follows that 99 is strictly
convex for # > 0. Hence, if the center exists, it is unique. Assume the perturbed
center x(#) does not exist for some # e (0, 1), but x(1) does; i.e.,

1 (x) ln(fl f,(x)) + fo(x) + wTx

has a minimum x(1) (without loss of generality let x(1) 0 for the moment), and

,(x) ln(#fli f(x)) + fo(x) + wTx

does not. For R >_ 0 let x(R) arg minllxll<R ,(x). From convexity of , it follows
that IIx(R)II R. From strict convexity of 1 it follows that 991 (x(R)) >_ 991(0) + eR
for R >_ 1 and some fixed e > 0. (Since 0 is the unique minimum, 991 (x) >_ e for

Ilxll 1.) Hence,

(1)991(0) + eR <_ 991(x(R)) <_ 99,(x(R))- - 1 fo(x(R)),

using the monotonicity of In and fl _> 0 in the last inequality. Since ,(x(R)) <_
,(0) < oc, this implies that fo(x(R)) -cx at least linearly.

Case 1. Suppose P has an interior point 5 and fo(x) > -M for x E P. Without
loss of generality, now let 0 and f0() 0. (Note that by this change in coor-
dinates we still have IIx(R)II R, where x(R) is as above.) Let 5 > 0 be such that
fi() < - for all i e 1,...,m. Let 0 > maxii + , A /0 < 1 and take R large
enough such that fo(x(R)) < -M/A. Since (x(R)) < #i for all i, it follows from
convexity of fi that

I((R)) < - + ,(,A + ) < 0,

i.e., Ax(R) P. On the other hand,

fo(Ax(R)) <_ Afo(x(R)) < -A-M --uM.
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This is a contradiction.
Case 2. Suppose that the set of optimal solutions is nonempty and bounded.

Without loss of generality, let x* 0 be an optimal solution with f0(0) 0, and let
all other optimal solutions satisfy IIx*ll <_ 1 and fo(x*) 0. Thus, f(0) <_ 0 for all
0,..., m and there exists e > 0 such that for any Ilxll 2 we have max0<<m f(x) >_ e.

(x is either not feasible or not optimal.) It follows that maxi fi(x(R)) > eR/2 for
R >_ 2, by convexity of fi. Let us fix R large enough and consider the index i for
which f(x(R)) > eR/2. If _> 1 and R > 2#3max/e, where 3max maxl<<,/3 we
obtain a contradiction, since f(x(R)) > #i, i.e., x(R) is not in Pg. Hence, 0.
Again, this is in contradiction since fo(x(R)) goes to -cx.

Part 2. First, we briefly sketch a proof that guarantees that x(#) is bounded if
the set of optimal solutions for (CP) is nonempty and bounded.

Assume x(#) is unbounded for # E (0, 1]. By continuity of x(#) this implies that
there exists a sequence #k 0 such that ]lx(#k)ll --, . Without loss of generality
let 0 be an optimal solution with f0(0) 0, and suppose IIx*]l <_ 1 for all optimal
solutions. As in Case 2 above, we conclude that there is an e > 0 such that f (x) _> e for
some e 0, 1,..., m if ]lxll 2. If R > 2#/ma/e and IIx(#)ll >_ R, then fo(x(#)) >_ Re
(since x(#) e Pg). Now we may choose M sufficiently large and # < 1/M such that
IIx(#)ll- R > M. We obtain

zt- wTx(#) E log(pfli fi (x(#))) a + b E log ci.

Here a >_ eMR, ]b <_ RI]wll, and 0 < ci <_ #13 Vf(O)Tx(#) <_ # + I]Vfi(0)[IR.
From convexity we also obtain that

g(hx(#)) _< 5a + 1/2b- E log(lci).

By choosing M large enough, a becomes the dominant term in g and g(x(#)) <
g(x(#)), which is a contradiction.

Now we consider the case where the interior of P is nonempty and min{ f0(x)
x P } exists. In the sequel we assume again that 0 is an optimal solution of (CP)
withf0(O)=O. LetP=P{xlf0(x)_<O}andP*={xePIfo(x)=O}. We
proceed in two steps.

In step one we show that there exists a finite constant c > 0 such that inf{ f0(x).
x e P } _> -c# for # E (0, 1]. Without loss of generality suppose inf{ fo(x) Ix
P } <O~(else step one follows trivially). Since go O, this implies that both/51
and P\P have interior points. Hence the relative interior (P*) of P* is contained
in the interior P’ of P. In particular, the derivatives of all functions f exist in P*.
(By assumption, the shifts are chosen such that S c P1.) Assume the functions
fl,... fk for some k _> 0 are active for all x P*, f(x) 0 for 1 _< <_ k, and
x e (P*). The KKT condition implies 1Vf(0)+ Vf0(0) 0 with some

>_ 0. (This is where we use the existence of an interior point.) Now by convexity,
the linearized problem satisfies

l(#) min{ Vfo(O)Txl Vf(O)Tx _< #, 1 _< _< k } <_ min{ fo(x) Ix e P, }.

Clearly, l(#) is linear in # and the claim of step one follows.
In step two we show that x(#) is bounded. Assume it is not, and there exists an

infinite direction x(o). (By this we mean an accumulation point of x(#k)/llx(#k)ll,
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where #k 0 is a sequence such that IIx(#k)ll is unbounded.) We may conclude
that wTx(oc) <_ 0 using an analogous argument as above and the fact that fo(x)/#
is bounded for x E P and the barrier term is sublinear. By construction (w de-

mfined a first center), w -=0 Vf(x)n with some positive constants n. Hence,
tVf(x0)Tx(cx) >_ 0, i.e., either Vf(x)Tx(cx) 0 for all i, in which case must

be constant along x + Ax((x), A >_ 0, and x was not the unique minimum of 1, or
there exists i such that Vf(x)Tx(cx) > 0, which again leads to a contradiction.

Part 3. The third part of Lemma 3.2 follows immediately from Lemma 8.1 since
x(#) is bounded for # e (0, 1].

Part 4. Note that when multiplying (7) by # we obtain

m

x(#) arg min #u(x) arg min fo(x) #E ln(-(x, #)) wTx.
i--1

Let x" x* + #(x- x*). By convexity, f(x’,#) _< -# for all i. (In 3.1, the
constraints were shifted such that f(x) _< 1 for all 1,..., m.) This implies that

m

-# ln(-f(x’, #)) #wTx" _< -m# ln(#) #wTx" --+ 0
i=1

as # --+ 0. (Note that wTx" is bounded for # [0, 1].) By continuity of f0 it also
follows that fo(x") fo(x*), so that limsup,_0#,(x" < fo(x*). From Part 2
above and continuity of f0 it follows that liminf,_,0 fo(x(#)) > fo(x*). Furthermore,
#,(x(#)) < #t,(xt’), and since the logarithmic barrier terms ln(-f(x(#), #)) and
wTx(#) are bounded below for # (0, 1], the claim follows from the above inequalities.

B.2. Substantiation of the convergence results. We do not give a com-
plete proof for our convergence results here--we did not exactly specify an algorithm
either--but will explain the reasoning behind the convergence statements in 4.5.

Assume that (CP) satisfies the conditions of Lemma 3.2.
1. First we note that the extrapolation yields a strictly feasible point for g, so

that Newton’s method with linesearch will eventually converge at each iteration.
2. Furthermore, x(#) is a smooth curve in # (by the implicit function theorem;

the f are twice continously differentiable and g is strictly convex). This implies that
the extrapolation will not "stagnate" at some positive value of p--the assumption that
amax "- 0 while # > 5 > 0 leads to a contradiction to the continous differentiability
of x(#) (straightforward).

3. Finally, from Theorems 1.1 and 1.4 in [30] it follows that xk satisfies the same
limit relation as x(#). (The sets 15 Pg 3 { x fo(x) < fo(x*) + # } converge to the
optimal set, and the above theorems imply that the iterates xk are in a fixed multiple
(depending on c < 1) of inner ellipsoids of the sets Pg.)

These observations lead to the first statement in 4.5. For the second statement,
not the following.

1. If P is empty, clearly the method will stagnate (amax -’-+ 0) while # > 5 > 0,
or Newton’s method will diverge (if x(#) does not exist).

2. If (CP) is feasible but does not have an optimal solution, it follows that
either x(#) does not exist, or x(#) - x3 as # -+ 0. In the first case, Newton’s method
diverges. (The stopping criterion is never satisfied, since I]AX]]H < 1 would imply
that the function does have a minimum.) In the latter case, xk
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AN ALL-INCLUSIVE EFFICIENT REGION OF UPDATES FOR
LEAST CHANGE SECANT METHODS*

HENRY WOLKOWICZ AND QING ZHAO

Abstract. Least change secant methods, for function minimization, depend on finding a "good"
symmetric positive definite update to approximate the Hessian. This update contains new curvature
information while simultaneously preserving, as much as possible, the built-up information from the
previous update. Updates are generally derived using measures of least change based on some function
of the eigenvalues of the (scaled) Hessian. A new approach for finding good least change updates is
the multicriteria problem of Byrd, which uses the deviation from unity, of the n eigenvalues of the
scaled update, as measures of least change. The efficient (multicriteria optimal) class for this problem
is the Broyden class on the "good" side of the symmetric rank one (SR1) update called the Broyden
efficient class. This paper uses the framework of multicriteria optimization and the eigenvalues of
the scaled (sized) and inverse scaled updates to study the question of what is a good update. In
particular, it is shown that the basic multicriteria notions of efficiency and proper efficiency yield
a region of updates that contains the well-known updates studied to date. This provides a unified
framework for deriving updates. First, the inverse efficient class is found. It is then shown that
the Broyden efficient class and inverse efficient class are in fact also proper efficient classes. Then,
allowing sizing and an additional function in the multicriteria problem, results in a two parameter
efficient region of updates that includes many of the updates studied to date, e.g., it includes the
Oren-Luenberger self-scaling updates, as well as the Broyden efficient class. This efficient region,
called the self-scaling efficient region, is proper efficient and lies between two curves, where the
first curve is determined by the sized SR1 updates while the second curve consists of the optimal
conditioned updates. Numerical tests are included that compare updates inside and outside the
efficient region.

Key words, least change secant methods, unconstrained minimization, multicriteria efficiency,
proper efficiency, quasi-Newton methods, eigenvalues, sizing, scaling
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1. Introduction. We consider a unified multicriteria framework for deriving up-
dates for least change secant methods (also called quasi-Newton methods) for the
unconstrained minimization problem

(P) min f(x)

where f is twice continuously differentiable. Starting with a current approximation to
a local minimum for (P) (denoted xc) and a symmetric positive definite (spd) approx-
imation (denoted Be) for the current Hessian, these methods perform an inexact line
search in the Newton direction d -Hege to find a new point x+. (Here ge Vf(xe)
and H B-.)

Under the assumption that Be is spd and that the line search satisfies some Wolfe-
type conditions, the success of these methods depends on finding an updated spd
Hessian approximation B+, which satisfies the secant equation and preserves current
built-up curvature information in Be. Various update formulae have been proposed.
The updates usually arise from some proposed measure of least change, which gen-
erally depends on the eigenvalues of the scaled update B H/2B+He/2. These
updates include the well-known Broyden class of updates, which then includes the
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Davidon-Fletcher-Powell (DFP) and Broyden-Fletcher, Goldfarb, Shanno (BFGS)
updates and their convex hull, termed the convex class. The BFGS is currently the
most popular update. (See e.g., [11] for details on various measures and updates.)

The fundamentM concept in multicriteria decisionmaking is that of an efficient
point, sometimes called a nondominated solution or Pareto optimum; see, e.g., [9], [22].
This refers to optimal solutions in the presence of multiple objectives. A decision-
maker (DM) can then choose a "best" efficient solution based on some utility function;
see, e.g., [19]. The framework of least change secant methods has the, possibly con-
flicting, objectives of minimizing the distances between 1 and each of the n eigenvalues
of the scaled update. Currently, only single objectives dealing with some function of
the eigenvalues have been used to derive updates.

The starting point of this paper is the result of Byrd [2]. This result states
that the efficient class of updates, with respect to the multiobjective optimization
problem consisting of the objective functions IA1/2 H/2

c --+ c )-11, i=l,...,n, is
the Broyden class on the good side of the SR1 update. This efficient class, called the
Broyden efficient class, includes the convex class of updates. In this paper we extend
the results of Byrd; we use the framework of multicriteria optimization to find a region
of efficient updates that includes the Broyden efficient class found by Byrd, as well
as other important updates. We first find the efficient class of inverse updates and
then show that both the Broyden efficient class and inverse efficient class are proper
efficient classes. However, there are many important updates that are not in the
Broyden class. In fact, selective sized updates (e.g., [6]) have outperformed updates
in the Broyden class. By replacing the 1 in the above functions by t and adding
the additional objective function It- 11, we obtain a new multicriteria problem that
results in a two parameter efficient region of updates. This region, called the self-
scaling efficient region (SSER), contains the sized updates.

In particular, the following measures are functions of the eigenvalues that lead
to updates that are contained in the SSER: the weighted Frobenius norm measure
that results in the BFGS and DFP updates; see, e.g., [11]; the measure (A)
trace(A)-log(det(A)), which is used in the convergence analysis in [4] and also results
in the BFGS and DFP updates, see [13]; the standard condition number measure

(A) i(A)/An(A), which results in a curve of sized updates, see [2], [25], [18]; the
uniform condition number w(A) (trace(A)/n)/(det(A)1/4) which results in the sized
DFP and inverse-sized BFGS updates, also called the Oren-Luenberger self-scaling
updates, see [10]; the optimal volume measure a(A) A(A)/(det(A)-) and the
resulting optimally conditioned, sized, SR1 updates; see [25]; and the dual optimal
volume measure T(A) trace(A)/An(A), (see [24]) which leads to the same optimally
conditioned, sized, SR1 updates, see [26]. (See [26] for results on these and other
condition numbers, their relations to measures for least change, and also their relations
to potential functions.)

The recent introduction and popularity of automatic differentiation [16], [12]
raises questions on the importance of quasi-Newton methods in the future and, in
particular, on whether it is worthwhile expending a lot of energy on finding better
and improved updates. However, there are many problems where automatic differ-
entiation is not suitable, e.g., where function evaluations may require an unknown
number of iterations. Moreover, though the area of least change secant methods has
been intensively studied for a long time (since [7]), there are still many fundamental
unanswered questions. In fact, understanding what makes one update better than
another, and whether scaling or inverse scaling is better, are still open questions.
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(See, e.g., [3].) In addition, proper implementation of quasi-Newton methods to large
sparse problems also remains an open problem.

The paper is organized as follows. We first conclude this section with some
preliminary notations and results. Section 2 presents the preliminary definitions and
notation for multicriteria problems. We then present and prove the above mentioned
result of Byrd as well as present the inverse efficient class of updates and show that
both classes are proper efficient. Section 3 presents our main result, the efficient
region of updates. This region lies between two curves determined by the sized SR1
and the optimally conditioned sized updates. Moreover, by allowing sizing by t but
not including the extra function [t- 11 in the multicriteria problem, we get an efficient
curve of updates corresponding to optimally conditioned sized updates. This region
and curve are also proper efficient sets. We conclude with some numerical tests
illustrating the efficient region.

1.1. Preliminaries. The update at the new point x+ (denoted B+) satisfies the
secant equation

B+s y,

where the change in x is s x+ x and the change in the gradient is y g+ g.
We let H denote B-1 and define the curvature formulas

a yHcy, b ys, c= sBcs.
We assume that the current update B is spd and the curvature b > 0.

The Broyden class of updates is

1 1
(1.1) B B sB-----BssB + -yy + (1 )sBswwt,

where

1 1
w y- Bcs.yts stBs

Since Bc spd and b > 0 are assumed, we have Be is spd if and only if < ac/(ac-b2).
Choosing 0, 1 yields the well-known DFP and BFGS updates, respectively; the
set of updates with [0, 1] is called the convex class; while the symmetric rank-one
update, denoted SR1, corresponds to the value Csm -c/(b- c). (See, e.g., [11],
[21] for details.) The current update is sized by the positive scalar t, which means it
is changed to tBc; see, e.g., [10].

We work in the space of symmetric matrices equipped with the trace inner product
(A,B) traceAB. For a symmetric matrix A, we let A(A) >_ A2(A) >_... _> n(A)
denote its ordered eigenvalues. By abuse of notation, we let A() denote A(B())
when B() is a symmetric matrix dependent on the parameter .

2. Multicriteria optimal updates. In this section we introduce our first mul-
ticriteria problem and show that the efficient updates are the Broyden class updates
on the good side of the SR1. We also derive the efficient class of inverse updates
and show that both classes of updates are properly efficient. We first introduce the
multicriteria problems and give some definitions and preliminary results.

Consider the multiobjective optimization problem

(2.1)
min g(z), i- 1, m,

subject to z
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where gi n
__

), are m real valued objective functions. A point z is dominated
by z2, denoted z2 - z1, if

gi(z2) _< gi(zl), i- 1,...,m, and gj(z2) < gj(z1) for some j.

(We use z2

_
z if Z is weakly dominated by z2, i.e., if _< holds for all without the

possible strict <.) The efficient set is the set of points z E gt that are not dominated
by any points in t. z is said to be a properly efficient solution of (2.1) if it is in the
efficient set and if there exists a scalar M > 0 such that, for each i, we have

a (z) < { s.t. gj(z) > gy(z) and
g’(z)-g’(z) < M3j
gj(z)-g(zO)

(see [15]). Thus, for any point z, we can find a constant M, such that for each gain
there exists a loss where the gain over the loss is bounded above by M. Thus, the
marginal improvement is bounded. Note that an efficient point that is not proper
efficient allows for an arbitrarily large gain in one objective function at the expense
of only a small loss in another objective function. Therefore, efficient points that are
not proper are not desirable.

We now present some preliminary results on the parametrization of the Broyden
class; see (1.1).

LEMMA 2.1. [21, pg. 111] The matrix BI/2BcB/2 has n- 2 unit eigenvalues
and the two remaining eigenvalues are

(2.2) )=t= () fl () + (fl ()2

where

(2.3) fl ()
a(b + c) -2b2(ac

b2) f2()- ab (aCbc- b2)

Every member of the Broyden class satisfies the secant equation. The following
result of Davidon gives conditions for the converse.

PROPOSITION 2.1. [8] Suppose that B+ is spd and satisfies the secant equation.
Then the columns of B+- Bc are in the span of (Bcs, y} if and only if B+ is in the
Broyden class.

COROLLARY 2.1. Suppose that B+ satisfies the secant equation. Then B+ is in

the Broyden class if and only if the matrix B H/2B+Hc/2 is an update of I of rank
at most two and it has n- 2 unit eigenvalues with corresponding n- 2 dimensional

1/2eigenspace orthogonal to span{Bc s,Hc/2y}.
Proof. Proposition 2.1 above implies that B+ is in the Broyden class if and only

H1/2if the columns of B I are in span(Bl/2s, c sj, i.e., B I is at most rank two and
has eigenvectors corresponding to nonzero eigenvalues in the above span.

We will also need the following lemma which we call the perturbation lemrna.
LEMMA 2.2. Let B be a symmetric matrix with eigenvalues >_ >_

BSuppose that B satisfies the scaled secant equation (Bc/2S) H/2y. Then the
following are true.

(i) For any two eigenvalues Ak >_ > 1, we can find a symmetric matrix B sat-
1/2 H1/2isfying the secant equation B(B. s) , such that its n eigenvalues X1,...,
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satisfy

Ai >_ Ai >_ l for i= k,j

)i i for i-1,...,n, j,k,

with at least one of k < Ak or j < Aj;
(ii) For any two eigenvalues )k <_ Aj < 1, we can find a symmetric matrix [

satisfying the scaled secant equation [(Blc/2S) Hc/2y, such that its n eigenvalues
.kl ,An satisfy

;ki <_ ) <_1 fori-= k,j

)i i for i--1,...,n, i j,k,

with at least one of k > Ak or j > Aj.
Proof. To prove (i), let xl,... ,xn be a set of orthonormal eigenvectors corre-

sponding to A1,..., An. Find c, E , not both 0, such that

o,

( a ) z+/- zt (sB/2)[Xk xy] Seti.e., 0 Z e

ocw=[z z ]

Let

(2.4) [ B eww

and denote its eigenvalues by Ai with corresponding eigenvectors i, i 1,..., n. We
can see that/ satisfies the secant equation. Moreover,

Ai=Ai, i=l,...,n, ik,j

and for e > 0, since w is in the span of {xk, xj} and w 0,

<_A, i=k,j,

with at least one of Ak < Ak or Aj < Aj.
By a similar argument with e < 0, we can show (ii).
2.1. Broyden etficient class. The general notion of least change is that we

want B+ spd such that the secant equation B+s y holds and B+ is "close" to Be.
If we view Bc and B+ as quadratic forms, then we can define close as satisfying

(2.5) utB+u is close to 1 for all u n.
utBu

Equivalently,

(2.6) xtHB+Hx is close to 1 for all x n.



EFFICIENT REGION OF UPDATES FOR LEAST CHANGE SECANT METHODS 177

This implies that all of the eigenvalues of Hc/2B+Hc/2 satisfy

(2.7) Ai is close to 1, i 1,..., n.

(If we view the inverse updates instead, we would consider the eigenvalues of
Bc/2H+BI/2.) Motivated by this, Byrd [2] considers the following multiobjective
least change problem, where the functions in (2.1) are gi(x)- Ix- 1 I"

(2.8) min,+ [Ai(HB+H) 11, 1,..., n,
subject to B+s y, B+ Bt+.

Let

[sRl,oc) if b > c,
(2.9) ( (-oc, Csm] if b < c,

(-oc, c) if b c.

We let (I) represent the subset of the Broyden class of updates {Be, E (I)}, and call
it the Broyden efficient class. This is the set of Broyden class updates on the good
side, or convex class side, of the SR1. We now state the result presented by Byrd [2].
We provide our own proof for completeness.

THEOREM 2.1. The eJficient set for problem (2.8) consists of the Broyden efficient
class, i.e., the Broyden class with .

Before proving the theorem, we first note that the efficient class for our multicri-
teria problem has the following dominating property.

LEMMA 2.3. Suppose that B B satisfies the secant equation. Then there exists
an efficient update B for (2.8) such that B

_
B.

Proof. The proof follows by an application of Zorn’s Lemma upon noting that
the set of updates {B" B

_
B} is compact; see, e.g., Theorem 1 in [1].

We now use the perturbation lemma and the above lemma to prove the theorem.

Proof. Let B+ be in the efficient set for problem (2.8) and let B H/2B+H/2.
Then B satisfies the scaled secant equation

(2.10) B(B s) (Hy).

Let A >_ _> An be the eigenvalues of B with X1,..., Xn a set of corresponding
orthonormal eigenvectors. First we show that

(2.11) A2 ,n--1 1.

Suppose not and suppose that

(2.12) A2 > 1.

By Lemma 2.2 we can find an update B such that B -< B. This contradicts the fact
that B+ is an efficient point. So (2.12) fails. Similarly, we cannot have 1 > An-l, i.e.,
(2.11) must hold and B is an update of I of at most rank-two. It remains to show
that B is in the Broyden class with parameter (I). We do this by first showing
that it solves the following problem

min Ax(A)
A

subject to AB2 s- Hy,

A(A) _> A(B),
A= At.
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Since A1 is a convex function while An is a concave function, the above is a convex
programming problem. Since IIAII- max{l(A),-n(A)}, we can assume that the
feasible set is bounded. Therefore, the minimum is attained say at A. Then, since B
is feasible, we have

(2.14) AI(B) >_ AI() >_ An() _> An(B).
By Lemma 2.3, there must be an efficient update that weakly dominates and, since
any efficient update satisfies (2.11), it weakly dominates B as well. The efficiency of
B now implies that B A solves (2.13).

We now use the optimality conditions for (2.13) with Lemma 2.3 to show that the
update is in the Broyden class. For some Lagrange multiplier vector u and nonnegative
scalars v, w, the Lagrangian for problem (2.13) is

L(u,v,w,) wl + ut(Bs Hy) -v(, ,n),
where u, v, w cannot all be 0 and Ai Ai(A). We have added the multiplier w to avoid
assuming a constraint qualification, i.e., in the absence of a constraint qualification
we necessarily have w 0; while if a constraint qualification holds for (2.13), then we
can assume that w 1. We can differentiate the Lagrangian and set it equal to zero
to get the Lagrange equation (or Fritz John stationarity condition)

1/2 1/2 v’. 0.(2.) i + B + B +
Here A are subgradients; see, e.g., [20]. First suppose that a constraint qualification

r1/2holds, so w 1, and suppose that v > 0. Since the rank of zc su + ustBlc/2 is at
most 2, we must have the ranks of the subdifferentials equal to 1, i.e.,

-t1 and n XnXn"

(Note that u 0 implies that A An, which would uniquely define the trivial identity
update. In fact, the entire Broyden class must reduce to this trivial update in this

,1/2case, since necessarily a b c.) Now (2.15) implies that c s e span(x1, xn}.
H1/2The secant equation (2 10) now implies that is in this span as well. Therefore

(2.11) and Corollary 2.1 implies that B is in the Broyden class.
If v 0, then the Lagrange equation now implies that either A is rank-one, so

i_/I/2
c s and c y are in span{x1}, i.e., are linearly dependent, or it is rank-two and

the eigenvalue A1 A2 1. In either case we can still apply Corollary 2.1 and we
have the SR1 update. The same argument holds if w 0.

Therefore, it only remains to show that B is in the efficient part of the Broyden
class. If b c then there is nothing to show. If b < c, then from Lemma 2.1, the
eigenvalues for the SR1 update satisfy 0 < A-(sR1) < 1 A+(sm). If An <
A-(Sm), then we have Bi)sm B, which is a contradiction. Therefore

(2.16) , _
,- ((SR1),

i.e., B Be with E (I), since A_() is isotonic with -, by Lemma 2.1.
The case b > c follows similarly except we use the fact that B is optimal for the

following problem

max

subject to BB2 s H2 y,
AI(B)

_
AI(B),

/=
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Now we have shown that any efficient point B must be in the Broyden efficient class,
(I). Conversely, for any update Be in the Broyden efficient class, A+() are isotonic
with - and (2.11) holds. Thus Be cannot be dominated by any other updates in the
Broyden efficient class, (I). Moreover, we can restrict ourselves to (I) since any update
can be dominated by an efficient update by Lemma 2.3.

Note that (2.7) is a relaxation of (2.6), which involves an infinite number of
functions. One way of handling (2.6) directly is to use the volume of the ellipsoids
corresponding to the quadratic forms. This is the approach in [25].

2.2. Inverse Broyden efficient class. The inverse Broyden class updates can
be parametrized by

1

where

1 1

The BFGS and DFP updates correspond to 0, 1, respectively; while the SR1
update is Snl -a/b- a. In general,

5
1 +[

is a 1-1 and onto mapping (c.f. [231) that relates and for which Be is spd and

B-1 H$. Now consider the inverse multi-objective least change problem

(2.18) min IX,(BH+B) II, 1,..., n;
subject to B+s y, B+ Bt+.

Let

(2.19) ) (--O, (SR1
if b > a,
if b < a,
ifb-a.

We let represent the subset of the Broyden class of updates {Bq, e }, and
call it the inverse Broyden efficient class. From the previous section, after exchanging
the roles of B+, Bc and s with H+, Hc and y, respectively, we get the following
corollary.

COROLLARY 2.2. The efficient class for problem (2.18) consists of the inverse

Broyden class with E .
2.3. Proper efficiency. As mentioned above, an efficient point that is not proper

efficient is not desirable, since we can obtain an arbitrarily large marginal improve-
ment. However, based on the results of Theorem 2.1, we can present the following
theorem.

THEOREM 2.2. The Broyden efficient class for problem (2.8) is also the properly
ejficient class for problem (2.8). The same holds true for the inverse ej’ficient class
and the problem (2.18).
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Proof. Let Bo be an update in the Broyden efficient class. Without loss of
generality and for simplicity of notation, we can assume that Bc I. By abuse of
notation, let

h,(o) [A,(Bo)- 1l, i= ,... ,n,

and let hi (+) denote Ai (B+) 1 I. Then
h(o)=[A(Bo)-ll=0 fori=2,...,n-1,

and so, to show that Bo is proper efficient, it is sufficient to only consider the two
cases i 1 and n. In addition, if ac b2, the entire Broyden class reduces to the
SR1 update. Therefore every update is dominated by the SR1 update which must
therefore be proper efficient. So we can also assume that ac > b2.

Let B+ be a symmetric update satisfying the secant equation such that

(2.20) hi (+) < hi (o).

As in the proof of Theorem 2.1, we can use Lemma 2.2 and find a Broyden efficient
class update B1 such that

(2.21) hi(C1) _< hi(+), i= 1, n.

Therefore, from (2.20) we have

hi (1) < hi (o),

which implies that AI(BI) < AI(Bo). Since Lemma 2.1 implies that A+() are
isotonic with -, we have 1 > o and hence

<

which is equivalent to

(2.22) hn(l) > hn(0).

Therefore, from (2.20), (2.21), and (2.22)we have

hi (1) <_ hi (+) < h (o),
hn(-k)

_
hn(l) > hn(0).

This together with Cauchy’s mean value theorem yields

(2.23) h1(o) hi(q-) < h1(0) hi(el) )+(o) ,+(1)
ha(+) hn(O) ha(el)- ha(CO) -(o)- )-(1)

for some o < < 1 with A

_
() 0.

From Chapter 7 in [21] or Lemma 2.1, we have

A:() -(ac b2)
2b2

(1 =k g()),

where

b ac-bg()
[(/()_)2+ c2 ]1/2

<1"
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Let

() 1 + g()(2.24) h() _()= 1-g()"

Then

h’()
Oh Og Of 2 ac b2 -(ac b2)

b) -b < 0Og Of 0 (1 g)2 ((f1() + c. 2b2

i.e., we obtain the upper bound for gain over loss

A_(0) 1 + g(0)
_() A(0) 1 g(0)"A-

For the case of n in the definition of proper efficient, a similar argument yields
the upper bound 1- g(0)/1 + g(0). Therefore, Bo is a properly efficient solution
of problem (2.8). The proof for the inverse efficient class follows similarly. [3

3. Self-scaling efficient region. The above Broyden efficient class of updates
does not contain many important updates that have been studied in the literature,
e.g., the Oren-Luenberger self-scaling updates to which we refer as sized updates. We
now relax the multicriteria problem (2.8) by allowing sizing of Bc by t and adding
the function It- 11. The relaxation attempts to have all the eigenvalues close to a
constant, where the constant is close to 1. (The constant was equal to 1 in the first
multicriteria problem.) We then see that we get an efficient region that contains all
the classes mentioned so far. The relaxation yields the following problem.

(3.1) mint,B+ { Iiti((tB)-1/2_ll B+(tB)-1/2) 11,

subject to B+s y, B+ B_,

i= 1,...,n,

t>0.

The self-scaling Broyden class is

( ) 11 BcsstBc + (1 )stBcsww + _yyt,B+ (t, ) t

where w (1/yts)y- (1/stBcs)Bcs and t e . This includes the sized DFP with
a 1). Ifac> b2 then we(t, () (,b 0) and the inverse sized BFGS with (t, ) (,

define the region

min(1, a_) _< t(t,)" t<_max(1, a+) and

ac-b
ac

ac_b --arbitrary

ifl<t

ift<l
bif<t

bift<
b-- 1ift=

where

(3.3) a+ -4-
b2 c
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If ac- b2, then we define the region

(3.4) { (b) <t<max(1,) Carbitrary}O= (t,)’min 1,
c

We let OR represent the appropriate region determined by the value of ac- b2, i.e.,
it represents the sized Broyden class updates B+(t, ), (t, ) e OR,

if ac > b2
01t= ifac=b2:

We call OR the SSER. The above representation illustrates that the efficient region
lies between the two curves:

ac t b

ac-- b2 t

We also define the curve

(3.5) Oc (t, )" a_ < t < a+ and %_:_b__ac
arbitrary ifac-b2>O)}if ac- b2 0

and call Oc the self-scaling efficient curve. Note that this curve contains optimally
conditioned updates, i.e., updates optimal for the n measure; see [2], [25], [18]. (See
Figs. 1 and 2 for illustrations of the various efficient sets.) We now state and prove
our main results.

THEOREM 3.1. The efficient updates for problem (3.1) are the SSER updates
B+(t, ), with (t, ) e On.

Before we prove the above theorem, we present the following preliminary results.
LEMMA 3.1. The matrix B (tBc)-l/2B+(t, )(tBc)-/2 has n- 2 unit eigen-

values and the two remaining eigenvalues are

A+ (t, ) fl (t, ) 4- (/1 (t, )2 f2 (t, )) 1/2,

where

a ac-(ac-bYl(t, ) +
(-)).f2(t, ) -i(b bc

Furthermore,
(i) A+/- (t, ) are isotonic with - for any fixed t, and

0
-(ac b2) [1 4- g(t, )]

2b2

where

g(t, )
(fl (t, )

b ac-b[(fl(t, ) )2 + t2,c 11/2
and Ig(t, )] <_ 1;
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ac
ac-b 2

SR1 Curve

SR1 Curve

Efficient Region

FIG. 1. Efficient region for -i < 1.

(ii) /+(t, ) are isotonic with-t for any fixed , and

(3.6) OA+(t, ) a
(1 + d(t, ))Ot 2bt9

where

tbfl (t, ) -ff f2 (t, )
d(t, )

(fl2 (t, ) f2 (t, )) 1/2’

and Id(t, )1-< .
Proof. Note that a becomes a/t and c becomes ct when Bc is sized with t. The

results in (i) are straightforward extensions of those in [21]; see, also, Lemma 2.1. Here
we only prove (ii). Differentiating A+(t, ) yields (3.6). Now, to show that A+(t, )
are isotonic with -t, we need only show that Id(t, )1 -< . By squaring both sides,
we have

( b
I(t, )fl (t, )

which is equivalent to

(1-(ac-b2))

_< f? (t, ) f. (t, ),

(1- a) < 0.
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ac
ac-b 2

SR1 Curve

b/c afo ix+

Efficient Region

SR1 Curve

FIG. 2. Efficient region for - > 1.

Therefore, we have

d(t,)=l if= ac
ac-b

d(t, ) < 1 otherwise.

Note that the derivatives may not exist in the case of multiple eigenvMues. In this
case, they are subdifferentiable, since the scaled update B(t, ) is a linear function of
and 1/t and so the largest and smallest eigenvalues are convex and concave functions,
respectively, of and 1/t.

LEMMA 3.2. Suppose that ac-b2 > 0 and (t1,1) E R. Then the level curves

for +(t, ) passing through (tl, 1) are_
A+(tl, l)b +

ac A+(tl’ l)b2

fort>
b

+(tl, 1)ct b ac b2 + (tl, 1)c

and _
(tl, 1)b ac

_
(tl, 1)b2 b

fo t
,-(tl, l)ct b ac 52 )-(tl, 1)c’

respectively.
Proof. Let (t, ) be on the level curve for A+(t, ) passing through (tl, 1). Then

()Lb(tl, 1 fl(t, ))2 f2(t, )- f2(t, ),
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which is equivalent to

A2 (tl 1) 2A+(tl

By putting the expressions for fl (t, ) and f2(t, ) into the above equality, we have

A+(tl, 1)b ac A+(tl, 1)b2= ++(t1, 1)ct b ac b2

Moreover, the Raleigh quotient implies that

A+(tl,l) > ((tBc)1/2s)t(tBc)-1/2B+(t’)(tBc)-1/2)(tBc)1/2s b__..
II(tB)1/2 s)ll 2

Therefore, the level curve is the branch for
Conversely, for any (t, ) on the curve

A+ (tl, 1)b ac + (tl, 1)b2

(3.7) +A+ (tl, 1)ct b ac b2

bwhere t > +(t1,1)c, we have

]A+(t, )- fl(t, )l (f2(t, )- A(t, ))1/2.
Now A+(tl, 1)- :l(t, ) > 0 is equivalent to

ab (ac b2-: +
252 < A+ (t1, 1 ).

After substituting for using (3.7), and noting that t > (b/A+(tl, 1)c), this is equiv-
alent to A_(tl, 1)ct2 2A+(tl, l)bt +a > 0. This further reduces to 4A_(tl, 1)(b2

ac) < 0, which clearly holds. Therefore (3.8) becomes

A+(tl, 1) fl(t, ) (f12(t, )- f2(t, ))1/2,
which yields A+ (t, ) A+ (tl, 1).

By a similar argument we obtain the level curve for A_.
We now prove the above theorem.
Proof. From Theorem 2.1, for any fixed t > 0, we need only consider sized Broyden

class updates in the set

> t ift< b

}ct-b -d
Ot . < t ift> b

ct-b
arbitrary if t
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First suppose that ac-b2 > 0. Ifwe are given a scaled update B(t, ) with E (I)t, then
to check efficiency we need to see if the update can be improved with respect to the
n+l functions in (3.1). From the proof of Theorem 2.1, we know that (2.11) holds, i.e.,
2 n--1 1. Therefore, we need only consider the largest and smallest eigenvalues,
A+. Moreover, if r l/t, then the scaled update is linear in (r, ), which implies that
the largest and smallest eigenvalues A+ are convex and concave functions, respectively,
of (r, ). Therefore directions of descent correspond to negative directional derivatives.
Thus it is easier to view the functions in the space (r, ), which we do.

First suppose that an efficient point (r, ) is given and that r < 1 (or equivalently
t > 1) and A1 > 1 > An. If we hold r fixed, then we obtain E (I)t by Theorem 2.1.
Otherwise, at the point (r, ), consider moving in the direction e (1 x) e 2. Then
there is a gain in r and so efficiency implies that we cannot have a gain in both A+ as

well, i.e., from Lemma 3.1, the directional derivatives (in (r, ) space) cannot satisfy

ac-b2(1 + g) < 0,
(3.10)

VA_e b(1 + d) x 2b

V _e b(1 d) x ac-b2. (-g)>0.

(Note that we have used

0A+ (r, ) OA+ (t, ) -1
Or Ot r2

since t .) This reduces to

1 / d ac- b2 2b 1 d
<--x<

1 + g 2b2 a 1 9

which is feasible for x if and only if d < g or equivalently

ac t- b

ac- b2 t

i.e., if t > 1 and A+ > 1 > A_, then efficiency implies

ac t- b

ac- b2 t

If )+ I (respectively,

_
1), then the < (respectively, >) is replaced by <

(respectively, >) in (3.10). Moreover, ac- b2 > 0 implies that + > A_. Thus
(, t) e .

The conclusions for t < 1 are similar, i.e., finding a direction of improvement
implies that d > g or

ac t- b
c

ac- b2 t

Therefore, if t < 1, then efficiency implies

ac t b

ac- b2 t

The case for t 1 follows from Theorem 2.1. The above argument for efficiency is

reversible, since the functions + are convex and concave, respectively.
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If ac b2, then for each fixed t, the scaled-sized Broyden class reduces to the
scaled-sized SR1 with n- 1 unit eigenvalues and the remaining eigenvalue given by

1+
tb

Therefore we need only solve the multicriteria problem with the two functions

)a

This completes the proof that @//is the efficient region. F1

THEOREM 3.2. The proper elCficient updates for problem (3.1) are the e]ficient
region updates.

Proof. To prove proper efficiency, we need to consider several cases arising from
the definition of the efficient region. Suppose that (t, ) E @// is given. As in the
proof of Theorem 3.1, we continue to let: (t, ) represent the update B+(t, ); and
we let A+/-, or Aim, represent the largest and smallest eigenvalues, respectively, of the
corresponding scaled update. As in the proof of Theorem 2.2, we can restrict ourselves
to 1, n and to efficient updates. But, we need to consider the additional objective
function It- 1 I. Moreover, we let (, ) E @R be a given second efficient point, and
consider the points and functions in (r, ) space, where r lit. (So that A+/- are
convex and concave functions, respectively.)

By efficiency, we know that A A+ _> 1 >_ A_ An. Therefore, a gain (re-
spectively, loss) in the first function corresponds to A+ > A+ >_ 1 (respectively,
A+ > A+ > 1). Similarly, a gain (respectively, loss) in the n-th function corre-
sponds to A_ < A_ < 1 (respectively, A_ < A_ < 1). However, a gain or loss for the
last function is not as simple, e.g., if r < 1, then a gain (respectively, loss) can be
r<4< lorr < 1 <4<2-r, (respectively, 4<r_< lorr< 1 <2-r <4).We
must treat several different cases corresponding to different choices for the numerator
and denominator in the gain over loss ratio. We prove the first few cases directly by
finding an upper bound to the gain over loss ratio. We then complete the remaining
cases by using a proof by contradiction.

Case 1. Suppose that we. measure a gain in the first function for (4, ); thus
A < A since efficiency implies .A >__ 1 > An. By efficiency of (r, ) we must have a
loss in r or in An.

Subcase 1.1. Suppose there is no loss in r and so there is a loss An < An. If r stays
constant, then a bound for the gain/loss ratio follows by applying Theorem 2.2 to the
sized update. Otherwise, the direction between the two points must be e (=El x) t,
for some x.

Subcase 1.1.1. Suppose first that r < 1 so that the direction is e (1 x). Since
A+/- are convex and concave functions, the ratio of directional derivatives at (r, ), in
the direction -e, provides an upper bound on gain over loss, i.e.,

(3.11) < w
If we differentiate this ratio of directional derivatives, we get

(i + #))__0 i(i
ac-b(1 g)OX b (1-- d) X 2b

K(d- g)
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for a positive constant K. We have seen that when t > 1, efficiency means that
d-g >_ 0. Therefore, we need to increase x to infinity to get the largest gain over loss
ratio, i.e., this means that t stays constant and we can apply the result in Theorem
2.2 to the sized update and get a bound that depends only on (t, ). In particular,
the right-hand side in (3.11) yields 1 / g/1 g as x --. oe. (See, also, (2.25).)

Subcase 1.1.2. If r 1, then we cannot have an improvement in r and the direction
must keep r constant if there is no loss in r. We can again apply Theorem 2.2.

Subcase 1.1.3. If r > 1 and there is no loss in r, then the direction must be
e (-1 x). Differentiating the ratio of directional derivatives now yields -(d-g) up
to a positive constant. Efficiency in the case t < 1 now implies that this derivative is
nonnegative and so we again increase x to infinity, i.e., t stays constant and we apply
Theorem 2.2 to obtain the upper bound for the gain over loss ratio as in Subcase
1.1.1.

Subcase 1.2. The above presents a direct proof of proper efficiency in several cases
by providing upper bounds for the gain over loss ratio. The remainder of the proof
is by contradiction. First, suppose that (r, ) is efficient but not proper. Then there
is a sequence of efficient points (rk, Ck) such that the corresponding gain over loss
ratio goes to infinity. Let ek ((sk, Ck) --(S, ))/ll(Sk, Ck) --(S, )11 be the normalized
direction between the points. By choosing an appropriate subsequence, we can assume
that ek -- e. Then the gradient of the loss functions must be orthogonal to e. For
example, if the ratio is a gain for A+ over a loss for r, with rk ,C r

_
1, then

A+

_
<

8inee the left-hand side goes to infinity, and e e, we conclude that e is orthogonal
o (/ 0) d XZg(-) > 0, wim (0, ). u i diio
of decrease, or loss, for A_, so that the bound for the gain over loss ratio should use
A_. Moreover, 7A_e 0, a contradiction to the ratio being unbounded. We have
therefore proven Subease 1.2, where there is a gain in A+, a loss in r, and r < r _< 1.
To complete this special ease we have to consider r _< 1 < 2- r < r. This is covered

Cse 9. Where ghere is a gain in A_, this ease follows similarly. Note that the
gin over loss is A_ A_/A + -A+, which is a concave over convex function.

Gese 3. If we measure a gin in r, then there is loss in A+ (or A_). As bove,
there is a direction e (1 x) such that e is orthogonal to VA+. If r < 1, then
e- (1 x) and

a 2b2 1Wd a a 1 +d a
so that VA_e- (1- d) (1- g)- -2(g- d) < 0,x

2b ac- b2 1 - g - 2b 1 + g

i.e., e is a direction of decrease or loss for A_ and VA_e 0, a contradiction. There-
fore, the ratio is bounded again. The other cases follow similarly.

The ratio of gain in t over loss in one of the eigenvalues follows similarly, as does
the converse, upon noting that the function in t is linear.

COROLLARY 3.1. The e]ficient updates for problem (3.1) without the function
It- 11 are the self-scaling eJficient curve updates, i.e., the sized Broyden class updates
B+(t, ), with (t, )e

Proof. The proof follows from the proof of the above theorem by combining the
two cases t > 1 and t < 1.
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As was the case for the Broyden efficient class of updates, there is a corresponding
inverse efficient region that can be found by scaling the inverse updates and exchanging
roles appropriately.

4. Conclusion. We have used multicriteria objectives, based on the eigenvalues
of the scaled Hessian, to find an efficient region of updates. We have shown that
this region contains the well-known updates used to date. Since it is generally ac-
knowledged that the scaled eigenvalues are the determining factor in selecting good
updates, we see that we have found a general framework for deriving good updates.
Moreover, we have shown that the efficient region is proper efficient.

This region does not certify that each update in it is better than all the updates
outside the region. However, it does guarantee that, for each update outside, there
is an update inside that is better. The DM can now chose between different efficient
updates; see, e.g., [19].

Known results from the theory of multicriteria optimization can now be applied
to quasi-Newton updates. For example, we can use the characterization of proper
efficiency [15] to show that, for a given efficient update, there corresponds weights
wi, i 1,..., n+ 1 such that the update is the optimal solution of the single objective
optimization problem

mint,B+(4.1)
subject to

w, lA((tB)-1/2 B+(tB)-1/2 11 + Wn+lt 1

B+s y, B+ Bt+, t > O.

This provides new utility functions for deriving updates. Furthermore, by calculating
the weights, we can find the relative importance that different updates assign to
different eigenvalues.

Up until now, our derivation of the updates has not taken into consideration
modern techniques for finding search directions and stepsizes, e.g., using trust regions
and inexact line searches. However, the recent success of the selective sizing updates
in a trust region framework (Contreras and Tapia [6]) suggests that these techniques
should not be ignored. In both the line search and trust region techniques, lower and
upper bounds are found for the stepsize to guarantee both sufficient decrease of the
objective function, as well as convergence. (We restrict ourselves to the line search
algorithm.) Slow convergence can result if guaranteeing sufficient decrease continually
forces the stepsize close to its lower bound. For line search algorithms that use only
backtracking to guarantee sufficient decrease, it can be advantageous to avoid search
directions of small length. This can be done if the eigenvalues of the current Hessian
approximation matrix are not too large relative to the eigenvalues of the true Hessian.
This is indicated by avoiding b/c < 1.

To correct the large eigenvalues, Contreras and Tapia used b/c to size Bc, when-
ever b/c < 1. Byrd, Nocedal, and Yuan [5] showed that the BFGS update can rapidly
correct large eigenvalues. This property is diminished as is decreased in [0, 1]. In
particular, the DFP update has no such property. Recall that

B+ (t, ) tH2 BH2,
where B has n- 2 unit eigenvalues and the two remaining eigenvalues ,+/-(t, ) are
isotonic with - and -t. From this we can see that to decrease the eigenvalues of
B+(t, ) we should increase and t. Moreover, to avoid excess function evaluations
caused by an overly large quasi-Newton step, we also must make sure that the eigen-
values are not too small. The efficient region provides a balance among these multiple
objectives.
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TABLE

Methods 1 2 3 4 5 6
Iterations
Fn. eval.

Fails

1.1748 0.9840 0’9577 0.9583 0.9984 0.9267
1.1642 1.0655 0.9281 0.9387 0.9662 0.9372
4.0833 1.3333 1.0000 1.2500 1.0833 1.4167

TABLE 2

Order of best methods for
Iterations

Funtion evaluations
Failures

6 3 4 2 5 1
3 6 4 5 2 1
3 5 4 2 6 1

To illustrate how the efficient region works in practice, we choose updates inside,
close to the boundary, and far away from the efficient region. For comparison, we
also include the BFGS update and the selective sizing update of Contreras and Tapia.
(Except for BFGS, all the methods size the Hessian approximation by b/c at the
initial iteration. Here @c(t) is the value corresponding to t on the efficient curve.)
We now compare six updating methods.

(inside region) BFGS.
(inside region) if b/c < 1, use sized DFP with b/c; otherwise, use DFP.
(inside region) if b/c < 1, use B+ (t, ), where t is randomly selected from [b/c, 1]

with 0.9c(t) when t < 0.9 and 1 when t _> 0.9; otherwise use DFP.
(outside region) if b/c < 1, use B+(t, ), where t is randomly selected from

[b/c, 1] with -- 1.1c(t) when < 0.9 and - 1 when t >_ 0.9; otherwise
use DFP.

(inside region) if b/c < 1, use B+ (t, ), where t is randomly selected from [b/c, 1]
with 0.5@c(t) when t < 0.9 and 1 when t _> 0.9; otherwise use DFP.

(outside region) if b/c < 1, use B+(t, ), where t is randomly selected from
[b/c, (1 -+-b/c)/2] with - 0.5(c(t)+ 1); otherwise use DFP.

We use the standard set of 18 test problems from [14] with initial estimates scaled
by: .1, .5, 1, 2, 3, 4, 5, 6, 7, 8, 10, 20. The tests were done on a SUN SPARCstation 1
using a MATLAB translation of the codes in [11]. We set 450 as a limit on the
number of iterations. Failures were a result of too many iterations. In the case of a
failure, we added twice the standard deviation of the successes to the maximum of the
successes. We have used the priority theory of Lootsma and Saaty to obtain expected
values for iteration and function evaluation counts. (See, e.g., Hock and Schittkowski
[17].) The given expected values are relative to a value of 1 for the BFGS method
with an unscaled initial point. The numerical results and summary are in Tables 1
and 2.

The best method for expected iterations is Method 6; while the best for function
evaluations is Method 3. (Since Method 3 was better for failures, this result is depen-
dent on the penalty we assigned for a failure.) This supports our argument that large
quasi-Newton steps are obtained by increasing or decreasing t and that an overly
large quasi-Newton step could result in more function evaluations. The best methods
for failures are Method 3 and Method 5. Method 4 also did well. However, Method
6 did badly for failures. This shows that the risk of failures is larger for updates far
from the efficient region than for those in the efficient region. The bad performance
of BFGS emphasizes the importance of sizing.
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AN OPTIMAL POSITIVE DEFINITE UPDATE FOR SPARSE
HESSIAN MATRICES*

R. FLETCHER

Abstract. A Hessian update is described that preserves sparsity and positive definiteness and
satisfies a minimal change property. The update reduces to the BFGS update in the dense case and
generalises a recent result in [SIAM J. Numer. Anal., 26 (1989), pp. 727-739] relating to the Byrd
and Nocedal measure function. A surprising outcome is that a sparsity projection of the inverse
Hessian plays a major role. It is shown that the Hessian itself can be recovered from this information
under mild assumptions.

The update is computed by solving a concave programming problem derived by using the Wolfe
dual. The Hessian of the dual is important and plays a similar role to the matrix Q that arises in the
sparse PSB update of Toint [Math. Comp., 31 (1977), pp. 954-961]. This matrix is shown to satisfy
the same structural and definiteness conditions as Toint’s matrix. The update has been implemented
for tridiagonal systems and some numerical experiments are described. These experiments indicate
that there is potential for a significant reduction in the number of quasi-Newton iterations, but
that more development is needed to obtain an efficient implementation. Solution of the variational
problem by primal methods is also discussed and provides an interesting application of generalized
elimination. The possibility of instability and nonexistence of a positive definite update raised by
Sorensen [Math. Programming Study, 18 (1982), pp. 135-159] is still a difficulty and some remedies
are discussed.

Key words, sparse matrix update, positive definite matrix, BFGS formula
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1. Background and introduction. This paper primarily relates to quasi-Newton
line search methods for finding a solution x* of the unconstrained optimization prob-
lem

(1.1) minimize f(x) x e ]Rn.

These methods generate a sequence of iterates {x(k)}, k 1, 2,... by

x(k+l) x(k) .. o(k)8(k)

where s(k) is the current search direction and a(k) is a step chosen to approximately
minimize f(x). The methods require the gradient vector g(x) Vf(x) to be avail-
able, but not the Hessian matrix G(x) V2f(x). The latter is approximated by a
symmetric matrix B(k), which is initially arbitrary and is updated after each iteration.
B(k) is used to determine the search direction by solving the system

(1.3) B(k) s(k) _g.(k),

where g(k) denotes g(x(k)). B(k) is required to be positive definite (written B(k) > 0),
which implies that s(k) is a descent direction and ensures a reduction in f(x) in the
line search.

*Received by the editors November 6, 1992; accepted for publication (in revised form) Decem-
ber 14, 1993. This paper was presented at the Scottish Computational Mathematics Symposium,
Strathclyde University, September 14, 1992.

fDepartment of Mathematics and Computer Science, University of Dundee, DD1 4HN, Scotland,
United Kingdom (fletcher@raca. dundee, ac. uk).
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An important feature of such methods is the updating formula that is used to
incorporate new information into B(k). After each iteration difference vectors

5() x(k+) x()
(1.4) 7(k) g(k+l) g(k)

can be calculated. It follows from the Taylor series that

(1.5) -() G()5(),

where

(k) G(x(k) + 05(k) dO

is the average Hessian matrix along the step. By analogy with (1.5), B(k+l) is chosen
to satisfy

(1.7) 7(k) B(k+l)5(k)

known as the quasi-Newton condition. The most popular updating formula is the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) formula B(k+) bfgs(B(k), 5(k), 7(k))
where

B55TB 77T(1.8) bfgs(B, 5, 7) B
6TB6 5T7

and it is clear that (1.7) is satisfied. Moreover, if B(k) > 0, then B(k+) is positive
definite if and only if

(1.9) 6(k)T7(k) > O.

The scalar 5(k)T7(k) represents from (1.5) the component of the average Hessian matrix
along 6(k). It is easily possible to ensure that this condition holds.

A significant result due to Goldfarb [6] is that if H(k) denotes B(k) -1, then the
correction E H(+) -H(k) in the BFGS formula satisfies a minimum property with
respect to a weighted Frobenius norm of the form

liEIl v IIW EW5 II F (trace(EWEW))1/2

where W > 0 and W6(k) 7(k). This result can be interpreted as showing that H() is
changed by the minimum amount (in the sense of (1.10)) required to satisfy (1.7) and
symmetry. This ensures that previous information accumulated in B(k) is disturbed as
little as possible. The well-known Davidon-Fletcher-Powell (DFP) formula can also
be interpreted in a similar way. Another formula that satisfies a minimum correction
property is the Powell-symmetric-Broyden (PSB) formula

(1 11) B(k+) B(k) + ?6T -}- 67T ?T6
(T( ((T()2

((T’

where 7-B(k)6 and where 6 and 7 denote 6(k) and 7(), respectively. In this case
it is the Frobenius norm (W I in (1.10)) of the correction to B(k) that is minimized
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(subject to (1.7) and symmetry). Unfortunately the PSB update does not generally
preserve B(k) > 0 and practical experience has been disappointing. This is thought to
be due to the lack of certain affine invariance properties that hold for the BFGS and
DFP formulae. More detail about all the above subject matter is given, for example,
in [4].

Quasi-Newton methods become less attractive when n is very large because of
the storage and computational requirements associated with large dense matrices.
However, it is often the case that the Hessian is a sparse matrix and it is attractive to
look for updating formulae that preserve the same sparsity in B(k). Thus we express
the sparsity conditions on B as

(1.12) Bij 0 V (i,j) E ,
where S is a set of pairs of integers in the range [1 n]. Because of symmetry it is
assumed that (i, j) E if and only if (j, i) . It is also assumed that G(x) satisfies
(1.12) for all x ]Rn. The complementary set of index pairs not in S is denoted by
+/-. Because we are concerned with positive definite matrices, it is assumed that

(1.13) (i,i) e +/- 1,2,...,n.

For such problems it is fruitful to determine a minimum correction update formula
that is constrained by (1.12) in addition to the quasi-Newton condition and symmetry.
In a seminal paper, Toint [10] shows that it is reasonably straightforward to compute
a minimum correction to B(k) in the Frobenius norm subject to these conditions. To
present Toint’s update, we define the projection operator G(M) ]Rnn -- :nn by

0 (i, j) e(1.14) G(M)ij Mij (i,j) S+/-.

This has been colourfully dubbed the gangster operator since it shoots holes in M
according to the sparsity pattern defined by (1.12). Toint also introduces the notation

(1.15) 5[i1 G(SeT)ei,

where ei denotes the unit vector that is column of I. (The use of subscript [i] is due
to Coleman [2] in his very readable monograph on large sparse optimization.) Toint
[10] shows that the resulting minimum correction satisfies

(1.16) B(k+l) B(k) + g(6AT -- A6T),

where A ]R’ is obtained by solving the linear system

(1.17) QA-r

in which r /- B(k)6. It follows from (1.16) and (1.7) that column of the matrix
Q is defined by

(1.18) TQei 6i6[i] + 6[i]6[ilei.
It is easily shown that Q is symmetric positive semidefinite and that G(Q) Q (i.e.
Q satisfies the sparsity conditions (1.12)). In addition, Q is positive definite if

(1.19) 6[i] 0 i 1,2,...,n,
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in which case sparse LDLT factors of Q are calculated and (1.17) can readily be solved
to obtain A. If Q is singular then [] 0 for some i. However, it then follows from
(1.5) that , 0 and hence r 0. Thus (1.17) is consistent and can be solved by
deleting row and column from Q (ignoring the effects of round-off error).

As with the dense PSB update, the condition B(k) > 0 is not preserved by this
update, and likewise practical performance has not been outstanding. In view of
this, it is natural to inquire what happens when the sparsity conditions (1.12) are
included in the minimum correction property that defines the BFGS or DFP formula.
Unfortunately, as Toint [10] points out, the use of a weighted Frobenius norm leads
to formulae that are intractable in both cases (see, also, [11] and [2] for more details).
However, Toint [11] proves that if

(1.20) 5i0 i=l,2,...,n,

if G is irreducible, and if tT’ > 0, then there does exist a symmetric update that
preserves positive definiteness. The condition tT’) > 0 is clearly required, else (1.7)
would imply 5TB5

_
O, contradicting B > 0. The assumption of irreducibility (that

is, G cannot be reduced to block diagonal form by a symmetric permutation) is not a
serious restriction because if G is reducible then (1.1) can be decomposed into two or
more problems which can be solved separately. It is assumed throughout what follows
that G is irreducible. On the other hand, (1.20) is critical and Sorensen [9] shows that
a positive definite update may not exist if 5 0 for some i, and that serious growth
in B can occur in a neighbourhood of this situation. We return to these points later
in the paper.

More recent research into sparse updates has avoided the requirement that B(k)
should be positive definite. Most promising has been the approach of Griewank and
Toint (e.g., [7]) based on the partially separable optimization problem

m

(1.21) minimize f(x) fi (x),
i--1

in which each element function fi(x) depends on only a few of the components of x.
Then the Hessian of f(x) can be decomposed into a sum of Hessians of the fi(x), the
nontrivial submatrices of which can be treated as dense matrices. Similar remarks
apply for the gradient vector. Griewank and Toint suggest that these element Hessian
submatrices are approximated by the use of dense updating techniques. There are,
however, some difficulties that must be overcome. The element Hessian submatrices
may not be positive definite so it is not possible to rely on the analogue of the condition
T. > 0 holding for each submatrix. Thus the BFGS formula cannot be used, and
Toint uses the symmetric rank-one formula in the Harwell Subroutine Library code
VE08. Consequently, the overall Hessian approximation obtained by summing the
submatrix approximations is also not generally positive definite. Also the possibility
of zero in the denominator of the updates must be allowed for. Another aspect is
that the user must specify the decomposition (1.21) to the code and this is not always
convenient. These remarks are not intended to disparage the method, which has been
very successful in practice, but they do indicate that if an effective sparse positive
definite update were available, then many of these difficulties would be circumvented.

This paper makes a contribution to this objective by providing an update that
preserves sparsity and positive definiteness and satisfies a minimal change property.
The update reduces to the BFGS update in the dense case. However, the amount of
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computation required to compute the update is not trivial (although improvements
here may well be possible) and the difficulties noted by Sorensen are still present. The
new update arises from a recent observation of Fletcher [5] that the BFGS and DFP
formulae can be derived by a variational argument using the measure function

(1.22) (A) trace(A) -In det(A),

where In denotes the natural logarithm. This function is introduced by Byrd and
Nocedal [1] in the convergence analysis of quasi-Newton methods. The function is
strictly convex on the set of positive definite matrices and is minimized by A I.
The function becomes unbounded as A becomes singular or infinite and so acts as
a barrier function that keeps A positive definite. A suitable variational property is
to minimize (H(k)B) since, in the absence of any constraints, the solution is just
B H(k)-1. Introducing the constraints (1.7) and (1.12) leads to an update in which
H B-1 stays close to H(k) in some sense. The objective function can also be
expressed as

(H()B) 2(BH()) 2(H(lc)/2BH(k)i/2
using the properties of the trace and determinant. In the sparse case it is also noted
that (H()B) can be computed from only B and G(H(k)) and the full matrix H(k)
is not required.

A theorem extending the BFGS result in [5] to include the sparsity conditions
(1.12) is set out in 2. Necessary conditions related to a rank-two correction of the
form (T ._ ,(T are derived. However, there is also a surprising outcome in that the
matrix G(H) is seen to play a major role. The issue of whether G(H) determines B,
and how this calculation can be carried out, is seen to be fundamental to the update.
It is shown that the update can be determined by solving a nonlinear system r()) 0
involving the residual of the quasi-Newton condition. Unfortunately, the DFP formula
cannot be generalised in the same way.

Issues concerning the determination of B from G(H) are considered in 3. A
simplifying assumption is made that the sparsity pattern specified by , is such that
elements that fill in during the calculation of LDLT factors of B are in +/-. In the
notation of Duff, Erisman, and Reid [3] this can be expressed as

(1.23) G(L\LT) L\LT.

Another way of expressing this is that B does not fill in with respect to when
factored. This assumption is not very restrictive in practice since factors of B are
required in (1.3) to determine the search direction, which necessitates using a data
structure for B that allows for fill-in. With this assumption it is shown that B is
readily determined from G(H). The inverses of certain submatrices of H, referred to
as Markowitz submatrices, are shown to play an important role.

In 4 the solution of the system r(A) 0 is considered. It is shown that r(A) is
the gradient of a concave programming problem derived by using the Wolfe dual and
this enables the solution of r(A) 0 to be undertaken in a reliable way. The Jacobian
Q(A) of this system is important and plays a similar role to the matrix Q that arises in
the linear system (1.17) in Toint’s sparse PSB update. The structure of Q is analysed
in detail in 5, and is shown to satisfy the same structural and definiteness conditions
(when (1.23) holds) as for Toint’s matrix. Thus the nonlinear system can be solved
by a few iterations of analogous complexity to (1.17).
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The update has been implemented for tridiagonal systems and some numerical
experiments are described in 6. These experiments indicate that there is the potential
for a significant reduction in the number of quasi-Newton iterations, but that more
development is needed to obtain an efficient implementation. Section 7 discusses
the possibility of using primal algorithms to determine the update and provides an
interesting application of generalized elimination. This leads to Toint’s result on the
existence of a positive definite update subject to (1.20). The issue of stability raised by
Sorensen is discussed in 8, together with other points of interest including a conjecture
related to partially separable updates. Directions for further research are suggested.

2. A variational result. The main aim of this section is to extend Theorem
2.1 of [5] to include the sparsity conditions (1.12).

THEOREM 2.1. Let B(k) be positive definite and consider the solution of the vari-
ational problem

(2.1) minimize (H(k)B)
B>0

(2.2) subject to BT B,
(2.3) B5 /,

(2.4) Bij 0 V (i,j) e S.

If a solution exists it is characterised by the existence of A E ]Rn such that

(H) (H(k) + 5T + 5AT),

where H denotes B-.
Proof. If a solution to the variational problem exists, it satisfies B > 0. Because

the remaining constraints in the problem are linear, constraint qualification holds and
first order conditions obtained by the method of Lagrange multipliers are necessary
for a solution. A suitable Lagrangian function is

(B, A, A, H) 1/2(H(k)B) + trace(AT(BT B)) + AT(B5- /) + 1/2 trace(HTB)
!(trace(H(k)B) -In det H(k) -lndet B) + trace(hT(BT B))--2

+ AT(B5- ) + 1/2 trace(HTB),

where A, A, and H are Lagrange multipliers for (2.2), (2.3), and (2.4) respectively.
Without loss of generality it can be assumed that A is strictly lower triangular and H
is symmetric. Because Bij 0 does not apply for (i, j) E S+/-, it follows that

(2.6) (H) 0.

To solve the first order conditions it is necessary to find B, A, A, and H to satisfy (2.2),
(2.3), (2.4), and the equations O/OBj 0. Using the identity OB/OBj ee and
Lemma 1.4 of [5], it follows that

0
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Transposing and adding, using the symmetry of H(k), B and H, gives

H(k) B-1 + A5T + (AT -- 1-I 0

or

H H(k) q-- ,,T .. ,,T ._[_ II.

Then (2.5)is deduced directly from (2.6) and (2.7).
Although the derivation of this result is straightforward, the outcome came as a

major surprise to me for the following reason. If B is an irreducible sparse matrix then
B-1 is generally dense. It is therefore most unexpected to find that B is determined
by G(H) (i.e., by zeroing elements of B-1 in accordance with the sparsity pattern of
B).

The result for the dense case given in [5] corresponds to H 0 and shows that the
optimum H matrix involves a rank-two correction of H(k). In that case it is possible
to directly solve for H using B6 - and the resulting update is the BFGS formula.
Because the resulting B matrix is positive definite and is a convex function it is
possible to deduce that it solves the variational problem.

When the sparsity conditions (2.4) are included, solution of (2.7) is no longer
straightforward because of the additional term H, and a finite calculation to determine
A does not appear to be possible. However, an iterative approach along the following
lines can be envisaged. The following sequence of operations defines r as a function
of ( - ). Given A,

calculate G(H) from (2.5),
find B > 0 such that G(B-) g(H),
calculate r := B6- 7.

The update is determined by finding A such that

(e.8) o,

which is a nonlinear system of n equations in n variables.
This discussion raises a number of interesting and complex issues that are ad-

dressed in the rest of the paper. First is the question as to whether 6(H) does indeed
determine B > 0 and whether the outcome is unique. It is hopeful that (H) contains
the same number of nonzero elements as B. A solution is given to this question in 3
in the case that assumption (1.23) holds. An illustration of the calculation is given
in 6 for the case of tridiagonal matrices. However, when assumption (1.23) does not
hold, then the question is as yet unresolved, although it is shown that the condition
(i, i) 8+/- is necessary.

Given that B > 0 is well determined, the next question is that of whether a
solution to the variational problem, and hence to (2.8), does exist. The contributions
of Toint and Sorensen provide a complete answer to this question as discussed in 1.
Toint’s result can be seen as a consequence of the presentation on primal algorithms
set out in 7 and the issues are discussed in more detail in 8.

Another question relates to the practicality of solving (2.8) reliably and rapidly.
At first sight this is not promising since a nonlinear system might be as hard to solve
as the original problem (1.1). However, it is shown in 4 and 5 that there are features
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that enable (2.8) to be solved effectively when assumption (1.23) holds and a solution
exists. Preliminary numerical experiments described in 6 indicate that the extra
expense of solving (2.8) is compensated for by a significant reduction in the number
of line searches required to solve (1.1).

Before following up these questions, it is worth remarking that another result in
[5] regarding the DFP update does not carry over conveniently to the sparse case.
Extending the corollary to Theorem 2.1 in [5] gives the variational problem

(2.9) minimize (B(k)H),
H>0

(2.10) subject to HT H
(2.11) H7 5,
(2.12) Bij 0 V (i, j) e S.

After proceeding analogously to Theorem 2.1 here, and setting O/OHij 0, it follows
that

(2.13) B B(k) + A,T --,AT -- BHB.It is possible to pre and post multiply by H and operate with G(.) to eliminate H, but
the resulting term G(HB(k)H) appears to make further progress unlikely.

3. Determination of B from G(H). The results of this section are a conse-
quence of assumption (1.23) discussed in 1 that $ is chosen such that there is no
fill-in when the LDLT factors of B are calculated. The main result shows that B is
well determined by G(H) and provides the basis of an algorithm for computing the
LDLT factors of B. This algorithm is shown to be particularly efficient when the
sparsity pattern of B is formed from dense overlapping blocks on the diagonal.

A lemma is required that shows the effect on the inverse when bordering a par-
titioned matrix with a rank-one term having some sparsity.

LEMMA 3.1. Consider symmetric matrices partitioned conformally as

(3.1) A- 0 All A12 + a/a (a aT OT), X= xl Xi Xi2
0 A2 A22 0 x2 X21 X22

(A21 ATe2, etc.) in which

[Xll X12](3.2) [ X21 X22
All A2] -A21 A22 > 0

is positive definite and

(3.3) [ Xl
is positive definite.
both

Then a necessary and sufficient condition for A X- is that

(3.4)
Xl Xll a 0
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and

(3.5) x2 -A2A21xl
hold. Moreover c, a, and x2 are determined uniquely by , xl, and A, A12, and
A22

Proof. First of all it is readily established from the properties of the inverse in
(3.2) that

(3.6) A2A -XIIX2
and

(3.7) X All A2AA2.
Also the solution of (3.4) can be expressed as

_Xh x X lXh x ).

To prove the main result, we form the product

XA x XI (1 aT/o 0T )-}- 0

_
0

x2 X2
a

0 0 I

Now A X- if and only if XA I, which is seen to require that both (3.4) and
(3.5) hold. Conversely, if (3.4) and (3.5) hold, then it follows that

xa + Xa (x: XXhxl)a 0

from (3.5), (3.6), and (3.8)and

AllXl - A12x2 + a/a (A A2A2-2A21 Xl)X 0

from (3.5), (3.7), and (3.8), showing that XA I. Thus the main result is established.
It is clear from (3.4) and (3.5) and the existence of the relevant inverses that a, a,
and X2 are determined uniquely by , x, and All, A12, and A22. [:]

Some other items of terminology are introduced to simplify the description of
the main result. When factors B LDLT (L unit lower triangular, D diagonal,
B E ]Rnn) are calculated by Gaussian elimination, then it is convenient to refer to

B
0

j--=l

as the ith reduced matrix in the calculation. Here li denotes the ith column of L and
di the ith diagonal element of D.

DEFINITION. Let sparse factors B LDLT exist. The ith Markowitz submatrix

of any matrix M of the same dimension as B is defined to be the submatrix obtained
by selecting elements ofM corresponding to the structural nonzero elements of llTi
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The definition is illustrated by the following matrices"

Matrix B satisfying (1.23) Reduced matrix B(3)

Expanded Markowitz submatrix M[3
The elements in B(3) are those that determine the vector 13 and the diagonal element
d3. If M is any n n matrix, then M[3] is the matrix obtained by selecting the *
elements of M and zeroing the others. The pattern of these elements is related to
the possible fill-in caused by the elements when processing the reduced matrix B(3)

(hence the term Markowitz submatrix). It is convenient to extend Toint’s [10] notation
by using M[i] to refer to the expanded (n n) ith Markowitz submatrix of M as in
the above figure, and M to refer to the (dense) submatrix itself. The requirement
that no fill-in is caused when factorizing B is equivalent to requiring that the pattern
of nonzeros of B is that obtained from the overlay of all the matrices B[il.

The main theorem of this section can now be proved. The matrices B and H are
assumed to be symmetric and the sparsity pattern of the Markowitz submatrices is
that induced by the structure of the LDLT factorization of B. The theorem shows
that B is uniquely determined by (H) and provides a construction in which the
factors of B are expressed directly in terms of the Markowitz submatrices H[i]. To

+ is used. Because Hi is assumed to bedo this the generalized inverse notation H[i]
positive definite, H+ consists simply of the elements of the matrix H-I scattered into[l
the positions corresponding to nonzero elements of HIll.

THEOIEM 3.1. Let assumption (1.23) hold. If for i 1, 2,..., n the Markowitz
submatrices Hi are positive definite, then the th diagonal element of D and the ith
column of L are defined by

(3.10) d T + +H[ilee H[ile, l /d

Moreover, B is uniquely determined by (H) and B is positive definite.
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Proof. Consider the reduced matrix B(i) in the calculation of B LDLT and
partition

/ 0 O.

as indicated by (3.9). The notation H/), etc. just indicates a different partitioning
of the same H matrix as changes. The theorem only assumes that G(H) is known,
and shows that the unknown elements of H can be deduced. Also from (3.9) it follows
that

(3.11) B(i) B(i+1) q-

where, because of assumption (1.23), column li has the same sparsity structure as
column of B and hence as column of H[i].

The main step is to prove by induction that

(3.12) B H/)-1 > 0 and is determined uniquely by Hi,..., Hn.

When n, Hn > 0 is just a scalar and B Hg-x determines B uniquely. Now
we assume that (3.12) is true with replaced by + 1 and deduce that (3.12) itself

is true. H is obtained by bordering H+) with some elements from column/of

H. To apply Lemma 3.1 to H/), it can be assumed without loss of generality that a

symmetric row and column permutation is made to H/2 so that the elements of the
Markowitz submatrix Hi occur in adjacent rows and columns. Thus we can identify
Hi with the matrix

Zl Xll

in Lemma a.1. Note that the vector x in (a.1) represents the unknown elements from
H that occur in the border. The positive definiteness of (a.la) follows from the same
assumption about Hi. Moreover because the structure of li is prescribed, and matches
that of column of H[il, we can identify the subdiagonal part of li with () and also
di c. In addition we have

JAil A12] H/2+1)[211 212]22 A2 A22 X2 X22

It follows from (3.12) with replaced by + 1 that these matrices satisfy condition
(3.2) of Lemma 3.1. Thus the lemma can be invoked and it follows that a necessary
and sufficient condition to obtain B H is that (3.4) and (3.5) hold. It follows
from (3.4) and the identification of Hi with (3.13) that li and di are defined by (3.10).
Equation (3.5) determines the unknown elements of H represented by x2, although
these are not required to compute the factors of B. Because of (3.10) and Hi being

positive definite, it follows that di > 0 and hence by induction that B2( is positive
n(i+l) anddefinite. It follows from the lemma that di and li are uniquely defined by *-’22

the first column of Hi. Hence by induction B2( depends on Hi,..., Hn and (3.12) is
established.

Finally for 1, B B(1) H- and the LDLT factors of B have been
determined uniquely from H,..., Hn. Because of assumption (1.23), the elements of
the Markowitz submatrix are available in G(H) to make the calculation. 1
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Note that this proof does not require a prior assumption that H is positive defi-
nite. Rather this can be deduced as a consequence of the positive definiteness of the
Markowitz submatrices Hi and the inductive argument.

It can be observed that the construction calculates the LDLT factors of B rather
than B itself. This is convenient as B is subsequently used to solve systems. It is also
possible to express

(3.14)
n n H+eieH+

B LDLT Elidil- E oTH+
[i] [i]

This form is particularly useful for the purposes of 5.
In the case that the pattern of nonzeros in B consists of overlapping dense diagonal

blocks then a particularly efficient algorithm is determined. Special cases of such
patterns are the symmetric band matrices of arbitrary bandwidth. The columns of
D and L are determined in the order 1, 2,..., n, and for each i, USUT factors of Hi
are available, where U is upper triangular and S > 0 is diagonal. This corresponds
to having factorized Hi taking pivots in the reverse order. Then H- U-TS-1U-and it is readily observed that di S-11 and the nonzero part of li is obtained by
solving the system UTx e. Moreover, advantage can be taken of the overlap in the
Markowitz submatrices of H in the following way. When i is incremented, the first
row and column of U and S are deleted. If changes to move into the next overlapping
block, then the remaining part of the USUT factors is bordered by elements of a new
submatrix. When factorising this submatrix, a low rank matrix is added into the old
USUT factors that can be updated efficiently by the use of square root free Givens’
rotations.

It may be that a similar approach can be used when the pattern of nonzeros is less
regular, but the organization is likely to be more complex. It is hoped to investigate
this aspect in the near future. An observation of some interest is that Duff, Erisman,
and Reid [3, 12.7] reference a method of calculation whereby (A-) can be calculated
from the LU factors of A under the same assumptions about fill-in. The construction
given in Theorem 3.1 can be regarded as reversing this calculation in the symmetric
case

Finally, the case when assumption (1.23) does not hold is of some interest. The
above scheme no longer applies because the elements of the Markowitz submatrix Hi
are not always available to calculate column of B2( However, B and G(H) still have
the same number of nonzero elements and it is conjectured that B will remain well
determined if H is a positive definite matrix. For a general unsymmetric matrix A, A
is not always well determined by G(A-1) as the following example shows.

c 0 lib -a/bc G(A-1)= lib
Here we have S {(2,2)} (relaxing the condition (i,i) e S+/-). When the (2,2)
element of A- is deleted, then all reference to a is lost and A is not uniquely defined
by (A-).

4. Solving the system r() 0. This section considers the practicality of
finding a reliable and efficient method for solving the nonlinear system r(A) 0
generated by the prototype algorithm that precedes (2.8). The method we consider is
based on Newton’s method with iterates A(), t 1, 2,..., and an iteration formula

Q(t)A(t) _r((t) ),
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where Q(t) denotes the Jacobian of r(A) evaluated at A(t). At first sight this is not
promising since a nonlinear system might be at least as hard to solve as the main
problem (1.1), but it turns out that there are some simplifying features that can be
exploited.

It is observed in [5] that the problem posed in (2.1), (2.2), and (2.3) is a convex
programming problem and significant progress is made by examining the Wolfe dual
(see, for example, [4]). The Wolfe dual is

(4.2) maximize .(B, A, , H)
B,A,),H

(4.3) subject to VB 0,

and it has been shown in Theorem 2.1 that (4.3) implies that B (- H-1) is defined
by (2.5). Section 3 gives a scheme for calculating a positive definite matrix B from
6(H) and this enables the variable B in the dual to be expressed as a function B(A).
The terms involving A and H are eliminated by virtue of the symmetry and sparsity
of B(A), giving rise to the more simple dual problem

(4.4) maximize

subject to

The chain rule gives

(B(A) A) (H(k)B) + )T(B5- )2

> o.

de X-" 0 OBiy
dAk- OBij OAk OAk

and O/OBij 0 because of the stationary property of the Lagrangian in Theorem
2.1. It follows from (4.4) that

(4.5) V B5 r

so that the nonlinear system r(A) 0 that occurs in (2.8) is seen to arise from the
stationary point condition for (4.4). It follows that the Jacobian Q(A) of r(A) is the
Hessian of (A) and hence is a symmetric matrix. In fact, it is shown in 5 that
Q is a negative semidefinite matrix (and usually negative definite) when B > 0, so
the simplified dual is a concave programming problem. Thus provides an objective
function with which to measure progress when solving (2.8), and enables a line search
in A to be used. It is only necessary to ensure that A is chosen so that all the Markowitz
submatrices of H(k) + ,T + )T are positive definite. Initially (1) 0 is suitable,
and subsequently the condition imposes an upper limit on the step in the line search.

A result of particular importance is that the matrix Q has the same sparsity
structure as B if assumption (1.23) holds. Together with the negative semidefinite
property, this enables the Newton step (4.1) to be calculated efficiently, using the same
data structure as for B, without the need to allow for fill-in or pivoting. The situation
is analogous to the solution of QA r in Toint’s sparse PSB update. This gives some
reason to hope that the cost of solving (2.8) may not be prohibitive. It might be
expected that as the outer iterates x(k) approach the solution, fewer iterations of the
inner iteration would hopefully be required. Some preliminary numerical experience
in this respect is outlined in 6. Detailed expressions for calculating Q and results
about the structure of Q are given in 5.

5. Properties of the Jacobian Q(A). This section sets out the properties
of the Jacobian matrix Q() of the nonlinear system r() 0 generated by the
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algorithm preceding (2.8). General results with respect to symmetry and negative
semidefiniteness are established without the need for assumption (1.23). A necessary
and sufficient condition for Q to be negative definite is given, analogous to a result
of Toint [10]. It is also shown that if assumption (1.23) holds, then the sparsity
structure of Q is identical to that of B, and an expression is given from which Q can
be calculated. Finally, an example is provided that shows that if (1.23) does not hold,
then Q may be less sparse than B. The significance of these results has already been
discussed in 4.

In formulating some general results about Q without the need for assumption
(1.23), it is necessary to assume that B is positive definite and is well determined by
G(H). Precisely what minimal set of conditions are required to assure this situation
is as yet an open question. To establish the first results in this section, it is assumed
that B has been determined from (H(k) T &T + ,,T) in such a way as to be a
continuously differentiable function of A, and the effect of a perturbation

(5.1) A A + ez

(e E JR, z E ]Rn) is considered. This induces a perturbation AB in B that maintains
the sparse structure of B. A perturbation AH in H is also induced that generally
affects all the elements of H. It follows that the derivative with respect to e of the
perturbation in H is

/:/= lim AH/e 6(z5T + 5zT) -- ,-+o

where gt allows for the variation of the elements of H that are zeroed by G(H).
Consequently,

(5.3) O(gt) 0, fiT ,
and gt depends upon z. An expression for the derivative of the perturbation in B can
be established by differentiating through the equation BH I, giving

(5.4) / -BI:tB.

In the case that z is a unit vector ek, the derivative

OH
g(e,Sr + ,Se) + gt

T TekS[tl + 5[1% + k

is obtained, making use of Toint’s notation described in 1. Similarly, tk depends
upon k and satisfies (5.3), although its value is unlikely to be readily available. An
expression for OB/O,k that follows from (5.4) is

OB T ’k)B"-B(ekS] + 5[k]ek +

A consequence of the sparsity of AB is that OB/O, has the same sparsity pattern as
B. In effect, the gtk matrix in (5.6) is determined by the need to achieve this outcome
(there are just enough free parameters).
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Turning now to r, it is convenient to use the sparsity and symmetry of B to write

and hence

Moreover, because of the sparsity of OB/OAk and (5.3) it follows that

trace gtj =0.

Equations (5.6)-(5.9) can be incorporated to give

-31 trace{(eYh] + 5[y] e" + fy)B(ek5T[k] + 5[k]ekT + Ftk)B},

which shows that the matrix Q [Ory/O,\k] is symmetric.
Next the issue of definiteness of Q is considered and we need to examine zTQz

for some z 0. It follows by the chain rule that

n n Orj dAk dry
/j

k=l k=l

and hence zTQz zT". If A is perturbed as in (5.1) then it follows from (5.2) and
(5.4) that

(5.11) [ -B(6(z5T + 5zT) + a)B

and, as above,/ has the same sparsity pattern as B. Because of this we can write

zT/ zT5 1/2 trace{((zhT + 5zT))/}

and hence

(5.13) zTQz --1/2 trace{(G(z5T + 5zT) + )B((z5T + 5zT) + t)B},

using the fact that trace(gt/) 0. Using a weighted Frobenius norm

IIAIIw -(trace(AWAW))i/2, W>0,

(5.13) can be expressed as

(5.14) zTQz -1/2 Ilg(z5T + 5zT) + tllB <_ O,

which proves that the matrix Q is negative semidefinite.
The next general result is to show that Toint’s condition

(5.15) 5[j] = O, j 1, 2,..., n
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is necessary and sufficient for Q to be negative definite. If 5[j] 0 for some j, then it
follows from (5.7) that rj -3’j is independent of B and hence of ,. Thus row (and
column) j of Q is zero and Q is singular. For the converse result, let Q be singular so
that there exists some z 7 0 such that zTQz O. It is then a consequence of (5.14)
that

(5.16) Z5T -Jr" 5ZT) "l
t-. O

It follows directly from the diagonal elements that zy5y 0, j 1,2,...,n. Let
z :/: 0 for some j and hence 5j 0. Row j of (5.16) implies that

zjS + 5jz 0

and it follows that 5[j 0, which contradicts (5.15).
The singularity of Q when 5b. 0 is unlikely to cause difficulties in practice. It

is assumed that the vector 7 is faithful to the sparsity pattern of the true Hessian G,
that is it can be expressed as

(5.17) GS,

where G is the averaged Hessian matrix (1.6). It then follows that 5[j] 0 implies
/y 0 and hence rj 0, so that the Newton system (4.1) is consistent. Thus in
exact arithmetic a solution with AAj 0 can be computed and there is no difficulty.
Inexact arithmetic poses possible difficulties due to round-off error, but it is hoped
that these can be handled adequately by the use of tolerances.

The results so far derived in this section are not very useful for computation be-
cause they involve the unknown matrices gtk. In the case that assumption (1.23) holds,
it is possible to use (3.14) to derive an expression from which Q can be calculated.
This expression also enables the sparsity structure of Q to be determined. It follows
from (3.14) using H+5[il H+[i]@l that

(5.18) ry
oTH+ .eTH+

eTH+
i=1 [i]ei

In fact, the sum in (5.18) need only be taken over those for which j is in the scope
of [i] (that is j is one of the nonzero rows in the expanded Markowitz submatrix with
index [i]), because otherwise eTH+ 0. Now let k be in the scope of [i] It followsN
from (2.5) and the definition of HN that

(5.19) OHN + Sidle

and hence

OH[i+ _H+ 5T eTCH+[il (ek [i] + 5[i1 k [i]

by the same argument as for (5.4). If k is not in the scope of [i] then

OH[i] OH[i+] O.(5.21) O)k OAk
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It now follows from (5.18) and (5.21) that

(5.22)

Orj

i
ej 0), eTH+

T +
H+

Ok .= e H[i]ei
ej H[i tl t o,x ei

(ei

where the sum is taken over those for which both j and k are in the scope of [i].
After substituting (5.20) and denoting H+[i] M, H+[i]5[i] v and 5liltH+[ilS[i #, the

ith term in (5.22) can be rearranged as

(5.23) (2MijMik Mjk ) 2 (Mijvk + Mikvj) #MijMik

M Mii vi- Mii
vi-

The symmetry with respect to j k can readily be observed. Because the ith term
only contributes to the sum if both j and k are in the scope of [i], it follows that the
ith term has the same sparsity pattern as B[il, and hence Q has the same sparsity
pattern as B. Equations (5.22) and (5.23) provide a (rather complicated) formula
from which Q can be evaluated. The expression can be simplified a little by using the
fact that di Mii and lji Mij/di derived from the LDLT factors of B.

It is also possible to give an example which shows that Q may be less sparse than
B if assumption (1.23) does not hold. Consider the matrix

(5.24)

4 -1 -1 0

1B -1 4 0 -1
-1 0 4 -1
0 -1 -1 4

which is sparse on the reverse diagonal and fills in in the (2,3) position when factorized.
Consider the computation of Q41 Ora/OAl. We first need (5.5), which can be written

OH 5. wu
Ol 5 w.

021

Then OB/OAI can be calculated using (5.6) and (5.24), and 021 and 022 are chosen to
make the reverse diagonal zero. This gives rise to the system

(5.26) [8 1] (wl)=( 282+283 )1 8 022 --(1 + 282 + 253

Then (5.8) gives

Q41 0r4/0)1 (52 -t- 53)(52 + 53 4021 4w2) + 25aw2.

Clearly from (5.26), 022 is not zero, and the presence of the 284w2 term in (5.27) ensures
that there are cases in which Q41 is not zero. In general, Q is a dense matrix. However,
if the sparsity of the (2,3) element is relaxed and B is treated as a band matrix, then
the 022 parameter is removed and wl is chosen to zero the (4,1) element of (5.6). This
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provides the equation 62 / 63 4wl and it follows from (5.27) that Q41 0, so that
Q is also a band matrix.

6. Numerical experiments. In this section some numerical experiments are
described that are designed to test the effectiveness of both the sparse updates in
a line search quasi-Newton method and the inner Newton iteration based on (4.1).
The experiments are limited to the relatively simple case of a tridiagonal Hessian
matrix. The computations have been carried out on a SUN SPARCstation SLC in
single precision.

In the case of a tridiagonal Hessian matrix, we may write

bl

a2 b2

b2 a3(6.1) G(H)

bn- an

Clearly assumption (1.23) holds when factorizing B, and the Markowitz submatices
are the 2 2 blocks on the diagonal, and the final 1 1 block. It is readily verified
from Theorem 3.1 that the LDLT factors of B are given by

1
-b/a2 1

(6.2) L -b2/a3 1

-bn-1/an

a3/A2
(6.3) D

an/An-1
-1an

where Ai aiai+l -b. The elements of Q are given by (5.23), which simplifies
considerably in this case.

Two test problems of variable dimensions have been used in the experiments. One
is the boundary value problem

(6.4) minimize f(x) 1/2xTTx eTx h2 E(cosxi + 2xi),

where h 1/(n + 1) and

2 -I

-1 2 -1

-1 2 "’.. -i
-1 2
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An initial point x1) ih, i 1,2,..., n has been used. Choosing n 0 gives rise
to a quadratic function that is useful for testing purposes. The problem is otherwise
nonquadratic and the value 1 has been used. The second test problem is the
chained Rosenbrock problem

n--1

2)2 + (1 xi)2(6.5) minimize f(x) 100(x+l- x
i--1

where n is even. The solution of this problem is x* (1, 1,..., 1)T and the usual initial
point is x() (-1.2, 1,-1.2, 1,...,-1.2, 1)T. However, this initial point sometimes
leads to the location of a local minimum that exists in the vicinity of X -1 with
f(x)

_
4. Thus the initial point x(1) 0 has been used that avoids these difficulties

and does not appear to make the problem easier.
The new sparse update (spqn) is implemented in a very crude way. A standard

quasi-Newton code is used with two-sided Wolfe-Powell conditions in the line search
(e.g., [4]) using the parameters p 0.01 and a 0.1. The inner (dual) iteration is
implemented with an Armijo-type line search with cutback factor 0.25. The initial step
in the dual line search is either 1, if feasible (B > 0), or otherwise 0.9 of the distance
to the step, which would make Hi 0. If B does not become positive definite then
the Armijo cutback is used. The inner iteration is terminated when the predicted
increase in is less than 10-Tn. A comparison is made with other methods that do
not take advantage of the tridiagonal structure, including a standard BFGS code, an
implementation of Nocedal’s low storage method [8] based on five stored difference
pairs, and an implementation of the Polak-Ribiere conjugate gradient method. The
same line search is used for all these methods. Results are also given for Newton’s
method (exact Hessian) and the LANCELOT method which do take advantage of the
tridiagonal structure. The line search in Newton’s method uses the parameter a 0.9.

The outcome of these tests is set out in Tables 1-4. All the methods are able
to solve the problems, although less accuracy is obtained by the conjugate gradient
method, particularly for the larger problems. In all cases the methods that make
use of the tridiagonal structure of the Hessian obtain significantly better results. The
most marked difference is for the n 100 boundary value problem, both for 0 and

1. These problems are quadratic or nearly so, and once a good approximation to
the Hessian is obtained then the problem is effectively solved. It is clear that the new
update enables the Hessian to be approximated very rapidly because of the relatively
few elements in the sparse matrix that must be determined. The same is true for the
LANCELOT code. In passing, it is also interesting to notice that Nocedal’s limited
memory method is comparable with BFGS, even for near quadratic problems. The
chained Rosenbrock problem is highly nonlinear and the improvement obtained by
the new update is less spectacular. A possible interpretation of this is that the local
Hessian matrix for the problem changes markedly as the iterations proceed towards
the solution. The new update is likely to get a good estimate of the local Hessian
more quickly than say BFGS, but both methods are efficient at revising this estimate
as the local Hessian changes.

The results for the LANCELOT code on the chained Rosenbrock problem (I am
indebted to Nick Gould for providing these results.) lie between those for the new
update and for Newton’s method. The LANCELOT code assumes that the objective
function has the form

(6.6) I(x) -g (E f(x) + ax b).
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TABLE
Results for boundary value problem n 10.

Method a f*

spqn 0 -0.552217

1 -0.615442

bfgs 0 -0.552216

1 -0.615442

nocedal 0 -0.552216

1 -0.615441

PR-cg 0 -0.552217

1 -0.615442

lancelot 0 -0.552216

1 -0.615441

newton 0 -0.552216

1 -0.615441

Number of Function Gradient

iterations evaluations evaluations

5 10 10

7 12 12

6 12 11

11 21 20

7 12 12

11 23 22

9 24 12

13 34 19

1 2 2

5 6 6

2 3 3

2 3 3

TABLE 2
Results for boundary value problem n 100.

Method f*

spqn 0 -0.506503

1 -0.514007

bfgs 0 -0.506503
1 -0.514002

nocedal 0 -0.506501
1 -0.514000

PR-cg 0 -0.506498
1 -0.513997

lancelot 0 -0.506502

1 -0.514005

newton 0 -0.506503
1 -0.514007

Number of Function Gradient

iterations evaluations evaluations

3 10 9

5 15 14

50 68 64

48 71 62

48 133 111

48 149 123

48 78 61

49 101 75

1 2 2

2 3 3

2 3 3

2 3 3

This is referred to as group partial separability and it extends the ideas of Griewank
and Toint referred to in (1.21). Using group functions that are squares enables the
quadratic parts of (6.4) and (6.5) to be specified exactly. Thus the only nonlinear

2 termterms that need to be approximated are the cos xi term in (6.4) and the x
in the first bracket of (6.5). This enables the LANCELOT code to approach more
closely the performance of Newton’s method, whilst only requiring first derivatives of
the nonlinear functions g(a) and fj(x). The new update given in this paper requires
less information from the user than LANCELOT, only requiring first derivatives of
f(x), along with the sparsity pattern of G. Thus the comparative performance of the
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TABLE 3

Results for chained Rosenbrock problem n 10.

Method

spqn

bfgs

nocedal

PR-cg

lancelot

newton

1.41o--9

3.01o-8

3.21o-8

2.01o-7

4.51o--21

3.91o-9

Number of Function Gradient

iterations evaluations evaluations

37 91 78

52 123 104

53 109 102

107 218 186

34 35 30

24 29 27

TABLE 4
Results for chained Rosenbrock problem n 100.

Method

spqn

bfgs

nocedal

PR-cg

lancelot

newton

1.01o--10

2.71o--8

5.31o--8

3.01o--6

1.71o--13

1.81o--10

Number of Function Gradient

iterations evaluations evaluations

290 727 648

426 920 802

479 881 871

652 1107 1083

227 228 191

161 190 182

new update is very much what might reasonably have been hoped for.
On the other hand, the cost of calculating the new update is significant and

dominates the computation time for test problems such as these that are readily
evaluated. Even when x(k) is close to x*, it is observed that about four iterations
are required to solve the dual problem (4.4) and up to a dozen or more on the early
iterates of the outer problem. The inner iteration is solved to high accuracy and the
second order convergence associated with Newton’s method is observed, which gives
confidence in the correctness of the calculations. However, a lower accuracy solution to
the dual might be more effective overall. The Armijo line search also shows up rather
poorly, particularly when the singularity on the boundary of B > 0 comes into play. A
special purpose line search for the dual would undoubtedly have improved the overall
performance. This would involve determining precisely the step to the boundary in
the dual line search. Because a rank-two update of each Markowitz submatrix Hi is
involved, the solution of a quadratic equation for each distinct Markowitz submatrix
is required (even for a general sparsity pattern). Another possibility for improving the
performance of the dual iteration is to seek some quick method for estimating a good
initial value )(1) rather than the value A(1) --0 used here.

It is disappointing not to have observed that only one dual step is required when
x(k) is asymptotically close to x*. I had expected that this would be the case as the
Hessian approximation converges. Possibly the outer iteration converges before the
phenomenon becomes apparent.

One referee correctly points out that the number of function and gradient calls for
bfgs, nocedal and sqpn in the tables could be appreciably improved by using a weaker
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tolerance (e.g., a 0.9) in the line search, albeit at the expense of some increase in
the number of iterations. The best choice of a for any particular problem depends on
the cost of evaluating the function and gradient. However, I would agree that a 0.9
is probably a better choice for the default option for these methods.

7. Primal algorithms. In this section the possibility of using primal algorithms
to solve the problem in (2.1)-(2.4) is considered. If the positive definite constraint is
inactive, then this problem is one with linear constraints on the elements of B and
a nonquadratic objective function. Generalised elimination techniques (e.g., [4]) can
therefore be used to provide a reduced unconstrained minimization problem for which
there are various possible methods of solution. The basis vectors calculated in the
elimination process are shown to have a particularly nice interpretation.

It is convenient to express B B(k) -4- E, where E is the change in B(k). Then
the symmetry and sparsity constraints (2.2) and (2.3) can be immediately satisfied by
choosing only independent nonzero elements in E as the unknowns. For example, a
4 4 tridiagonal matrix can be expressed as

X1 X5

-’s. E= x x2 x
X6 X3 X7

X7 X4

The system (B(k) A-- E)5 9’ is then rearranged as an underdetermined system

(7.2) ATx b,

where b 7- B(k)5, and where b E ]Rn, x E ]Rr, and T is the number of independent
unknowns in E. In generalised elimination, A is bordered by an arbitrary matrix V
so that [A V] is nonsingular, and the inverse

(7.3) [A v]-T= [Y Z

is used to define the matrices Y (having the same dimensions as A) and Z. Then the
feasible region of (7.2) can be parametrized by

(7.4) x Yb + Zy,

where Yb is a feasible point of (7.2) and Zy represents an arbitrary correction in null
space of A. The reduced optimization problem can therefore be expressed in terms of
the vector y, which has T--n components.

In this particular application the columns of Y and Z can be regarded as elemen-
tary n n matrices Y and Zi by scattering their elements according to the sparsity
pattern of E. A particularly convenient form is obtained if the columns of V are unit
vectors with unit element in positions corresponding to off-diagonal elements of E.
This approach is only numerically stable

if the elements 5i i 1,2,...,n are not close to zero. To illustrate this con-
struction, (7.1) can be rearranged in the form (7.2) as

6i 69.

(7.5) ATx 62 61 63
63 62 64

x b.

64 63

1There are other more stable constructions for V based on Gaussian elimination with pivoting
or the use of QR factors; see [4].
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Using the above choice of V,

(7.6) [A V]

2
3

4

It is readily verified from (7.3) that eii-leiT

and

(7.7) Z3

i 1, 2, 3, 4, and

I
In general, matrices 1 are used to construct a feasible correction, E(k) say, by

(7.8) E(k) E Yb diag(bi/hi).

Moreover, it is readily verified that Zi5 0 illustrating the null space property of the
Z matrices. Thus a parametrization of feasible matrices in (2.2)-(2.4) is given by

(7.9) B(y) B(k) + E(k) + E Ziyi.

For more general sparsity patterns a similar outcome is obtained and there is one Zi
matrix, having a similar structure to (7.7), for each off-diagonal element of E.

This construction is essentially given by Toint [11]. Assuming that 5 0
1, 2,..., n, that B is irreducible, and that iT > 0, Toint proves that a positive semi-
definite matrix T with rank(T) n- 1 can be constructed from a linear combination
of the matrices Zi. It then follows that J0 B(k) + E(k) + cT is positive definite
for sufficiently large c. This proves the existence of a positive definite matrix B
that satisfies the constraints (2.2)-(2.4). A consequence of Toint’s result is that the
primal always has a solution under these conditions. The implications of this result
are discussed in more detail in 8.

If a primal algorithm is to be used, then it is advantageous if the initial iterate
B(1) is a positive definite matrix. This enables to be used as a merit function to
force convergence. Also the barrier function property of ensures that all subsequent
iterates stay positive definite. A possible choice of B() is the matrix/ referred to in
the previous paragraph.

In constructing an efficient algorithm, it is important to get at least first deriva-
tives of the reduced objective function (B(y)) derived from (2.1) and (7.9). Differ-
entiating with respect to Biy as in 2 and using the chain rule, it follows that

(7.10) 0b trace(Z(H(k H)).
Oyi
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Because G(Zi) Zi, it follows that only G(H(k) -H) is required in (7.10). As
mentioned in 3, Duff, Erisman, and Reid [3] indicate that the elements of G(H) can
be determined efficiently from factors of B if assumption (1.23) holds. Thus calculation
of the reduced gradient of is not unduly expensive. Note also that the form of (7.10)
confirms the characterisation result given in (2.5) since trace(G(hAT + hT)Zi) 0
showing that if B is derived from (2.5) then it is a stationary point of the primal (and
a solution if B is positive definite).

The next stage is to look at the Hessian matrix of (y). It follows using (5.4)
that

02 -trace (zOHI trace(ZHZjH)(7.11)
OyjOyi yj

However, it seems unlikely that the determination of this matrix and its use in a primal
Newton method will be profitable. First, the reduced primal has - n variables and
this could be significantly larger than n. Also the reduced Hessian may not be all
that sparse. Perhaps the most likely option is to calculate an approximate solution of
the update problem, using a few steps of preconditioned conjugate gradients with a
diagonal or perhaps tridiagonal matrix derived from (7.11) as preconditioner.

8. Stability issues and discussion. This section takes up the issue of the
numerical stability of the sparse positive definite update. An example of Sorensen [9]
highlights a potential difficulty of sparse positive definite updates. A possible solution
to these difficulties is suggested. A conjecture relating the new update to partially
separable optimization is discussed and possibilities for further work are suggested.

The assumption 5i : 0 1,2,...,n used by Toint (see 7) is not there to
simplify the proof, but is symptomatic of a serious difficulty that can arise when B
is sparse and 5i 0. This is made clear by Sorensen [9] who essentially cites the
following example in which B is required to solve

(8.1) b c * e 0
1 2

When 0 the first equation implies b (a + 1)/ and a > 0 is required for positive
definiteness. Thus b grows without limit as goes to zero. Moreover, the inequality
ac > b2 implies that ac increases like -2 so the rate of growth is quadratic. If 0,
then the only solution has a -1 and there does not exist a positive definite update.
Yet T’/-- 1 >0.

Both types of algorithm described in this paper fail on this example when 0.
The primal problem has no feasible point so cannot be started. Because the primal
is infeasible, so the dual is unbounded, and the dual iteration is seen to cause both
and () to increase without bound. At the same time both B(A) and H(A) increase
without bound. The most growth is seen to occur in the ith diagonal element of B.
In addition, both algorithms exhibit ill conditioning as --. 0. In the primal, the
matrices ] and Zi become arbitrarily large giving similarly large B matrices in the
calculation. The dual iteration again exhibits large growth in , B, H, and b().

These phenomena can be seen in the following example derived from (8.1). Let
5 and 7 be as in (8.1), let B() I, and let B(2) be tridiagonal. A short calculation
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using (7.10) indicates that the solution has the form

B= 4- 8-2 -4- (l+O(e2)),
-4- 6

(8..)
16e-2 -12e-1 -8S-2]H -12e-1 9 6e-1 (1 + O(e2))
--8e--2 6--1 4e-2

with A (-8-2, 4-1, 2-2)T(1 +O(2)). The increasing growth as 0 is readily
observed.

Some possible ways of avoiding such difficulties are now discussed. It is important
to realise that such a situation is only likely to occur when the average Hessian matrix
( in (1.6) is indefinite or ill conditioned. Because of (1.5), ( is always feasible in
the primal and, if G is positive definite and well-behaved, then T,.)//T is not close
to zero. It follows that if B(k) is well-behaved, then there is no possibility of serious
growth in (B(k)H) and hence B(k+) is well-behaved. Even if ( is indefinite then
a satisfactory update may yet be obtained (this happens for example in the dense
case). Thus it may be that these difficulties arise relatively infrequently and an ad
hoc solution may be adequate. However, when difficulties do arise then their effects
are severe due to the -2 growth. In addition it is likely that no such growth is evident
in G when, for example, it is indefinite. Thus any heuristic should avoid letting B
and H grow large. One possibility is to skip the update if some 5i is close to zero,
but this precludes a useful update if G is well-behaved. Another possibility is to make
no change to row/column of B. This may decouple two parts of the matrix (as for
(8.1)) and require 5T9, > 0 for each part. It may also cause organisational problems
by changing the effective sparsity pattern. The solution that currently appeals the
most is simply to impose an upper limit on the size of B and H, and to abort the dual
iteration if either of these upper limits are exceeded. It is worth pointing out that if
an upper limit on the trace of both B and H is imposed, then it is readily deduced
that cond(B) is bounded and it follows (see [4], p.31) that the resulting quasi-Newton
method is globally convergent. Of course, the user does not find it easy to set such
upper limits and too small a value might preclude superlinear convergence. Further
experience of these situations would be valuable and might lead to improved heuristics.

As it stands, the dual iteration (4.1) does not have much in common with the
calculation involved in the BFGS update (1.8). For example in the dense case, a unit
step of (4.1) does not provide the BFGS correction. Experience with some simple
cases indicates that it might be possible to express the update as

(8.3) B(k+l)(i) bfgs(Bl) ,5[i] /(i))-

The matrices B(i) derive from an additive decomposition of B corresponding to distinct
Markowitz submatrices (that is B B(i)). Terms in which a Markowitz submatrix
is a submatrix of another Markowitz submatrix would be excluded. A corresponding
decomposition 7(i) for which 7(i) 3’ is also required. The updates in (8.3) require
that the scalar products

(8.4) 6-y() > 0

are all positive. The existence of vectors -y() for which this holds is related to Toint’s
condition that 6 - 0 i 1,2,..., n. For example it is clear that this property
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cannot be attained in (8.1) when 0. The outcome in (8.3) would have the flavour
of a partially separable update but with the blocks being determined by the result
of fill-in in the LDLT factors rather than being prescribed by the user. At present,
however, it is not clear how the decomposition of /would be determined.

A related problem to the one considered in this paper arises if the structural
constraints on B are expressed as

(8.5) Bij V (i, j) e S,

where the iy are known values of the true Hessian that are independent of x but
might be nonzero. For example, in the boundary value problem (6.4), one would
require Bi,i+l -1. To some extent this problem can be transformed by taking
the product B5 over to the other side of the quasi-Newton equation (2.3), where B
denotes the matrix with entries y for (i, j) E and zero otherwise. Condition (2.5)
is then valid for this modified problem, but there is a difference in that B must be
positive definite and not B -/. Also the possibility of instability or nonexistence of
the update may be compounded as there are fewer elements to adjust. For example,
in the case of (6.4) the modified problem decomposes into distinct 1 1 diagonal
blocks and an update is immediately determined, which may or may not correspond
to a positive definite B. On the other hand there is the possibility of determining
the unknown elements more rapidly, and the argument used earlier in the section
regarding G might indicate that a successful update will often be obtained. Again
some practical experience is called for.

In summary, it is felt that an update of some potential interest has been sug-
gested in this paper, although further development is required before the idea can
be incorporated into production software. Possible areas of future work include the
following.

Better implementation of the dual line search;
Implementation and numerical experience for band matrices and more general

sparsity patterns (overlapping blocks, skyline, random (subject to (1.23)));
Low accuracy solution of dual;
Heuristics for alleviating ill-conditioning when some 5i is close to zero;
Primal methods;
Alternative ways of computing the update such as (8.3);
Relationship to partially separable approach;
Theory of obtaining B from G(H) when (1.23) does not hold;
Superlinear convergence of x(k) x*;
Experience with Bij ij problems;
Use in an NLP context.

Most of these have already been discussed at some point in this paper.
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TRUST REGION ALGORITHMS FOR SOLVING NONSMOOTH
EQUATIONS*

LIQUN QI
This paper is dedicated to Professor R. Tyrrell Rockafellar on the occasion of his 60th

birthday.

Abstract. Two globally convergent trust region algorithms are presented for solving nonsmooth
equations, where the functions are only locally Lipschitzian. The first algorithm is an extension of
the classic Levenberg-Marquardt method by approximating the locally Lipschitzian function with
a smooth function and using the derivative of the smooth function in the algorithm wherever a
derivative is needed. Global convergence for this algorithm is established under a regular condition.
In the second algorithm, successive smooth approximation functions and their derivatives are used.
Global convergence for the second algorithm is established under mild assumptions. Both objective
functions of subproblems of these two algorithms are quadratic functions.

Key words, nonsmoothness, algorithm, approximation, convergence
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1. Introduction. In recent years, there is growing interest in solving nons-
mooth equations [2]-[4], [10], [12]-[19], [24]-[28], [32]-[36]. Nonsmooth equations arise
from nonlinear complementarity, variational inequality, nonlinear programming, the
maximal monotone operator problem, nonsmooth partial differential equations, the
nonsmooth compact fixed point problem, and the Newton method for the complex
eigenvalue problem. See [28], [3], and other references listed above. In general, the
nonsmooth equation problem is to solve

(1.1) F(x) =0,

where F n
_
n is locally Lipschitzian. Various nonsmooth variants of Newton’s

methods [3], [12], [13], [15]-[18], [24], [25], [27], [32], [34]-[36], quasi-Newton methods
[2]-[4], [14], [15], [19], and Gauss-Newton methods [12], [27], [28], have been proposed
and studied. Local superlinear convergence has been established for some of these
methods [2]-[4], [14]-[17], [24], [25], [32], [34]-[36]. A characterization for superlinear
convergence was given in [28]. Global convergence was established via line search [12],
[24], [25], [27], [28], [33], or path search [35].

In this paper, we present a globally convergent trust region algorithm for solving
the nonsmooth equation (1.1). In a certain sense, this algorithm is a nonsmooth
version of the Levenberg-Marquardt method.

The classic Levenberg-Marquardt method is for solving smooth nonlinear least
squares and smooth nonlinear equations. The nonlinear least squares problem is

f(x) F(x)TF(x),min

where F n _, ,. If m n, it is equivalent to solving the nonlinear equation
problem (1.1). In the smooth case, the Levenberg-Marquardt method can be viewed

*Received by the editors August 13, 1992; accepted for publication (in revised form) November
9, 1993. This research was supported by the Australian Research Council.

fSchool of Mathematics, The University of New South Wales, Sydney, New South Wales 2052,
Australia (qi@solution .maths. unsw. edu. as).
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as a method for generating a sequence {xk} of iterates where the step dk between
iterates is a solution to the problem

(1.2)

for some bound Ak > 0. The norm I1" is arbitrary but it is usually chosen as the
2-norm because, for this choice, Marquardt proved if the step dk is determined by
solving the linear system

(F’(xk)TF’(xk) + .kI)dk --F’(xk)TF(xk)

with some parameter Ak >_ 0, then dk solves (1.2) with Ak Ildkll. Trust region
strategies are applied to adjust Ak. See [7], [20], and [21]. Global convergence results
were established in [20], [23], and [29].

In [8], I1" II1 was used in the objective function while I1" I1 was used in the
constraint of (1.2). In [11], two arbitrary norms are used in these two places. In the
other sections of our paper, all norms are 2-norms, and we only consider the case of
(1.1), i.e., m n.

In the nonsmooth case, F(xk) may not exist. However, in many cases, one
may decompose F into F p + q, where p }n

__
n is smooth, q

is locally Lipschitzian and relatively small. We call such a decomposition a smooth
plus nonsmooth (SPN) decomposition. In a certain sense, q can be regarded as the
perturbation to the system. Two examples of SPN decomposition are given in 2. For
more examples, see [2]-[4]. We now use

(1.3) min{llF(xk) +
to replace (1.2). In 2, we present such an algorithm and introduce a regularity
condition for the SPN decomposition of F. Global convergence for that algorithm
is established under such a regularity condition in 3. This regularity condition is
somehow restrictive. It only holds when the perturbation is relatively "mild." We
seek some improvements to that algorithm in 4. In some cases, one may decompose
F into F Pk + qk, where Pk }n }n is smooth, qk n .n uniformly tends to
zero as k tends to infinity. In 4, we present an algorithm by replacing (1.2) with

(1.4) min{llpk(Xk + pk(xk)dll2 lldll <_ Ak}.

Global convergence for this algorithm is established under mild conditions. Finally,
in 5, we give a numerical example for the second algorithm.

One merit of our algorithms is that the objective functions of (1.3) and (1.4) are
quadratic. If we use I1" IIo in the constraints of (1.3) and (1.4) (for this change, only
minor modifications are needed for proofs), then (1.3) and (1.4) are merely convex
quadratic programs, which can be solved by some general subroutines.

2. Algorithm 1 and regular SPN decomposition. In this section, we use
Fi, pi, qi,..., to denote component functions of F, p, q, This is different from other
sections. For example, in this section, pi n and is the ith component function
of p, while in other sections, p n __. n.

Consider (1.1) where F n __, }n is locally Lipschitzian. SPN decompositions
of F naturally exist for nonsmooth equations arising in nonsmooth partial differential
equations [2]-[4]. For example, consider the nonsmooth partial differential equation

-Au + (u) 0
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in a domain of the two-dimensional space. Assume that the value of u is given at the
boundary of that domain. Usually, , which is continuous but not smooth, reflects
the perturbation to the system. Discretizing the partial differential equation by a
finite difference method or a finite element method, we obtain a system of nonsmooth
equations

F(x) Ax + q(x) 0

for x E n, where A is an n n matrix, q is continuous but not differentiable in
n [22]. Let p(x) Ax. We have an SeN decomposition of F p T q. Here,
p represents the Laplace operator and q represents the nonsmooth perturbation .
We see that q is locally Lipschitzian but nonsmooth. For x E n and r > 0, let
B(x, r) (y n IlY- xll <- r}. In general, for a locally Lipschitzian function
q n

__
n, define the limiting Lipschitzian constant of q at x by

IIq(Y)
lq(x) lim sup

Then 0 <_ lq(x) ( x. In this example, if the perturbation is relatively mild, i.e., it
does not change very rapidly, then lq(x) is relatively small for all x. We will see that
our Algorithm 1 converges in such a case.

For most nonsmooth equations arising in optimization, SPN decompositions do
not exist naturally but, in some cases, can be constructed. For example, consider the
following nonlinear complementarity problem: find x n such that

g(x)

_
O, h(x)

_
O, g(x)Th(x) O,

where g, h n __. n are smooth functions. This nonlinear complementarity problem
is equivalent to the nonsmooth equation (1.1) with each component of F to be defined
by

Fi(x) min{gi(x), hi(x)}.

Let w > 0. Define the components of p, q" n
__
n by

if Igi(x)- hi(x)[ k w,
if [gi(x) hi(x)] < w

and

where

q (x) o if Igi(x) hi(x)] >_ w,
if Igi(x) hi(x)l < w,

i(x)
gi(x) + hi(x) [gi(x) hi(x)] 2 + w2

2 4w

O (z) h (z)l-
4W

o Since w is arbitrary, we can make q asThen F p + q, p is smooth and Ilqll -< -.
small as possible. This property assures that our Algorithm 2 converges. See also [3]
for this decomposition and its applications.

Let
1

f(x) -F(x)TF(x).
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Let x0 be an initial point for our algorithm. Assume that the level set Lo {x E n
f(x) <_ f(xo)} is bounded and let D C n be a bounded open convex set containing
L0. Let A0 be the diameter of D.

We say that F p + q is a regular SPN decomposition of F on D if p ’ -- nis smooth and for any x E D,

(..) ;,(x)r(z) # 0

as long as F(x) 7 O.
Suppose now F p + q is a regular SPN decomposition. For x D, define

RE(X) 0 if F(x) 0. Define

lq(x) llF(x)llRF(X) IIP’(x)TF(x)I1’

otherwise. We call RF(X) the regularity condition number of F at x.
We now describe our first algorithm. Let co, c, c2, c3, and ca be positive constants

satisfying co _< 1, c2 < c < 1, c3 < 1 < c4.

ALGORITHM 1. At the kth iteration, if F(xk) 0, stop. Otherwise, given xk and
Ak, solve the subproblem

(2.2) min Qk(d)=-- -llF(xk)+ (xk)dll 2 Ildll < A

Assume the solution of (2.2) is d. Suppose that dk is an inexact solution of (2.2) in
the sense that dk satisfies

and

Let

f(xk) Qk(dk) >_ co[f(xk) Qe(d)l

(2.4) rk

[Idyll A.

f(Xk f(Xk + dk
f(xk) Qk(dk)

Xk d-dk
Xk-t-1

Xk

if rk > C2,

otherwise,

(2.6)
C3Ak

A+ A
min{c4Ak, Ao}

if rk <_ c2,

if C2 < rk <_ Cl,
otherwise.

Go to the (k + 1)th step.
In the next section, we show that if F p + q is a regular SPN decomposition,

then this algorithm is well defined, and that if for one accumulation point 2 of the
sequence {Xk},

co 2RE(2)(.7) R() < , . < - co
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then every accumulation point of {xk} is a solution of (1.1). The condition (2.7) de-
pends upon the size of lq(2), hence is somehow strong. It holds when the perturbation
is relatively mild, but does not hold in general. We improve Algorithm 1 in 4.

3. Global convergence of Algorithm 1. We now prove the global conver-
gence of Algorithm 1. Assume that F p+ q is a regular SPN decomposition. We use
some known techniques in the literature about trust region algorithms [6], [9], [21],
[30], [31], [38]. The proof was shortened and the conclusion was strengthened due to
a referee’s suggestion.

LEMMA 1. At the kth step of Algorithm 1, if F(xk) O, then

co(3.1) f(x) Qk(d) >_ -llpt(xk)TF(xk)ll min A,
ilpt(xk)ll 2

Proof. Let

(3.2) IIp’(xk)TF(xk)I[

Then we have

f(xk) Qk(dk) >_ Co[f(Xk) Qk(d)] (by (2.3))
> co min [f(xk)- Qk(odk)] (by optimality of dk)

0<c<l

[ lo2"p’(Xk)k"2]> co min aAk]]p’(zk)Tf(xk)]]-

(by (2.2)and (3.2))

>_ c0 0<<xmin llP’(x)TF(x)ll

By this and (2.1), we get (3.1).
Remark 1. By (2.1), the right-hand side of (3.1) is always positive if F(xk) # O.

Hence dk # 0 if F(xk) # O. This shows that Algorithm 1 is well defined.
If F(x) 0, then Algorithm 1 stops and x is a solution of (1.1). Hence, we

may assume F(xk) # 0 for all k.
THEOREM 1. Suppose that {xk} is the sequence generated by Algorithm 1. Then

either (i) every accumulation point of {xk} is a solution of (1.1); or (ii) {Xk} converges
to a point such that F() # O.

Proof. Since L0 is bounded, {Xk} is bounded. Hence {xk} has at least one accu-
mulation point Z. If F() 0, then f(Z) 0. Since 0 f(xe+) f(xk) for all k,
we have

lim f(xk) O.

This implies case (i).
By (2.1), p’(xk) # 0 for all k. Assume that F(Z) # 0. By above discussion, no

accumulation point of {xk} is a solution of (1.1). This implies that

(3.3) liminf IIP’(xa)TF(x )ll > 0

and

(3.4) liminf
IIP’(x )TF(x )ll > O.

IIP’(x )ll
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By (3.1), (2.3), (2.4), and (2.5), we have that

(3.5) .keKE IIP’(xk)TF(xk)II min {Ak, IIP’(xk)TF(xk)II}]]p,(Xk) 2 <

where K {k’rk > c2} is the set of successful iterations. By (3.3), (3.4), and (3.5),
we have

E <
kK

By (3.6) and the fact that a subsequence of {Xk } converges to 2, we see that

This is case (ii). The theorem is proved.
To avoid case (ii), we need a stronger condition.
THEOREM 2. Suppose that is an accumulation point of {xk} and (2.7) holds.

Then F(2) 0 and every accumulation point of {xk} is a solution of (1.1).
Proof. Suppose that F(2) 0. By Theorem 1, (3.6) and (3.7) hold. We have

Since p’(2)TF(2) O, by (3.6) and (3.7), for all large k,

AklIp’(xk)II IIP’(xk)TF(Xk)II.

By this and (3.1), we have

(3.9) f(x}) Qk(dk) >
c0A}

IIP’(x)TF(x)ll.
2

By (3.8) and (3.9), we have

(3.10) f(Xk + dk) Qk(dk) < 2llF(x)lll(2) + o(1)
f(xk) Q}(dk) collp’(x)TF(x)ll

By (2.7) and (3.10), for all large k,

f(Xk) f(Xk + dk) > c2.f(xk) -Qk(dt:)
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Consequently, by (2.6), Ak+l >_ Ak for all large k. This contradicts (3.6). Hence
F() 0 and the conclusion follows Theorem 1. [:]

Remark 2. If F is smooth, we may let p F and q 0, then lq(x) O. In this
case, IIF(xk)ll--, 0 as long as (2.1) holds for all x. We will use this fact in 4.

4. Algorithm 2 and successive approximation. The success of Algorithm
1 depends upon (2.7). If RE(X) < 1/2 for all x e D, we may choose co and c2 to satisfy
this requirement. In the general case, we need to explore more powerful methods.

In 2, for the example of the nonsmooth equation arising in nonlinear comple-
mentarity problem, we see that we can decompose F p + q such that p is smooth
and q is as small as we wish. Actually, theoretically, this is always possible according
to approximation theory. But in this example, it is computationally possible, too.
Hence in some cases, we may decompose

F Pk T qk,

such that Pk is smooth and uniformly converges to F. Notice that Pk n __. n here,
while in 2 we use pi to denote the ith component function of p.

In the following, we denote

IIq ll su {llq (z)ll x e

Let co, cl, c2, C3, and ca be positive constants satisfying co _< 1, c2 < cl < 1,
c3 < 1 < c4 as before. Let 1 < c5 _< 2.

Let xo be an initial point for our algorithm. Assume that F(xo) O. Let
F po + qo such that po is smooth and Ilqoll <- cllF(xo)ll Let

1
fk (x) -pk (x)Tpk (X),

where F pk + qk for k >_ 1 will be constructed later. Assume that the level set
Lo {x E n .IIF(x)II <_ 311F(x0)II } is bounded and let D C n be a bounded open
convex set containing L0. Let A0 be the diameter of D.

We call F Pk + qk a relatively regular SPN decomposition if Pk n n is
smooth and for all x E D,

(4.1) p’k(x)Tp(x) 0

as long as F(x) # O.
Our second algorithm is as follows.

ALGORITHM 2. At the kth iteration, given xk, Ak and F Pk -{-qk, solve the
subproblem

(4.2) { 1 }min Qk(d) =- -llPk(Xk) + P(xk)dll 2 lldll <_ Ak

Assume the solution of (4.2) is d. Suppose that dk is an inexact solution of (4.2) in
the sense that dk satisfies

(4.3) fk(Xk) Qk(dk) >_ co[fk(xk) Qk(d)]
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Let

(4.4) rk

Ildell-< A.

fk (xk) fk (Xk + dk)
fk(xk) --Qk(dk)

Xk -t- dk if rk > 2,(4.5) xk+l
xk otherwise,

c3A if rk

_
c2,

(4.6) Ak+l Ak if c2 < rk <_ c,
min(c4Ak, Ao} otherwise.

If F(xk) O, stop. Otherwise, if IIF(xk+)ll > Chllqkll, let p+ pk and q+ q;
if IIF(xk+)ll <_ Chllqkll, construct F--p+ -b qk+ such that it is a relatively regular
SPN decomposition and

(4.7) IIq+lll <- min c-lllF(x+l)ll,llqall
Go to the (k-t- 1)th step.

THEOREM 3. In Algorithm 2, if at each step F Pk W qk can be constructed such
that it is a relatively regular SPN decomposition and (4.7) holds, then this algorithm
is well defined and any accumulation point of (x} generated by this algorithm is a
solution of (1.1).

Proof. Without loss of generality, assume that F(xk) 0 for all k. Let K
(0} U (k’llf(x)l <_ Chl]qk-ll}. Assume that K consists of k0 0 < kl < k2 <
Let k be an arbitrary nonnegative integer. Let kj be the largest number in K such
that kj _< k. Then

Pk Pkj qk qkj

We may regard iterations kj to k of Algorithm 2 as some iterations of Algorithm 1
with F p pk,q 0. Let Uj {z e n .llpk(X)ll

_
I]Pk(Xk)ll}. For any x e Uj,

(4.8) < IIp (x)ll / IIq
< IIF(,)II / 211q II.

If j -0, then by (4.8), for any x E U0,

i.e., U0 c_ L0. If j > 0, then by (4.8) and (4.7), for any x e Uy,
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We also have Uj C_ L0. Hence, in any case, Uj is bounded. Then this algorithm is well
defined. Notice that (4.1) holds as long as Ilpk(x)l > (c5 1)llqkll. By a consideration
similar to Remark 2, we see that eventually there is k _> k such that

IlPk’+l(Xk’+l)ll <_ (C5- 1)llqk, ll.

This implies that

i.e., k + 1 E K. Therefore, K is infinite. By our construction,

1

We have

(4.9) lim Ilqa 0

and

(4.10) lim IlF(Xk)ll o.
j--*c

Let k be an arbitrary nonnegative integer. Let kj be the largest number in K such
that ky _< k. Since we may regard iterations kj to k of Algorithm 2 as some iterations
of Algorithm 1 with F p Pk., q O,

Then,

(4.11)

By (4.9), (4.10), and (4.11), we have

lim IIF(xe)ll o.

This completes the proof. D
Remark 3. Notice that the function value of f may not be monotonically decreas-

ing for all k, though it is monotonically decreasing for k E K.
Remark 4. Actually, one can combine successive approximation strategy with

other globally convergent strategies for solving smooth nonlinear equations, such as
line search. The proof of Theorem 3 is still true in those extensions. This results
in other successive approximation methods for solving nonsmooth equations. Ap-
proximation strategy has also been used in other optimization branches, such as in
stochastic programming [1], [37].

5. A numerical example. In this section, we give a numerical example to test
Algorithm 2. Consider the nonlinear complementarity problem described in 2. We
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use the example given in [15]. In this example, g(x) =_ x and h: R4 --. R4 is defined
by

2x2 + xl + x + 10x3 + 2xa 2
h(x) 3x + XlX2 Jr- 2x22 + 2x3 - 9x4 9

x + 3x + 2x3 + 3x4 3

Let F be defined by g and h as in 2.
This is a degenerate nonlinear complementarity problem. At many points, the

generalized Jacobian OF(x) includes singular elements. It was shown in [3] that the
generalized Newton method

Xk-t..1 Xk v-lF(xk), Yk e OF(x)

failed when Vk was singular at some points xk. In Algorithm 2, we do not need an
inverse of Vk. The algorithm is well defined. For showing the global convergence
of Algorithm 2, we choose initial point x0 (50, 50, 0, 0) + e(1, 1, 1, 1), where e is a
random number. Also we choose A0 10.625, cl 0.265, c2 0.025, c3 0.985, c4
1.25, c5 1.5,w0 10-6. At the kth step, let wk be the constant w for the SPN
decomposition F Pk Jr- qk as described in 2. Let Wk+l be choosen such that (4.7)
holds. In Fig. 1, we see that IIF(xk)ll and f(xk) are monotonically decreasing and
wk tends to zero when IF(Xk)ll tends to zero. Notice Wk decreases suddenly when
k-38.

The computation was done by Dr. Xiaojun Chen.
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WHY BROYDEN’S NONSYMMETRIC METHOD TERMINATES ON
LINEAR EQUATIONS*

DIANNE P. O’LEARYt

Abstract. The family of algorithms introduced by Broyden in 1965 for solving systems of
nonlinear equations has been used quite effectively on a variety of problems. In 1979, Gay proved
the then surprising result that the algorithms terminate in at most 2n steps on linear problems with n
variables [SIAM J. Numer Anal., 16 (1979), pp. 623-630]. His very clever proof gives no insight into
properties of the intermediate iterates, however. In this work we show that Broyden’s methods are
projection methods, forcing the residuals to lie in a nested set of subspaces of decreasing dimension.
The results apply to linear systems as well as linear least squares problems.

Key words. Broyden’s method, nonlinear equations, quasi-Newton methods

AMS subject classifications. 65H10, 65F10

1. Introduction. In 1965, Broyden introduced a method for solving systems of
nonlinear equations g(x*) 0, where g" 7n -- Tn is differentiable [2]. He named it
a quasi-Newton method. Methods in this class mimic the Newton iteration

Xk+l Xk (Vg(xk)}-ig(xk), k=O, 1,...,

by substituting an approximation Hk for {Vg(xk)}-1, the inverse of the Jacobian
matrix. This matrix approximation is built up step by step, and the correction to Hk
is fashioned so that the secant condition

is satisfied, where

and

Hk+lYk 8k,

Y g(xk+l) g(xk) gk+l gk

8k Xk+l Xk.

This condition is satisfied if Hk+ {Vg(xk+l)}-1 and g is linear, and this is
the motivation for choosing the correction to Hk so that Hk+ satisfies this condition

-1but so that Hk+ behaves as H-1 in all directions orthogonal to sk. This reasoning
led Broyden to the formula

Hk+ Hk + (Sk Hkyk)V[,

where vk is chosen so that T
Vk Yk 1. Specific choices of vk lead to different algorithms

in Broyden’s family.
Although certain members of the family proved to be very effective algorithms

(specifically, the so called Broyden "good" method that takes Vk in the same direction
as sk), the algorithms were little understood, to the extent that Broyden himself in
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1972 said, "The algorithm does not enjoy the property of quadratic termination even
when used for function minimization with exact line searches." [3, p. 97]..

This misconception, common to the entire optimization community, was disproved
in 1979 by David Gay in a surprising and clever construction [4]. He showed that if

g(x) Ax b,

where A E Tn’ is nonsingular, then the following result holds.
LEMMA 1.1. (Gay) If gk and Yk-1 are linearly independent, then for 1

_
j <_

[(k/l)/2J, the vectors ((AHk_2j+)igk_2j+l} are linearly independent forO <_ i <_ j.
This result implies that for some k <_ 2n, gk-1 and Yk-2 must be linearly depen-

dent, and Gay showed that in this case gk --0 and termination occurs.
Gay’s construction leads to a proof of a 2n-step Q-quadratic rate of convergence

for Broyden’s good method. It yields little insight, though, into how the intermediate
iterates in Broyden’s method are behaving in the case of linear systems, and the
purpose of this work is to develop that understanding.

2. The character of the Broyden iterates. First we establish some useful
relations. The change in the x vector is given by

and the change in the residual g is

y Ask =--AHkgk,

so we can express the new residual as

g+ gk + Y (I- AHk)gk.

For convenience, we denote the matrix in this expression as

Fk I- AHk,

and denote the product of such factors as

Then a simple induction-style argument gives us a useful formula for gk+l and thus
for Yk and s.

LEMMA 2.1. It holds that

g+ Pgo,
yk --AHkPk-lgo,

Sk -HkP-lgo.

Thus, the character of the product matrices Pk determines the behavior of the resid-
uals g in the course of the iteration. The key to this behavior is the nature of the
left null vectors of P, the vectors z for which zTPk 0. We prove in the next section
that these vectors have a very special form. In particular, the factor matrices Fk
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are quite defective, having a zero eigenvalue with a Jordan block of size [k/2]. The
linearly independent left principal vectors of Fk, vectors zi satisfying

O,

zFk zT
zg=,

do not depend on k, and in fact are left eigenvectors of Pk corresponding to a zero
eigenvalue. Thus the vector gk+l is orthogonal to the expanding subspace spanned
by the vectors {zi} (i odd and <_ k) and, after at most 2n steps, is forced to be zero.

3. The behavior of the Broyden iterates. David Gay proved an important
fact about the rank of the factor matrices Fk, and the following result is essentially
his.

LEMMA 3.1. (Gay) For k >_ 1, if Yk O, vTkyk_l O, and rank(Fk)- n- 1,
then rank(Fk+l) n- 1, and Yk spans the null space of F+I.

Proof. For k _> 0,

Fk+ I- AHk+
I- AHk (Ask AHky)v[
I- AHk (yk AHkyk)v[
(I- AHk)(I ykv)

Since T
Vk Yk 1, we see that Fk+y 0. Similarly, Yk-1 spans the null space

of Fk (k >_ 1). Any other right null vector y of Fk+ must (after scaling) satisfy
vTTT spans the null space of (I- /k k and because, by(I-- ykv)y Yk- But vk

assumption, T
Vk Yk- O, Yk- is not in the range of (I- ykv), and thus Yk spans

the null space of Fk+.
This lemma leads to the important observation that the sequence of matrices H

does not terminate with the inverse of the matrix A, at least in the usual case in
which all vyk-1 O. In fact, each matrix H and A- agree only on a subspace of
dimension 1.

We make several assumptions on the iteration.
T1. vj yj_ 0, j 1,2,...,k, and y 0.

2. v0 is in the range of F0T.
3. k <_ 2n- 1 is odd. (This is for notational convenience.)

We can now show that the matrix Fk is defective and exhibit the left null vectors
of P (which are the same as the left null vectors of Pk+).

LEMMA 3.2. Define the sequence of vectors

O, z 3, k.

These vectors exist and are linearly independent, and z is a left null vector of Pj for
j i,i + 1,..., k. Furthermore, Tz gj O, j i + 1, + 2,... ,k.

Proof. Define zl by zTFo v. This nonzero vector exists by assumption 2, and
since

vTFj F0(1 yov)... (1 yj_ j--l),
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it is easy to see that, for j 1, 2,..., k, zTFj 0, and therefore zTPj 0 as well. In
order to continue the construction, we need an orthogonality result" for j 2, 3,..., k,

For the "induction step, assume that linearly independent vectors zl,..., zi-2
have been constructed for _< k, that each of these vectors satisfies zTmFj T

Zrn_2

(zTFj 0) and TzmP 0 for j rn k, and that T
z_2yj 0 for j i- 1,..., k.

(Linear independence follows from the fact that they are principal vectors for Fi-2.)
Let zFi zT_2 Note that zi exists since T

zi_2Yi_l 0, and Yi-1 spans the null space
of Fi. We have that, for j i,..., k, zF zT_2, and therefore zT Pi zT_2PY_I 0
as well. Then for j + 1,..., k, we have

5 5- goz g+l -z g goz yj =0.

In the course of this proof, we have established the following result.
THEOREM 3.3. Under the above three assumptions, and if A is nonsingular,

then after k + 1 steps of Broyden’s method, the residual g(xk+l is orthogonal to the
linearly independent vectors z, z3,..., zk, and thus the algorithm must terminate with
the exact solution vector after at most2n iterations.

4. Overdetermined or rank deficient linear systems. Gerber and Luk [5]
gave a nice generalization of Gay’s results to overdetermined or rank deficient linear
systems, and the results in this paper can be generalized this way as well. The matrices

Fk have dimensions rn m, where m >_ n is the number of equations. The two lemmas
and their proofs are unchanged, but the theorem has a slightly different statement.
Let R denote the range of a matrix, and N denote the null space.

THEOREM 4.1. Under the above three assumptions, and if A E ,]mn has rank
p, and if N(Hk) N(AT), then after k + 1 steps of Broyden’s method, the residual
g(xk+l) is orthogonal to the linearly independent vectors zl,z3,... ,zk, which are con-
tained in the range of A, and thus the algorithm must terminate with the least squares
solution vector after at most 2p iterations.

Proof. The fact that z is in the range of A is established by induction.
Gerber and Luk give sufficient conditions guaranteeing that N(Hk) N(AT).

1. R(H0)= R(AT),
2. N(H0)= N(AT),
3a. vk Huk for some vector uk, with U[Sk O.

Condition 3a is satisfied by Broyden’s "good" method (vk parallel to sk) but not the
"bad" method (vk parallel to yk). It is easy to show by induction that the condition
N(Hk) N(AT) also holds under the following assumption, valid for the "bad"
method:

3b. vk. Auk for some vector Uk, with UkTSk O.
First, assume that z E N(Hk) and that N(Hk) N(AT). Then

Hk+z Hkz + (sk HkYk)V[Z,
T u’Hk or Tand this is zero if and only if vkTz O, which is assured if either vk vk

T T Tuk A Thus, N(Hk) c_ N(Hk+I). Now, by writing vk as Hk uk, valid under either
T3a or 3b, we can show [5] that Hk+ (I- Hkgk+luk )Hk, and that the determinant

T
8of the first factor is uk k, nonzero by condition 3. Thus N(Hk+) N(Hk).
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5. Concluding notes. Since the vectors vk are arbitrary except for a normal-
ization, it is easy to ensure that assumptions 1 and 2 of 3 are are satisfied. But if
not, termination actually occurs earlier: if Fk has rank n- 1 and v[yk-1 0, then

Fk+l has rank n- 2 with right null vectors Yk and Yk-1. Similarly, Pk+ has one extra
zero eigenvMue.

The conclusions in this work apply to the Broyden family of methods, whether
they are implemented by updating an approximation to the Hessian, its inverse, or its
factors. The inverse approximation was only used for notational convenience; other
implementations are preferred in numerical computation.

The conclusions depend critically on the assumption that the step length param-
eter is 1 (i.e., if s --aHkg, then a 1).

As noted by a referee, the conclusions depend on only two properties of Broyden’s
method, consequences of Lemma 2.1:

Fk+ Fk(I- (Fk I)gkv[),
g+ Fg,

where go and F0 are given, and the vk are (almost) arbitrary. Thus the results can be
applied to a broader class of methods, in the same spirit as the work by Boggs and
Tolle [1].

Note added in proof. Other results on the convergence of these methods are
given by Hwang and Kelley [6], who cite a termination proof by W. Burmeister in
1975.

Acknowledgment. Thanks to Gene H. Golub for providing the Gerber and Luk
reference, and to David Gay and C. G. Broyden for careful reading of a draft of the
manuscript.

REFERENCES

[1] P. T. Boccs AND J. W. TOLLE, Convergence properties of a clozs of rank-two updates, SIAM
J. Optim., 4 (1994), pp. 262-287.

[2] C. (. BROYDEN,. A class of methods .for solving nonlinear simultaneous equations, Math.
Comp., 19 (1965), pp. 577-593.

[3] Quasi-Newton methods, in Numerical Methods for Unconstrained Optimization,
W. Murray, ed., Academic Press, New York, 1972, pp. 87-106.

[4] D. M. GAY, Some convergence properties of Broyden’s method, SIAM J. Numer. Anal., 16
(1979), pp. 623-630.

[5] R. R. GERBER AND F. T. Lug, A generalized Broyden’s method for solving simultaneous linear
equations, SIAM J. Numer. Anal., 18 (1981), pp. 882-890.

[6] D. M. HWANG AND C. T. KELLEY, Convergence of Broyden’s method in Banach spaces, SIAM
J. Optim., 2 (1992), pp. 505-532.



SIAM J. OPTIMIZATION
Vol. 5, No. 2, pp. 236-246, May 1995

() 1995 Society for Industrial and Applied Mathematics
O02

A NEW INFINITY-NORM PATH FOLLOWING ALGORITHM FOR
LINEAR PROGRAMMING*

KURT M. ANSTREICHER AND ROBERT A. BOSCH$

Abstract. We devise a new primal-dual path following algorithm for linear programming that
is based entirely on an infinity-norm centering measure. The algorithm makes reductions in a path
parameter , each of which is followed by a sequence of centering steps. The algorithm has similarities
with both long step path following and predictor-corrector methods. We also consider a "modified"
version of the algorithm that uses partial updating of the projection equations. The analysis of
the modified algorithm has some interesting differences compared with previously devised partial
updating methods. In particular, partial updating obtains a factor-of-v/ complexity reduction even
though the permissible relative error in the approximate scaling factors is extremely small only
o(:/v).

Key words, interior point method, primal-dual algorithm, partial updating, rank-one updates,
modified method

AMS subject classification. 90C05

1. Introduction. The motivation for a primal-dual path following algorithm
for linear programming (LP) was provided by Megiddo (1989), and the idea was first
operationalized by Kojima, Mizuno, and Yoshise (1989a), and Monteiro and Adler
(1989a). Primal-dual path following algorithms maintain primal and dual iterates
which are near the central path, a distinguished set of solutions. A key element in
the design of such an algorithm is the precise manner in which "near" in the previous
sentence is characterized. Kojima, Mizuno, and Yoshise (1989a), using a "one-sided
infinity-norm" measure, obtained a complexity of O(nL) steps, while Monteiro and
Adler (1989a) obtained O(v/-dL) step complexity using a stricter 2-norm measure.
Here n is the number of variables in a standard form linear program, with integer
data having total bit size L.

Although looser proximity measures, such as those employed by Kojima, Mizuno,
and Yoshise (1989a), invariably result in inferior worst-case complexity bounds, in
practice the resulting algorithms work much better than methods that use stricter
2-norm measures. Some theoretical justification for this phenomenon is provided by
Mizuno, Todd, and Ye (1993), where a number of different primal-dual path following
algorithms are compared using both worst-case and anticipated behavior criteria. Al-
though the analysis of anticipated behavior does not provide a rigorous probabilistic
result, it does indicate that infinity-norm based algorithms have a good chance of
converging faster than methods based on 2-norm measures.

One particular method described in Mizuno, Todd, and Ye (1993), the predictor-
corrector (PC) algorithm, provides considerable motivation for the algorithm we de-
velop in this paper. The PC algorithm works with a 2-norm centering measure, which
is used to define neighborhoods of the central trajectory. Beginning with a primal-
dual pair in a "small" neighborhood, the PC algorithm first computes the primal and
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dual directions designed to reduce the primal-dual gap as quickly as possible. A step
is then taken, using the longest steplength, that keeps the new points in a larger
neighborhood of the central path. This is the predictor step. Each predictor step is
followed by a corrector step, which holds the gap constant, but returns the iterates to
the small neighborhood so that the process can be repeated. The resulting algorithm
attains O(v/-L) step complexity, as is typical for 2-norm based methods.

In this paper we are particularly interested in how corrector steps, as used by the
PC algorithm, work when the 2-norm centering measure is replaced by an infinity-
norm measure. Indeed, Mizuno, Todd, and Ye (1993) note, at the end of their 3, that
"... corrector steps may not behave well with the l norm." Basically the algorithm
we develop replaces a single corrector step with a sequence of steps which ultimately
return the iterates to the "small" neighborhood. However, we do not begin with
a predictor step, but instead consider the path parameter # to be exogenous, and
simply reduce # as much as possible, keeping the current primal-dual pair in a "large"
neighborhood. As a result, the overall structure of our algorithm is similar to the
"long step path following" methods of Gonzaga (1991) and Roos and Vial (1990),
except that (i) we use primal-dual steps; (ii) the reduction in the path parameter caa
be "large," i.e., Ft(1), but not arbitrarily large; and (iii) the bound on the number
of steps required to return to a small neighborhood of the central path is not based
on reduction in a potential or barrier function, but rather reduction in the centering
measure itself. See also Jansen et al. (1994) for a primal-dual long step path following
algorithm, and Ling (1993) for a polynomial-time affine scaling method based on a
novel infinity-norm centering measure.

In addition to the basic algorithm, we develop a "modified" version that uses
partial updating of the projection equations that are solved on each corrector step.
Primal-dual path following methods using partial updating are analyzed by Kojima,
Mizuno, and Yoshise (1989b), and Monteiro and Adler (1989b), and by now the use
of partial updating to reduce the complexity of interior point algorithms for LP is
quite standard. However, to our knowledge, no one has previously examined the
behavior of partial updating when infinity-norm neighborhoods are used, and in doing
so we find some surprising differences. In particular, we show that for our modified
algorithm, partial updating provides a factor-of-vf complexity reduction even though
the allowable relative error in the scaling factors is extremely small, only O(1/x/),
compared to gt(1) in all previous applications.

2. The basic algorithm. Consider the primal-dual pair of linear programs

(e) min{cTx lAx b, x >_ 0},
(D) max{bTy ATy + s c, s >_ 0},

where A is an m n matrix with linearly independent rows. Throughout the paper we
make extensive use of a well-known "centering measure" for (P) and (D). In particular,
if 0 < < 1, x and (y, s) are feasible for (P) and (D), respectively, and # is a positive
scalar for which

Xs

then we say that x and s are -centered with respect to it. In (2.1), X denotes the
diagonal matrix X diag(x); similar notation is used for other diagonal matrices
throughout the paper. Throughout the paper e denotes the vector with each compo-
nent equal to one. In the context of primal-dual algorithms, for example, the methods
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devised in Mizuno, Todd, and Ye (1993), the centering measure (2.1) is often employed
with # xTs/n. Throughout this paper, however, # is always considered to be an
independent parameter.

The algorithm which we develop in this section is comprised of inner and outer
steps. Outer steps correspond to simply reducing the parameter #, and each outer
step is followed by a sequence of inner steps. Suppose that x and s are fl-centered
with respect to # > 0. An inner step finds feasible solutions more finely centered with
respect to tt than are x and s. That is, an inner step finds feasible solutions that are

fl’-centered with respect to #, where ’ < . This is accomplished by making a step
of the form

x(0) x + 0dx, y(0) y + Ody, s(0) s + Ods,

where the directions dx, dy, ds are obtained by solving the system

Sd + Xd8 #e- Xs,
Adx 0,

ATdy + ds O.

Lemma 2.1, Theorem 2.2, and Corollary 2.3 below present the relevant results con-

cerning inner steps. The main result is Corollary 2.3. Note that from (2.2) it follows
immediately that

(2.3)
X(O) s(O) #e Xs #e + 0(Sdx + Xd) + 02Dd

(1 O)(Xs #e) + O2Dxds,

so that when x and s are -centered with respect to #, and 0

_
0 <_ 1, we easily obtain

(2.4)
02

(1 + Dxds I1 .

LEMMA 2.1. Suppose that x and s are fl-centered with respect to #, and that
dx, ds are obtained by solving (2.2). Then

II Dxds <_ nil2#
4(1- )"

Proof. As in Mizuno, Todd, and Ye (1993), we express Dds differently. It is easy
to show that

where

p P()r,
q PT(AT)r,
r X-.S-.(tte Xs),

A AX.5S-.5, and Pf(.) and Pn(.) denote projection onto the nullspace and range,
respectively. Note that Dxds Pq. Since p + q r and pTq 0, Lemma 1(c) of
Mizuno, Todd, and Ye (1993) applies here, yielding
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which gives

nmax { 1

But Xs- #e Iloo <_ # also implies that xisi >_ (1- )# for each i. The lemma
follows immediately. 1

THEOREM 2.2. Suppose that x and s are -centered with respect to #, and that
d, d are obtained by solving (2.2). Let 2(1- )/(n), and assume that < 1.
Then (x(), s()) > O, and

1

# n

Proof. From (2.4) and Lemma 2.1, we have

(2.5) X(O) s(O) n2

-ell <_ (1- 0)+024(1#

for 0 _< 0 <_ 1. The right-hand side of (2.5) is a convex quadratic function of 0, which
is minimized at 0 . Then (x(), s()) > 0 follows from the fact that the right-hand
side of (2.5) is decreasing for 0 < 0 <_ , and substituting into (2.5) completes the
proof. 1

COROLLARY 2.3. Let 0 < < < 1, where and (1- ) are t(1), and

13 > 2/(n + 2). Let # > O. If x and s are -centered with respect to #, then at most
O(n) inner steps are required to obtain solutions that are -centered with respect to #.

Proof. Note that < 1, as required in Theorem 2.2, holds for < < so long
as > 2/(n / 2). The corollary then follows immediately from repeated application
of Theorem 2.2. [3

We now describe the entire basic algorithm. We are given 0 </ < f < 1, and

# > 0, as well as solutions to (P) and (D) that are -centered with respect to #. Inner
steps are then performed until we obtain solutions that are/-centered with respect
to #. At this point, we perform an outer step; that is, we reduce # to a new value tg
chosen so that the current solutions to (P) and (D) are -centered with respect to #’.
We then set # #’ and repeat the entire process, terminating when # is sufficiently
small. In the case where all the data in (P) is integral, with total bit size L, it suffices
to have # < 2-(L) to invoke a "rounding" procedure, which obtains optimal basic
solutions to (P) and (D).

The following lemma demonstrates that "large," i.e., Ft(1), reductions of # are
permissible on outer steps. In particular, we may set #’ := r#, where 0 < r/ < 1 is
independent of n. As a result, at most O(L) outer steps are required, so long as initial
solutions which are -centered with respect to a value of # O(L) are available. This
in turn implies that the algorithm requires a total of at most O(nL) inner steps. Each
inner step requires O(n3) arithmetic operations; O(n3) for factorizing AXS-1AT,
and O(n2) for everything else. As a result, the basic algorithm’s overall worst-case
complexity is O(naL) operations.

LEMMA 2.4. Suppose that x and s are -centered with respect to #, and # #,

where 0 < < 1. Let/ (1 + )/- 1. Then x and s are -centered with respect to
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Proof. Since II e II 1, we have

_< Z. + (.- .,)
(1 + _)# #’.

Dividing by # completes the proof, rl

Note that if, for example, r 3/4 and 1/4, then 2/3. Consequently,
solutions that are (1/4)-centered with respect to # will be (2/3)-centered with respect
to (3/4). Also note that 1/4 satisfies >_ 2/(n + 2), as required in Corollary
2.3, for all n _> 6.

As noted above, Corollary 2.3 and Lemma 2.4 together demonstrate that the
basic algorithm of this section, suitably initialized, has a complexity of O(nL) steps.
Although the steplength is used in Theorem 2.2 to establish a guaranteed descent
in the centering measure X(O)s(O)/# e I1, in practice on each inner step one may
perform a linesearch of this quantity in 0 >_ 0 to "re-center" the iterates as rapidly
as possible. Using such a linesearch, one would expect that far fewer than O(n)
inner steps would be required on each outer step, greatly improving the practical
performance of the algorithm.

As mentioned in the Introduction, the algorithm of this section was partially
motivated by the PC algorithm of Mizuno, Todd, and Ye (1993). In the PC algorithm,
the parameter is endogenously defined by # xTs/n, and the "outer" step is
replaced by a predictor step. The direction for the predictor step is obtained by solving
(2.2), with the equations Sd + Xd #e- Xs replaced by Sd + Xd -Xs. A
step x(O), s(O) is then taken using the resulting directions, where 0 is chosen to be the
maximum value such that (in our notation) x(O) and s(O) are -centered with respect
to #(0) x(O)Ts(O)/n (1- 0)#, for all 0 _< 0 _< 0. Mizuno, Todd, and Ye (1993)
uses a 2-norm measure analogous to (2.1), but it is easy to devise a similar infinity-
norm based algorithm. With # xTs/n, the analysis of corrector steps based on
an infinity-norm measure is essentially identical to Theorem 2.2. For predictor steps,
the key issue is the steplength , which determines the gap reduction. Unfortunately,
following the analysis in Mizuno, Todd, and Ye (1993), using infinity-norm measures,
results in 0 O(1/x/), the same value as obtained in the 2-norm case. The result
is a method that requires O(v/-dL) predictor steps, each followed by O(n) corrector
steps, for a total complexity of O(n4.hL) operations.

Finally, it is worthwhile to note that Theorem 2.2 and Lemma 2.4 can also be
combined to give a simple "short step path following" algorithm for linear program-
ming. In particular, consider the basic algorithm of this section, but where following
a reduction in #, only a single inner step is taken. From Theorem 2.2 and Lemma
2.4, this single step will produce a primal-dual pair which is -centered with respect
to #’ r/# if

n_
1- _<?(1+) !,
n

1-r>l- n(1 + ,)
Then #’ (1 f(1/n))# immediately leads to an algorithm with O(nL) step com-
plexity.
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3. The modified algorithm. In this section we describe a partial updating
version of the basic algorithm. Here we maintain approximations and to x and
s, controlling the quality of the approximations via a parameter 0 < < 1. While
running the algorithm, we ensure that

(3.1) 1-/ <lA--y and 1-/ <1+/ fori=l,...,n,
xi 8i

updating a component of & or only when it fails to satisfy (3.1).
The modified algorithm’s inner steps are very similar to those of the basic al-

gorithm. The difference is that the directions dz, dy, ds are obtained by solving the
following altered version of (2.2):

(3.2)
dz + ffds #e- Xs,
Adz 0,
ATdy + ds O.

It is easy to show that the solutions dz and ds of (3.2) are given by

dz .5-.5p,
(3.3) where

ds -.5.5q,

p PAr(A)r,
q PTC(2T) r,

r 2-.-.(e- Xs),

and A.5-.5. Note that (2.3) continues to hold using dz, d from (3.3). However,
we do not have Sdz+Xds #e-Xs as before; instead (3.2) gives dz+Xd #e-Xs.
Accordingly, we use Sdz + Xds (dz + .,ds) + (S- )dz + (X f()ds to write (2.3)
s

X(O) s(O) #e (1 O)(Xs #e) + O(S )d + O(X f()d + OeDd.

It then follows immediately that for 0 <_ 0 <_ 1,

(3.4) II x(o)s(o) e I1 <_ (1 0),# + o(11 (s S)dz I1 + (x X)ds I1)
+ o: Dd I1.

LEMMA 3.1. Suppose that x and s are B-centered with respect to #, and that
and g satisfy (3.1). Then

(1 ,)# < .ii < (1 + ,)#
(1 + ,.y)2 (1 ,,/)2 for 1, n.

Proof. Since x and s are -centered with respect to #, we have

(3.5) (1 )# _< xisi <_ (1 + )# for 1,..., n.

Since and satisfy (3.1), we have

xi si < 5ci gi < xisi for 1 n.(3.6) (1 + /)2 (1 .)2

The lemma follows by combining (3.5) and (3.6).
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LEMMA 3.2. Suppose that x and s are/-centered with respect to It, that and
satisfy (3.1), and that dx, d8 are obtained by solving (3.2). Then II (S )dx Iloo <_

x/-d AIt, and (X f()d8 Iloo <_ A/It, where

Proof. By (3.3), (3.1), and Lemma 3.1 we obtain

(3.7)

II (s- )d II ---II (S- ,.)-1(-.5.5p)Iloo

_< v/(1 + Z)
P1-’7

Since 11-< II p I1. <_ II r I1 -< II ," I1, we have

where the last inequality follows from Lemma 3.1 and the fact that x and s are -centered with respect to It. By combining (3.7) and (3.8), we obtain the first inequality
of the lemma. The proof of the second inequality is very similar. El

LEMMA 3.3. Suppose that x and s are -centered with respect to It, that Yc and
satisfy (3.1), and that d, ds are obtained by solving (3.2). Then

II Dxd8 I1 <_ n2It(1 + ’7)2
4(1 )

Proof. First note that Dds Pq. Since p + q r and pTq 0, Lemma 1(c) of
Mizuno, Todd, and Ye (1993) again applies, yielding

IIPqll < I111 <o
4 112-.-. IILII x IlL.

From this, Lemma 3.1, and the fact that x and s are -centered with respect to It, we
obtain

Pq I1 < _n (1 + ’7)2 2It2. El
4 (1

THEOREM 3.4. Suppose that x and s are [-centered with respect to It, that Yc and
satisfy (3.1), and that d,ds are obtained by solving (3.2). Let

2(1--)T
where T=

1--2X/A
n(1 + ’7)’ 1 + ’7

and A is as in Lemma 3.2. Assume that / and are such that > 0 and <_ 1. Then
(x(0),s()) > 0, and

x(e) s(e) (1 ,3)T2--II --< /-
It n
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Proof. Combining (3.4) with Lemmas 3.2 and 3.3, and dividing by #, yields

X(O) s(O)
e ]] < (1 0) + 20v/- A/3 / 02 nf2(1 + ./)2

(3.9) =/ O/(1 + 7)T + O2 n/32(1 + .),)2
4(1 Z)

for 0 <_ 0 <_ 1. The right-hand side of (3.9) is a convex quadratic function of 0,
is decreasing in 0 >_ 0 so long as T > 0, and is then minimized at 0 . Then
(x(), s()) > 0 follows from the fact that the right-hand side of (3.9) is decreasing in
0 for 0 <_ 0 <_ , and substituting into (3.9) completes the proof.

Note that the condition T > 0 required in Theorem 3.4, combined with the defi-
nition of A from Lemma 3.2, immediately implies that /= O(1/v). As a result, our
modified algorithm differs fundamentally from all previous methods based on partial
updating (for example Kojima, Mizuno, and Yoshise (1989b), Monteiro and Adler
(1989b), Anstreicher and Bosch (1992), Bosch and Anstreicher (1993), and Den Her-
tog, Roos, and Vial (1992)), where relative errors Ft(1) are permitted.

COROLLARY 3.5. LetO </3 <- < 1, where and (1--) are(1). Let9/
for some > 0, t(1), where , /3, and are chosen so that T > 0, T t(1),
and <_ 1 in Theorem 3.4 for all <_ <_ -. Let# > O, and suppose that x ands
are -centered with respect to #. Then at most O(n) inner steps are required to obtain
solutions that are -centered with respect to #.

Proof. The corollary follows immediately from repeated application of Theorem
3.4.

The conditions on/,/, and required by Corollary 3.5 are not at all restrictive.

For example, using/3 1/4 and/ 2/3, as suggested in the previous section, it is

easy to verify that 1/8 gives T >_ .35, and _< 1, for all/ _</ _< , and n >_ 5.
Next we give a detailed description of what happens after the modified algorithm

takes an outer step. At this point, we have x and s that are/-centered with respect
to the most recent value of tt. First, we set k := 0, x "= x, so s, 5:0 .= x, g0 := s.
Then we factorize AXS-1AT. Finally, we take as many inner steps as are needed to
obtain solutions that are/3-centered with respect to #, performing updates as needed
so. as to always satisfy (3.1). In other words, we perform the following procedure:

while Xksk #e [[ > /# do

Set xk+ := xk q-kdkz and 8k’b :-- 8k + kd
Set U := and U :=
for i= 1,...,n do

if [(x+1 -k -k -k+l _k+l d V V {i}x /x
else set + := xi

if si )Is:
else set +

if either xi+ xi-k or i=k+ Si-k then perform_ the corresponding
rank-one update of the factorization of AXS-ATSet k := k + 1

The set Uk contains the indices of the components of 5: that need to be updated
on the kth inner step. The set Usk is similarly defined, but pertains to $. See for
example Shanno (1988) for details of updating a Cholesky factorization of AXS-IAT.
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Since the outer step is no different from that of the basic algorithm, the mod-
ified algorithm continues to require at most O(L) outer steps. From Corollary 3.5,
we know that at most O(n) inner steps are needed per outer step. Hence, the mod-
ified algorithm requires at most O(nL) inner steps in total. In the sequel we show
that at most O(n1.5) rank-one updates are performed per outer step, where each
update requires O(n2) operations. This implies that the modified algorithm has a
total complexity of O(n3.5L) operations. Our analysis is similar to that presented in
Bosch and Anstreicher (1995). The main result is Theorem 3.8. We begin by defining

II--1(xk k)II1 and k I[ 1(sk )II1.
LEMMA 3.6. Let xk and sk be k-centered with respect to #, and consider a step

of the modified algorithm x+1 x + d, s+1 s + kd. Then

Proof. First, note that

(3.10)
From (3.3), we have II 2-1dk I1 II 2--p I1 <- vll2-IIoollp II., and
in addition II p Ilu < II II < II 2-N- IIoo II e x Ilu. Combining the two
yields

II 2ld I11 <_ v I1-2/-’s,;- I111 ’ X, 112
< nil 2/-’,;-’, I1 ’ X I1.

Applying Lemma 3.1 and the fact that xk and sk are k-centered with respect to #,
we obtain

( +) Z..
The first part of the lemma follows from the above inequality and (3.10). The proof
of the second part of the lemma is nearly identical.

LEMMA 3.7. Let xk and sk be k-centered with respect to #, and consider a step
of the modified algorithm Xk+l Xk + kdx, 8k+l 8k 2_ kdks Then

lUll <_ 0 0+ +

Iv$1 <_ Csk+l

Proof. As in the proof of Lemma 2.2 of Bosch and Anstreicher (1995), we have

/_1 k+l
,4,k+1 Xi
x z.k+l

Xk+ k
~kX

~kX
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The first part of the lemma follows from the above inequality and Lemma 3.6. The
proof of the second part of the lemma is nearly identical.

THEOREM 3.8. Assume that and (1- ) are gt(1), and let K be the number of
inner steps performed between two outer steps of the modified algorithm. If

K-1for some positive constant independent of n, then ’k=0 (lUll + Uk I) O(n1"5)
Proof. By Lemma 3.7,

K-1 k=0_xg+n(l+,),)2
1--kk=0

K-1 g/y/, K O(n),Then ’]k=o IUkl O(El’a) follows from o 0, Cxg >_ 0,

_/ <_ <_ , and O(1/n) for all k. The argument that -]g-lk=o IU] O(n’5) is
similar. D

As noted above, the analysis of this section demonstrates that the modified al-
gorithm, suitably initialized, has a complexity of O(nL) steps, and O(n3.5L) total
operations. Although the steplength is used in Theorem 3.4 to establish a guaran-
teed descent in the centering measure II X(O)s(O)/it-e I1, it is interesting to consider
the use of a linesearch of this measure in 0 >_ 0, as suggested for the basic algorithm
of the previous section, to improve the practical performance of the algorithm. In the
context of the modified algorithm, such a linesearch is potentially problematic due
to the fact that longer steplengths lead to more updates, as is clear from the role
played by k in Theorem 3.8. This issue has been dealt with in a number of papers
concerned with partial updating algorithms; see for example Anstreicher and Bosch
(1992), Bosch and Anstreicher (1993), and Den Hertog, Roos, and Vial (1992). In
the context of the present algorithm, the basic principle is that a linesearch is ac-
ceptable so long as the reduction in the centering measure is commensurate with the
steplength. In particular, consider an inner step x(t9), s(0), starting at x and s which
are f-centered with respect to it. Let ’= X(O)s(O)/it-e I]. Then an appropriate
"safeguard" condition on the steplength is

(3.11) >v (1  )T2/n
=v

T (1 +
e 2

where 0 < v < 1, v gt(1), and T and are as in Theorem 3.4. It is then straightfor-
ward to show that (3.11), combined with a condition

(3.12) -/’_> D(1/n),

suffices to preserve the overall O(n3.hL) complexity of the modified algorithm when
linesearch is used on the inner steps. Note that immediately satisfies (3.11) and
(3.12).
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A POTENTIAL REDUCTION ALGORITHM WITH USER-SPECIFIED
PHASE I-PHASE II BALANCE FOR SOLVING A LINEAR PROGRAM FROM

AN INFEASIBLE WARM START*

ROBERT M. FREUNDt

Abstract. This paper develops a potential reduction algorithm for solving a linear programming problem directly
from a "warm start" initial point that is neither feasible nor optimal. The algorithm is an "interior point" variety
that seeks to reduce a single potential function which simultaneously coerces feasibility improvement (Phase I) and
objective value improvement (Phase II). The key feature ofthe algorithm is the ability to specify beforehand the desired
balance between infeasibility and nonoptimality in the following sense. Given a prespecified balancing parameter
/3 > 0, the algorithm maintains the following Phase I-Phase II "t-balancing constraint" throughout

(’x- z*) <,
where cTx is the objective function, z* is the (unknown) optimal objective value of the linear program, and Tx
measures the infeasibility of the current iterate x. This balancing constraint can be used to either emphasize rapid
attainment of feasibility (set/ large) at the possible expense of good objective function values or to emphasize rapid
attainment of good objective values (set small) at the possible expense of a lower infeasibility gap. The algorithm
seeks to minimize the feasibility gap while maintaining the/-balancing condition, thus solving the original linear
program as a consequence. The algorithm exhibits the following advantageous features: (i) the iterate solutions
monotonically decrease the infeasibility measure, (ii) the iterate solutions satisfy the/%balancing constraint, (iii) the
iterate solutions achieve constant improvement in both Phase and Phase II in O(n) iterations, (iv) there is always a
possibility of finite termination ofthe Phase problem, and (v) the algorithm is amenable to acceleration via linesearch
of the potential function.

Key words, linear program, potential function, interior point algorithm, polynomial time complexity

AMS subject classifications. 90C05, 49D35

1. Introduction. This paper is concerned with the problem of solving a linear program-
ming problem directly from an infeasible "warm start" solution that is hopefully close to both
feasibility and to optimality. Quite often in the practice of using a linear programming model,
a practitioner needs to solve many slightly altered versions of the same base case model. It
makes sense in this scenario that the optimal solution (or optimal basis) of a previous version
of the linear programming model should serve as an excellent warm start starting point for
the current version of the model, if the two versions of the model are similar. (Here, we use
the term warm start in a relative sense: the closer a given starting solution is to satisfying
feasibility and optimality in some appropriate measure, then the "warmer" the starting point
is. Hence, a "cold start" is a starting point that is very far from feasibility and optimality, and
a "hot start" is a point that is a near optimum.) Experience with the simplex method over
the years has borne this out to be true in practice; the optimal basis for a previous version of
the model usually serves as an excellent starting basis for the next version of the model, even
when this basis is infeasible. Intuitively, a good warm start infeasible solution (that is not
very infeasible and whose objective value is not far from optimality) should give an algorithm
valuable information and should be a good starting point for an algorithm that will solve the
linear programming model to feasibility and optimality. In spite of the success of warm start
solutions in solving linear programming problems efficiently with the simplex method, there
is no underlying complexity analysis that guarantees faster running times for such starting so-
lutions, undoubtedly due to the inevitable combinatorial aspects of the simplex method itself.
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Interior point methods avoid the combinatorial problems of the simplex method, and so have
the promise to yield complexity analyses that guarantee better time bounds for such warm
start solutions; indeed, this is one of the motivations of this study.

In the case of interior point algorithms for linear programming, the research on algorithms
for solving a linear program directly from an infeasible warm start is part of the research on
combined Phase I-Phase II methods for linear programming. The underlying strategy in a
combined Phase 1-Phase II algorithm is to simultaneously work on the Phase I problem (to
attain feasibility) and the Phase II problem (to attain optimality). The starting point for such
an algorithm then need not be feasible, and a warm start starting point should again serve as an
excellent starting point for a combined Phase I-Phase II algorithm. Perhaps the first interior
point combined Phase I-Phase II algorithm is de Ghellinck and Vial [9]. Anstreicher 1 also
contributed to the early literature in this area; see, also, Todd 15] and Todd and Wang 16].
These approaches all used the strategy of potential reduction and projective transformations,
as originally developed by Karmarkar 12]. Other approaches to the problem using trajectories
of optimal solutions to parametric families of shifted barrier problems were studied by Gill
et al. [10], Freund [7], and Polyak [13]. Later, after direct potential reduction methods were
developed by Gonzaga [11], Ye [20], and Freund [6], these methods were extended to the
combined Phase 1-Phase II problem; see Freund [8], Anstreicher [2], and Todd 17].

While all ofthese algorithms simultaneously solve both the Phase I and Phase II problems,
they are all interior point algorithms and so they are only guaranteed to converge to a solution.
The algorithm is terminated in theory after the appropriate gap (feasibility gap for Phase I,
duality gap for Phase II) is less than 2-L, where L is the bit-size representation of the problem
data, and is terminated in practice when this gap is less than some prescribed small number,
e.g., 10-6

The formulation of the Phase I-Phase II problem that has been developed by Anstreicher
1 ], [2] is to solve the linear program

minimize cTx
X

s.t. Ax b
Tx "-0

x >_O,

where we are given an infeasible warm start vector :co that is feasible for the Phase I problem

minimize TX
X

s.t. Ax b
Tx 0

x_>O,

and has the Phase I objective value Tx0 > 0. If Z* is the optimal value of LP, then cTx Z*
measures the optimal value gap and Tx measures thefeasibility gap.

1.1. The balance of priorities between Phase I and Phase II. One might think that in
solving any linear programming problem, that both Phase I and Phase II are equally important,
for surely, without feasibility, the problem is not solved, and without optimality, the problem is
not optimized. However, in practice, there are many instances where this simple logic breaks
down, and different problems naturally lend themselves to very different ways of prioritizing
the balance between improving the Phase I objective, i.e., reducing the feasibility gap, and
improving the Phase II objective, i.e., improving the optimal value gap. Consider the following
list of instances.
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(i) In some practical modeling problems, the constraints of the problem are specified
easily, but the objective function is not so easy to specify. This may be because of accounting
criteria and the problem of ascertaining the true "variable cost" of the activities. Or it may
be because it is not clear just what the actual objective is in the practical problem. In these
problems, attaining feasibility is important, but attaining exact optimality is not so important,
because of a lack of confidence that the linear programming objective function is a good
representation of the true objective of the underlying practical problem.

(ii) There are instances of practical situations where the user is primarily interested
in obtaining a feasible solution, and the objective function is not very important. In these
instances, much more priority should be given to Phase I than to Phase II.

(iii) In other practical modeling problems, a feasible solution that is not optimal may be
of no use at all. This type of situation arises frequently when using linear programming to
solve partial equilibrium economic models, see, e.g., Wagner 19]. In these models, feasibility
may be easy to attain, but the partial equilibrium solution is obtained by looking at both the
primal and the prices that arise as the solution to the dual problem. A nonoptimal primal
feasible solution conveys virtually no information about the underlying economic model. In
this application of linear programming, Phase II should achieve a much higher priority than it
would in instances (i) or (ii) above.

(iv) In using linear programming in branch and bound routines for solving mixed integer
programming problems, a sequence of linear programs is generated and solved as the branch
and bound routine runs its course. When solving a particular one of these linear programs,
we may only be interested in looking at the bounds generated by the algorithm. In this case,
attaining a feasible solution may be completely unnecessary, and it may suffice to generate a
bound that is sufficiently positive to signal that the branch of the underlying tree should be
pruned. In this case, attaining feasibility may be unimportant, and should receive much less
priority than it would in instances (i) and (ii) above.

These instances suggest that an algorithm for the combined Phase I-Phase II problem
should have as a parameter some measure of the relative importance or "balance" between
the goals of reducing the feasibility gap (Phase I) and reducing the optimal value gap (Phase
II) in solving a given linear programming problem. In this paper, we propose a measure of
this balance concept, a parameter for setting this measure for a particular problem, and a
polynomial time algorithm for solving the linear programming problem from an infeasible
warm start that incorporates this measure and parameter into the algorithm. The notion that
we develop herein is denoted as "/3-balancing" and is developed as follows.

Let/3 be a positive scalar constant that is specified by the user, called the "balancing
parameter." Given the prespecified balancing.parameter/3 > 0, the algorithm maintains the
following Phase I-Phase II/3-balancing constraint throughout:

(1.1) (cTx- Z*) < /Tx,
where cTx is the objective function, Z* is the (unknown) optimal objective value of the linear
program, and Tx measures the infeasibility of the current iterate x. The left side of (1.1) is
the optimal value gap, and the right side is fl times the feasibility gap. Thus (1.1) states that
the optimal value gap must be less than or equal to/ times the feasibility gap.

If fl is set to be very large, then (1.1) does not coerce a very tight optimal value gap.
And so even when the feasibility gap is small, the optimal value gap can still be quite large
(although when the feasibility is zero, clearly from (1.1) the optimal value gap must also be
zero). Thus the larger the value of fl, the more Phase II is deemphasized, i.e., the more Phase
I is emphasized.

If fl is set to be very small, then (1. l) coerces a very tight (or negative) optimal value gap
as the feasibility gap is narrowed to zero. Therefore, even for a relatively large infeasibility
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gap, the optimal value gap must be small (or even negative) in order to satisfy (1.1). Thus the
smaller the value of/, the more Phase II is emphasized in the algorithm.

The algorithm developed in this paper seeks to minimize the feasibility gap T: of the
Phase I problem while maintaining the fl-balancing constraint (1.1), thus solving the original
linear program as a consequence. The algorithm developed in this paper also has the following
other desirable features: (i) the iterate solutions monotonically decrease the infeasibility gap,
(ii) the iterate solutions satisfy the/-balancing constraint (1.1), (iii) the iterate solutions
achieve constant improvement in both Phase I and Phase II in O(r) iterations, (iv) there is a
possibility of finite termination of the Phase I problem (whether or not the objective values are
superoptimal), and (v) the algorithm is amenable to acceleration via linesearch of the potential
function.

The paper is organized as follows. In 2, the notation used in the paper is presented, the
formulation of the warm start problem is presented, and the/-balancing constraint is devel-
oped and discussed. Also, we show how to convert any linear programming problem with
an infeasible warm start and an initial objective function lower bound into the standard form
that also satisfies the/3-balancing constraint (1.1). Section 3 contains the development of the
potential reduction problem that will be used to solve the linear programming problem and
contains convergence properties of the potential reduction problem. Section 4 describes the
algorithm that is used to solve (in a limiting sense) the potential reduction problem developed
in 3. Section 5 discusses modifications and enhancements to the algorithm of 4 that are
designed to speed convergence and give more useful information. In particular, 5 discusses
ways to accelerate the algorithm via linesearches, improved dual updates via Fraley’s restric-
tion of the dual problem [5], finite termination of the Phase I problem, and obtaining explicit
convergence constants related to the potential function.

2. Notation, problem formulation, and conversions. Notation. Throughout the paper,
e denotes the vector of ones, e (1, 1,..., 1)T, where the dimension is r. For any vector

etc., denotes the diagonal matrix whose diagonal components correspond to :. If, I111 denotes the Euclidean norm, i.e.,

1/2

2.1. Problem formulation and the/%balancing constraint. The combined Phase I-
Phase II linear programming problem is usually expressed in the following format.

(2.1a) LP: z* minimize

(2. lb) s.t. Az b,

1,2. lc) 7z =0,

(2.1d) z >_ 0,

where we assume that there is a given infeasible warm start vector x that satisfies A:c b
(2. lb), z >_ 0 (2. ld), but for which z > 0; see 1 ], [2], and 16]. Thus z is "almost
feasible" for LP, and the extent to which z is infeasible is precisely the quantity :rx0. (At the
end of this section, we show how to convert any linear programming problem with an initial
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infeasible warm start into an instance of LP above.) Considering LP as the Phase II problem,
the Phase I problem for LP then is the following problem.

(2.2a) , P1" minimize Tx

(2.2b) s.t. Ax b

(2.2c) Tx _> 0

(2.2d) x _> 0,

and now note that x is feasible (but not optimal) for P1. We also assume that we are given
an initial lower bound B on the optimal value z* of LP, i.e., B < z*. Such a bound may be
readily available or can be produced by the algorithm given in Todd 17].

In the design of an algorithm for solving LP and P1, which will produce iterate values
x x2 x3 we would like Txk

__
0 as k oc, i.e., the iterates converge to a feasible

solution to LP (and solve P1 tooptimality). We also would like cTxk z* as k - cxz, i.e.,
the iterate objective values converge to the optimal objective value. Let/3 > 0 be a given
(user-specified) balancing parameter that will be used to enforce the following Phase I-Phase
II balancing condition at each iteration

(2.3) CTxk Z* < /Txk.

The left side of (2.3) is the optimal objective value gap at iteration k, and the fight side is/3
times the feasibility gap. Thus (2.3) states that the optimal objective value gap must be less
than/3 times the feasibility gap. An alternate way to write (2.3) is

cTxk Z*
(2.4) < ft.Txk
In this form, we see that the ratio of the optimal objective value gap to the infeasibility gap
cannot exceed/3.

If/3 is given and (2.3) is enforced throughout the algorithm, then/3 acts as a prespecified
balancing factor that will bound the optimal objective value gap in terms of the feasibility gap.
For example, if feasibility is much more important than optimality, then/3 can be chosen to
be a large number (/3 1,000, for example), whereby from (2.3) we see that the feasibility
gap does not coerce a small optimal value gap. If, on the other hand, staying near the optimal
objective value is more important, then/3 can be chosen to be a small number (/3 0.001,
for example). Then from (2.3), the feasibility gap does coerce a small optimal objective value
gap. From (2.3), we see that at iteration k, the deviation from the optimal objective value
(cTxk Z*) is bounded in terms of the extent of infeasibility ((Txle) by the constant/3, i.e.,

CTxk Z* < /Txk.

However, z* is not known in advance; only a lower bound B on z* is known in advance. The
algorithm developed in this paper will produce an increasing sequence of bounds B B2,...,
on z*, where Bt is the bound produced at iteration k. Since we do not know z* in advance,
the algorithm will enforce the following balancing condition:

(2.5) cTxk Bk ,< /Txk,
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where (2.5) is identical to (2.3) except that z* is replaced by the bound Bk. Note that since
/3k < z*, then (2.5) implies (2.3), i.e.,

cTxk z* < Txk whenever cTxk Bk < Txk"

We can rearrange (2.5) into the more standard format

(2.6) (- -- c)Txk < Bk.

We refer to (2.6) as the/3-balancing constraint at iteration k. To satisfy (2.6) at the start of
the algorithm, we need the initial assumption that (-/3 + c)Tx < B. (At. the end of this
section, we show how to convert any linear programming problem with an infeasible warm
start x into an instance ofLP for which (-/3+ c)Tx0 < B0 is satisfied.) We now summarize
the data and other assumptions we use for the rest of this study.

Assumption 1. The given data for LP is the array (A, , b, c, x, B,/3).
Assumption 2. Ax b, Tx0 > 0, x > 0, B _< z*.
Assumption 3. /3 > 0 and (-/3 + c)Tx0 < BO.
Assumption 4. The set of optimal solutions of LP is a bounded set.
Assumption 5. n >_ 3.
Assumptions 1-3 have been reviewed above. Assumption 4 is a standard (though non-

trivial) assumption needed for convergence of all interior point algorithms. (See Vial [18]
and Anstreicher [4] for ways to mitigate this assumption.) Assumption 5 is trivial, since for
n < 2 the problem LP lends itself to instant analysis. We now show how to convert a linear
program satisfying Assumptions 4 and 5 into the standard form LP of (2.1) and that satisfies
Assumptions 1-5.

2.2. Converting a linear program into an instance ofLP satisfying Assumptions 1-5.
Suppose we want to solve the linear program

(2.7a) LP:

(2.7b)

z* minimize oT

s.t. A b,

(2.7c) > O,

where is m x n and it is assumed that n > 3, and S: is a given warm start that is hopefully
near feasible and near optimal. Also suppose that B is a known given lower bound on z*.
Then the given data for the problem Lff is the array (.3,, b, , 0, B0). In a typical situation,
S: may be the optimal solution to a previous version of- that is hopefully a good near

feasible and near optimal for the current linear program L’ff. Alternatively, 5 may be a basic
solution to LP for a basis that is suspected of being close to the optimal basis. Knowledge
of B can be given in a number of ways. If L is the size of the array (, b, ) (i.e., L is the
number of bits needed to encode the data (., b, ) in binary form), then one value of B that
can be used is -2L, but this is not practical. A more practical approach would be to set B
to be some large negative number such as -1012. However, if the user has a good knowledge
of the program LP, he/she may be able to set B fairly accurately. (For example, suppose
LP is a refinery problem. Then it is reasonable that a lower bound on the cost of operating
the refinery is readily apparent from knowledge of the data that have been used to generate
the program LP.) It should also be pointed out that an algorithm for generating a reasonable
bound B has been developed in Todd [17].

We first assume that S: satisfies (2.7b), i.e., .,S b. This will certainly be the case if S:
is a basic solution for a (hopefully near-optimal) basis of. If S: does not satisfy (2.7b), then
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5 can be projected onto the linear manifold {d:l. b) by choosing any suitable projection,
e.g.,

20 - D[I- DAT(AD2AT)-AD]c +
where D is any positive definite matrix (e.g., D I or D is a positive diagonal matrix). It
is assumed that 50 ; 0, for otherwise 5 would be an interior feasible solution to (2.7) and
there would be no need for a Phase I procedure to be part of the solution to (2.7).

Now let h _> 0 be any vector that satisfies 0 + h > 0. Then our problem ’ff is equivalent
to

A2
(2.8a) LP

(2.8b)

(2.8c)

(2.8d)

S.to

min C
T5

b,

+ h >_ O,

where we note that (5, b) (5, 1) is feasible for (2.8) except for the .last constraint (2.8d),

which measures the infeasibilities of 5. If LP is the Phase II problem, then the Phase I
problem can be written as

(2.9a) LP minimize zb
xw

(2.9b) s.t. . b,

(2.9c) + zbh > 0,

(2.9d) zb > 0.

Notice that (5, zb) (5, 1) is feasible for -1 and, in fact,

-----1
is feasible for LP for any e > 1, due to the fact that h > 0.

Let/3 be the prespecified balancing parameter discussed previously. Then if z is given
by

{ (tTO B) }(2.10) zb max 1, 1 + /3

then (2o, bo) will satisfy

(2.11 a) 5 b,

(2.1 lb) d: + zbh > 0,

(2.1 lc) (_/0 _[_ oTs0 < B0.

Thus the pair (5, zb) is feasible for the Phase I problem1 (2.9) and also satisfies (2.1 lc),
which is the analog of Assumption 3 for this problem. Also, (5, o) satisfies all constraints
-.2

of LP (2.8) except (2.8d).
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-----2
To convert LP (2.8) to an instance ofLP (2.1), we proceed as follows. First, let x denote

the slack vector

(2.12) x d: + ff;h.

Then x d: + if;h > 0 denotes the starting slack variables for the starting solution (&0, if;0)
.--1

of LP (2.9).
The next step is to eliminate the variable if; from the systems (2.8) and (2.9). To do this,

assume with no loss of generality that the vectors .h and b are not linearly independent. (If
this is not the case, a perturbation of h > 0 will enforce their linear independence.) Then let
A E m be any vector for which

(such a A is simple to compute), and let

ATb--O,

aT(Ah) 1,

Then note that all z, S:, b that satisfy (2.8b) and (2.12) satisfy

(2.13) Tx ,TAx ,xTA(sc + h) ,XTb + ,XTAhFv

Thus we can substitute S: and zb by x (from 2.12) and (Tx (from 2.13) in (2.8) and (2.9). If
we define

then LP transforms to

and LP transforms to

e - Th and A h7’,

LP: minimize C
Tx

X

s.t. Ax b,
x>_0,

Tx --0,

P1’ minimize TX
X

s.t. Ax b,

x_>0,

Tx >_0.

Also, x o + zOh satisfies Ax b, x > O, Tx0 l)O > 0, and (2.1 l c) transforms to

(2.14) (-fl + c)Tx0 < BO.

Note that

(,0 o) }TxO=,&O=max 1, 1+
fl
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--------2
from (2.10). Also, if LP satisfies Assumption 4, then it is easy to verify that LP does as
well.

Finally, note that this construction is dependent on the choice of the vector h (h is some-
times referred to as the "shift vector"), which is used to shift the starting point 0 so that
0 / h > 0. Shift vectors have been studied from a theoretical point of view in Polyak 13],
Gill et al. [10], and in Freund [7], [8]. There are many choices of h that can be used, and
some computational experiments have shown that the choice of h can have a large impact on
the practical performance of an algorithm. It is an open question of how to choose h most
efficiently in practice.

3. The potential reduction problem for solving LP and convergence properties. In
this section we consider solving the standard form problem

LP: z* min cTz
Ax b,

(3.1)
x =0,

x>O,

whose dual is

(3.2)

LD: max bTjr

ATTr + 0 + s c,
s>0.

It is assumed that the data array (A, , b, c, :cp, B,/3) satisfies Assumptions 1-5 of the
previous section.

The Phase I problem for LP then is to solve

(3.3)

minimize Tx
x

s.t. Ax b,

Tx >_0,
x>0.

We will not work with this problem (P1), but will instead augment P1 with the additional
balancing constraint involving the lower bound B on the optimal value z* of LP and the
balancing parameter/3 discussed in 2. Suppose B is the given lower bound on z* and that
/3 is the balancing parameter for which the starting point :co satisfies

(3.4) (--/ / c)Tx0 , Bo;

see Assumption 3. (The method for satisfying (3.4) was discussed in 2.) Now consider the
parametric family of augmented Phase I problems

PB: ZB minimize Tx

(3.5)
s.t. Ax b,

(-Z + )x + t- ,
x O, t _>_ O,
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whose dual is given by

(3.6)

ZB maximize bT71" B#,

ATTr (--/ + c)# + s ,
s >_O,# >_O.

The following are elementary properties PB.
PROPOSITION 3.1. For all B E [B, z*
(i) PB isfeasible,
(ii) ZB > 0 ifB < z*, ZB 0 ifB z*.
(iii) The set ofoptimal solutions to PB is nonempty and bounded.
(iv) For all xfeasiblefor PB,

cTx Z* nt- Tx.
Proof. (i) Let to B (- + c)Tx. From Assumption 2 and (3.4) it follows that

(x, t) is feasible for Pso and so (x, t) is also feasible for PB for any B _> B, where
t B (- + c)rx0.

(ii) Suppose B < z*. Then if z, < 0, there exists x for which Ax b, x >_ 0, {Tx
0, (--fl{ + c)Tx <_ B < z*, and so cTx < z*, violating the definition of z*. Thus Zs > O.
If B z*, then a similar argument establishes that zs O.

(iii) Suppose the set of optimal solutions to PB is not bounded. Then there is a direction
d - 0 that satisfies Td 0, Ad 0, d > 0, (-fl + c)Td <_ O, and so cTd <_ O. Therefore
d is a nontrivial ray of the optimal solution set of LP, violating the assumption that LP has a
bounded set of optimal solutions.

(iv) (-fl{ + c)Tx B implies cTx <_ {Tx + B < flTx nt- 2;*. []

Now consider the following potential reduction problem related to PB and DB.

n

(3.7) PR: minimize F(x, t) q gn({Tx) E gn xj gnt
x,t,B

j--1

(3.8a) s.t. Ax b,

(3.8b) + c)rx + t B,

(3.8c) x > 0, t > 0,

(3.9) B < z*

where q is a parameter satisfying q > n + 1, and (3.8) reflects feasibility for PB, for B <_ z*,
which is given in (3.9). The following lemma relates potential function values to the objective
function Tx of problem PB.

LEMMA 3.1. Suppose (x, t, B) is the starting point of an algorithm for solving PR
and suppose that z* < +cx. Suppose (, , B) is afeasible point generated by the algorithm,
and that Tg TxO" Let

(3.10) F(x, t) t-).

Then

T (Tx0)C1 e--A/q,
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where C1 is computedfrom the optimal value ofthefollowing linear program:

__q._
(3.11a) PC: ((1) (n+l) (n + 1)--’ max ET(x0)-lx --(t0)-lt

(3.1 lb) s.t. Ax b,

(3.11c)

(3.11d) Tx .Tx0,

(3.11e) -Tx O.

Proof. The pair (x, t) is feasible for PC. If PC is unbounded, then there exists (d, v)
satisfying d > O, v > O, Ad O, (- + c)Td + v < O, (Td < O,--Td < O, and
eT(x)-ld + (t)-lv > 0. Thus d >_ O, Ad O, Td 0, cTd + v <_ 0, v >_ 0, and so
cTd <_ 0 and d 0, contradicting the assumption that the set of optimal solutions to LP is a
bounded set. Thus C1 is well defined, and 0 < C1 < +oc.

Since (2, -) is also feasible for PC,

T(x0)-I -+- (tO)--l (n + 1)(C1) (--r).

Thus by the arithmetic-geometric mean inequality, it then follows that

(3.12)
n

E grt2 -I- n-E nx gnto <_ qgnC1.
j--1 j--1

Next, from (3.10) and (3.7), we have

gncj + gn- E inx nt Aqen(T) qen(Tx) + E1
<_ qn(TxO) + qnC1 A,

where the inequality follows from (3.12). Exponentiating and rearranging yields the re-
suit. []

Note that if the size of fl, x, and to are O(L), then C1 < 2L, provided that z* <
We demonstrate an algorithm in 4 that reduces F(x, t) by a fixed constant 6 _> at

each iteration, if q _> n + 1 + v/n + 1, with the additional property that the values of Tx
monotonically decrease at each iteration. This is the basis for the following convergence
theorem.

THEOREM 3.1 (Convergence). Suppose (xk, tk, Bk), k 0,..., is a sequence offeasible
solutionstoproblem PRwiththepropertythatF(xk+l tk+) <_ F(xk, tk)--,andTxk+l <_
Txk, k 0, 1, Suppose that z* < +c. Then with C1 as given in (3.11),

(i) 0 < Txk (TxO)Cle-k/6q.
Let (Tr*, 0", s*) be any optimal solution to LD. Then

(ii) --IO*[((Tx)Cle-k/6q < cTxk Z* <_ /3(TxO)Cle-k/6q
(iii) --]O*](Tx)Cle-k/6q < cTxk Bk < (TxO)Cle-k/6q
(iv) 0 <_ z* Bk <_ ( + IO*l)Cle-k/6q.

Theorem 3.1(i) states that fixed improvement in the Phase I objective value CTxk is obtained
in O(q) iterations. The convergence results in Theorem 3.1(ii) relate the convergence of the
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Phase II objective value cTxk to the optimal value z*. Similar convergence results for the
lower bounds Bk are given in (iii) and (iv) of the theorem.

ProofofTheorem 3.1. Letting (:, t--) (xk, tk), (i) follows from Lemma 3.1, where from
(3.10) A _> k/6. From the convexity properties of linear programming duality, we obtain
from Proposition A.3 of Appendix A that

(3.13) CTx Z* -nt- O*Tx for any x satisfying Ax b, x > O,

and so

(3.14) cTxk Bk cTxk z* o*Txk --IO*l(Tx)Cle-k/6q

Furthermore, from (3.8b), we obtain

(3.15) cTxk Z*

__
cTxk Bk

_
Txk

_
](TxO)CIE--k/6q

and (3.14) and (3.15) combine to prove (ii) and (iii).
and (iii). []

(iv) is a consequence of (ii)

4. The algorithm for solving the potential reduction problem PR. In this section, we
present an algorithm that obtains a decrease of 6 _> - in the potential function F(x, t) of
problem PR (3.7)-(3.9) at each iteration, and that is monotone decreasing in the values of
Tx, given q >_ n + 1 + v/n + 1.

Suppose the current iterate values for PR is the array (5:, {,/)), which is feasible for
Pit. As in the standard potential reduction algorithm (see Ye [20], Gonzaga 11 ], Freund [6],
and Anstreicher [3]), we seek to compute a primal direction that will decrease the potential
function. Since the primal variables are (x, t) (, {), we seek a direction (o, ?) and a
suitable steplength a for which F(5: ao, {- a) achieves a constant decrease over F(:, {).
Analogous to [20], [6], and [3], we let (0, ?) be the solution to the following optimization
problem:

(4.1a) Q" maximize ( q T eT.j-I) lr_l
d, - d- - -dTf( 2d - 2r2

(4.1b) s.t. Ad 0 (Tr),

(4.1c) (-/3 + c)Td + r 0 (--0),

(4.1d) Td >_ 0

where the quantities (r), (-0), (6) indicated are the dual multipliers on the constraints.
This problem has a strictly concave quadratic objective, and since (d, r) (0, 0) is a

feasible solution, it will attain its optimum uniquely. Program Q can be interpreted as the
standard rescaled projection of the rescaled gradient of the potential function onto the null
space of (3.8a)- (3.8b), with the simple_, monotonicity constraint (see Anstreicher [3]) added
as well in (4.1 d). The unique solution (_d,_) to Q is obtained by solving the following Karush-
Kuhn-Tucker conditions for (,/;, #, 0, )"

(4.2a) Ad- O,

(4.2b) + + o,

(4.2c) Td _>_ 0,
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q
(4.2d)

T:2 - X e ff-2d- AT# (--3 + c)- ,
(4.2e) t--1 --27 _,
(4.2f) > 0, (cTd)- 0.

(Note from (4.1) that (4.2) can readily be solved as follows as one of two systems of linear
equations. First, one assumes that the monotonicity constraint (4. ld) is nonbinding, and then
one solves (4.2) ignoring (4.2c) and (4.2f) and setting 6 0. Then the resulting system is
linear. If (4.2c) is violated in the solution, then solve again (4.2) with (4.2c) at equality, again
ignoring (4.2f), and the resulting value of must be nonnegative; see also Anstreicher [2] and
Todd 17].) It will be convenient to set

(4.2g) g .,-1 (e +- d)

and to rewrite (4.2e) as

(4.2h)

_
{-1(1 + --1).

Next we define

(4.3) ffdTX-2d+ (?/t-)2

and note from (4.2g) and (4.2h) that

(4.4)

and from (4.2a)- (4.20 that

(4.5)
q Td_ eTp-ld_ ---1 ,2r

Just as in [6], for example, we have the following theorem.
THEOREM 4.1 (Primal improvement). For 0 < c < 1,
(i) (- (c//)d, {- (c/’)?, B)isfeasiblefor PR,
(ii) F(- (a//)d, --(c/)?) < F(e, t--) -c2 + 2(-), and

2(iii) ifS >_ and -5,

F(- (,/)a, - (,/)) <_ F(, t-)

Proof. (i) Since the only variables that change are z, t, (3.9) is still satisfied. Since
(d, ?) lies in the null space of (3.8a)-(3.8b), it only remains to show that (c/)d > 0,
{- (c/)? > 0. This will follow from (4.3), which implies that

1(2-1d)jl < , j 1,...,n and I#-I < .
Therefore

(/)d- 2(.- (./)2-d) > 0 fo e [0, )
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and - (a/)? (1 > 0 for a E [0,1).

Furthermore, from Proposition A.2 of Appendix A,

n

(4.6) en(1 -(c/,)(.,-ld)j)-[- gn(1 -(a/,)(/t-))
j=l

n (O/,)2(.e- )32 (O/,)2 (/t-)2--(Ol’/)ET2--1d--
2(1 a) (a/5’l(?/t-) 2(1 a)

j=l

02

--(a/’)[eT’-ld +/ 2(2)(1 a)
((-2d) +

2
(from

j=l

02

(which follows from (4.6) and Proposition A.1 of Appendix A)

q ’d )
2(-/): + 2(1- )

2-+ 2(1 )"

o2

2(1 -a)

(from 4.5)

This proves (ii). Then (iii) follows by direct substitution, rn
Theorem 4.1 guarantees a decrease in F(x, t) if the value of 3’ is sufficiently large,

e.g., if > 4/5. In the case when " is small, we can obtain a reduction in the potential
function by replacing the bound/) on z* by a new bound/) generated from new dual variables
(-, , ) for LD.

LEMMA 4.1 (Dual improvement). Suppose 5/< 1 and q >_ n + 1 + x/n + 1. Define

(4.7)

where #, , g, are given in the solution to (4.2). Then (Or, , ) isfeasiblefor LD, with dual
objective value

v/n + 1(1
(4.8) /) A bTr >/) + (1 +5’)
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Proof If " < 1, it follows from (4.4) that g > 0 and > 0. Therefore (Or, 0, ) is well
defined (since we also have (T: > 0), and > 0. Then it is easily verified from (4.2d) and
(4.2g) that ATcr + + c, and so (Or, , ) is feasible for LD, with dual objective value

bT ,2TATr

cTy. eT(e + j-ld) Ty /3
6

1
(-n eT2-’ c + Tff: + q)+

1 $ rs:=B--t+-(q--n--eTff-ld) +

=B+-1 (q n 0-- eTff-ld) -4-
1

B + (q n (1 + ?/t-) eTX-ld) -4-

1
(q (n + 1) [eTJ-ld + /-]) 4.

l(v/n+l_v/n+lg)+

0

[(1 @)v/n + 1
>B+ (1-@)v/n+l >

(1 +9)

(from (4.2g) and (4.7))

(from (3.8b))

(from (4.2h))

(from (4.3))

where the last inequality follows from (4.4), which implies that -/ < (1 + 9). rn
We now can prove the following theorem.
THEOREM 4.2 (Dual improvement). Suppose < 1 and q > n + 1 + v/n + 1. Define

(Or, , ) as in (4.7),/) as in (4.8), and let

(4.9) - {+/-/).

Then
(i) (:2, ,/) isfeasiblefor PR and

F(, i) <_ F(, ) gn (1 + x/’n + 1(1 -,).
1+

(ii) If/ < 4/5, then

1
F(, ) < F(, t-) 6"

Proof Because (Or, t, g) is feasible for LD and/ bTCr, then/ < z*, and so/ satisfies
(3.9). Also Y satisfies (3.8a) and Y > 0. Finally, we need to show that (-/3 + c)Ty 4- ,
but this follows easily since (-/3 4- c)Ty 4- { / and { 4-/ -/, and so (3.8b) is
satisfied. Also, since/ > /3 (4.8), > { > 0, and so (3.8c) is satisfied. Thus (, [,/) is
feasible in PR.
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To demonstrate the decrease in the potential function, we note

+
+

-en(1 / (/-

( x/n+ 1(1-)) (from (4.8))_<-en 1+ (1+)
1<
6’

because < and n > 3. []

The following algorithm is a summary of the analysis of this section.

ALGORITHM 1 (A, b, c, ,/3, x, t, B, q, "y) (q > n + 1 + x/’n + 1, 3’ < 1).
Step O. Initialization k 0.
Step 1. Compute primal direction

Compute (d, ?, -, 0, 5, g)from (4.2a)-(4.2h).
Compute 5’ from (4.3).

Step 2. Determine whether to take primal step or to update dual bound.
If , > 7, go to Step 3.
If " < "7, go to Step 4.

Step 3. Take a primal step.
Set (, )_-- (- (c/)d, {- (c/)), where (x 2/5.
Set B B.
Go to Step 5.

Step 4. Update dual bound.
Compute (, t, ) from (4.7).
Compute B from (4.8).
Compute from (4.9).
Set & .
Go to Step 5.

Step 5. Redefine all variables and return.
(xk+l,tk+l,Bk+l)
kk+l.
Go to Step 1.

With q n + 1 + x/’n / 1 and "), 4/5, Theorems 4.1 and 4.2 guarantee a decrease
in the F(z, t) of at least 1/6 at each iteration of Algorithm 1, yielding the bounds on
convergence as stated in Theorem 3.1.

Section 5 discusses ways to accelerate and improve Algorithm 1 and other features as
well.

5. Modifications and enhancements to Algorithm 1.

5.1. Use of a linesearch of the potential function. Instead of using a fixed steplength
of c in Step 3, a can be determined by a linesearch of the potential function F(x, ). Todd
and Burrell [14] have shown that F(x, t) is quasiconvex, and so the linesearch procedure is
very simple to execute.

A similar idea can be used to improve the bound in Step 4 of Algorithm 1. Suppose
(, , $) was a previous solution to the dual LD resulting in the previous bound 1 bT.



BALANCED "WARM START" ALGORITHM FOR LP 263

Then at Step 4, the new dual solution is (Or, 0, ) with/) bT# > /), from (4.8). A min-
ratio test can be used to compute the largest value a* of a for which the affine combination

a(#,0, ) + (1 a)(-, , g) is feasible for LD, and since oz* > 1, B* bT(a*Cr + (1
a*)-) > /). This new value B* is a valid lower bound on z*, and can be used instead of/)
at Step 4. A further enhancement on the choice of/3 is discussed next.

5.2. Update the lower bound B using Fraley’s restriction of the dual. In Fraley [5],
a two-dimensional restriction of the dual problem is developed. This restriction has been used
to great advantage in Todd 17], for example. Here we motivate this problem and show its use
in updating the lower bound B in Algorithm 1. Substituting bT TAT effAT in LD
(3.2) and multiplying the constraints by ){ yields the equivalent form of LD.

(5.1a) LD" max eTf(AT’n"
7rOs

(5.1b) s.t. f(ATTr + Of( + f(s

(5.1c) s > 0.

Note from (5. lb) that (5.1a) is equal to cT2 T,o Ts. Also, note that (5. lb) is equivalent
to

where

+

(5.2) P [I ffAT(Aff2AT) -1Aft:],

and the notation Vp denotes the quantity Pv, i.e., Vp Pv.
Thus LD is equivalent to

(5.3a) LD"" max CT T20 T8

(5.3b) s.t. O(X)p + (Xs)p (Xc)p,

(5.3c) s _> 0.

Now consider the equation system

(5.4)

If (#, 0, s) solves (5.4), then (0, s) solves (5.3b), and so the following program is a restriction
of LD" in the sense that the set of feasible solutions (in 0 and s) is a subset of those of LD".

(5.5a) FD." z max cT, T,o T8
I,O,s

(5.5b) s.t. + +

(5.5c) s >_ 0.

We denote this linear program as FD for "Fraley’s restricted dual" and note its dependence
on through (5.5) as well as (5.2). Note also that .FD can be solved as a two-dimensional
linear program in n inequalities in the variables 0 and #.
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Now consider a modification of Algorithm that solves FD at the start of Step 1, and
replaces (/, -) by (z, -+ z -/) whenever FD has an optimal solution and z >/. (If
at some iteration FDe is unbounded, i.e., ze +co, then z* +co and so LP has no
feasible solution.)

We can show that if Fraley’s restricted dual is used to update/ at the start of Step 1, then
it will always be the case that >_ 1, and so Step 4 of the algorithm will never be encountered.
To see this, suppose that Fraley’s restricted dual is used to update/ at the start of Step 1 as
indicated above. Then B >_ ze. Consider the following proposition.

PROPOSITION 5.1. Let (Or, , ) be the dual solution to LD at Step 4 ofAlgorithm 1. Then

([z, , ) is feasiblefor FD, where fz -1/ and is given in (4.2), with objective value
B (see (4.8)), and B >

Proof. Consider the system (4.2). Ad 0, so A.(-ld) 0, so (f-Id)p ff-d.
Frm (4"2d), -lt --e--fZTgr--

--ep (fl ) ff)p + O(c)p. Thus from (4.2g)and (4.7),

2 1 2g 1
(e + .ff-lo)-- 1

(e- ep)- /3
6

+

q) +

and so (/2, 0, a) is feasible for FDe, with objective value cT --/}({r.) ra bT.
[]

Now from the Proposition 5.1, if < 1, then we would produce a solution to FDe with
objective/ >/ _> ze, a contradiction. Thus, if/} is updated using Fraley’s restricted dual,
Step 4 of Algorithm 1 will never be encountered.

5.3. Check for finite termination of Phase I. Suppose Algorithm 1 is at Step 3. Instead
of setting c 2/5 or determining c by a linesearch of the potential function, one could first
test if (: cd) solves the Phase I problem for some value of c. Since A b, T >
0, T0 _> 0, : > 0, this amounts to checking if

in the case when {Td > 0. If indeed

x’-----=d>_O,
Td

then x’ solves the Phase I problem, and then LP can be solved from the feasible point x’ by
a purely Phase II method, of which many abound. (Of course, the new point x’ generated
from the above test may have a very poor objective value, in which case this approach may
not be advantageous. However, in preliminary computational experiments, we found that
finite termination of Phase I via this test has worked very well on small randomly generated
problems.)

5.4. A (-optimal algorithm for LP. Suppose, instead of solving LP, we are interested
in finding a feasible solution : to LP whose objective value is within a value ( > 0 of z*,
i.e.,-cT _< z* + (. (One can easily imagine a variety of situations where this is a reasonable
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goal, such as when the objective function is not well specified.) Thus we seek a point : that
satisfies

A2 b,

T2 -0,
2_>0,

cT2 Z*--.
Algorithm 1 can be easily modified to accomplish this goal, as follows: Whenever the bound
/ is updated to/ in Step 4, replace/ by/3 + if, instead of/. Then all dual bounds/3k will
satisfy/3k < z* + if, and hence all points z will satisfy

Rearranging gives

(--/--c)Txk Bk z* 2r-.

cTxk (z* +) +/Txk.

Then Theorem 3.1(i) is still valid and so as Txk __+ O,

lim sup cTxk < z* + .
k---oo

Whenever/ is updated to/ in Step 4,/ increases by at least ff > 0. Thus Step 4 can only
be visited at most

z* B0

times. Furthermore, the fact that the bound/3 is increased by at least should accelerate
convergence of the algorithm.

5.5. An explicit eolwergenee constrict for lgorithm 1. Theorem 3.1, together with
Lemma 3.1, states that all iterates (zk, tk, Bk) of Algorithm 1 must satisfy

(Txk) (TxO)Cle-k/6q,

where C1 is given in (3.11). Although it is easy to see that C1 < 2L when z* is finite and
fl, x, and to have size O(L), it is impractical to compute C1. Knowing C1 is nevertheless
important from the point of view of a prior guarantee thatTXk will be no larger than a certain
value after a certain number of iterations. Below we show that if an upper bound U on z* is
known in advance, then C1 can be replaced by a known value (1 (derived below) whenever
the algorithm visits Step 4.

LEMMA 5.1. (Computing a substitute value of C1). Suppose Algorithm 1 is in Step 4 at

iteration k. Then let

1 [ ,2 (1+,) qT1n + 1 + [0-/] +0--1-"5 t

and

1 [(n -t- 1)-lb] (+’----)

Then
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(i) for all subsequent iterations > k,

and
2(ii) if’y , then / < and ) <_ 5[q + ( -/))].

Proof Suppose at iteration k that the algorithm is in Step 4. Then 5’ < 3’ < 1. Consider
the linear program

PB: 2P max eTff-lx -+-
s.t. Ax b,
(-/ + c)x + t <_

--Tx O.

Note that since ( >_ z* >_ B, k, then all iterates (x, t) will be feasible for PB for
> k. The dual of PB is

(5.6a) DB" 2 min bTA -+-
A,O,6,lz

(5.6b) s.t. AT), + O(c- ) + (6- #) >_ ff-le,

(5.6c) 0 >_ {-,

(5.6d) 0, 5, # _> 0.

Suppose we are at Step 4 of the algorithm, and so " < 3’ < 1. Then g > 0, and upon setting

q(A’, 0’, 6’,/z’)
1 ’ 1 ’ T(1 ) (1 ),0

it can be verified by rearranging (4.2d) that (A’, 0’, 6’, #’) is feasible for DB. To see this, note
from (4.3) that -ld >_ -e and {-17 >_ _, and from (4.2d) that AT(--#) + (-- + c) +
( + ) ( )-1 (e + .-1d) >_ )-1 e(1 "). Dividing through by (1 ") shows that

(A’, 0’, 5’, #’)solves (5.6b). Also, from (4.2h), 0’ 1--’--
0 1"-’--1 () >__ (.)- ---1

so (5.6c) is satisfied. Finally, note from (4.2h) and (4.3) that 0, 5, # _> 0, so (5.6d) is satisfied.
Then 2P <_ bTA

1
/[-A5 + CrO + q +1

1 (-( ) Sff2 q + n + erR-d+ (f + q + $ff2) (from (4.2d))
1-

(from (4.2h))

(from (4.5))
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since 0 < (1 / )/-from (4.2h). Finally, for any > k, (xi,t) is feasible in PB, so that

ETf(-lx + -lti < < D.

It then follows from the arithmetic-geometric mean inequality that

n

’ gnxj +gnti- inky- gn < (n + 1)gn(b/(n + 1)).
j--1

The proof of (i) then follows as in Lemma 3.1 and Theorem 3.1 (i). To see (ii), note from (4.5)
that

q Td 2 d --1

<_ ,2 + v/n + 1 2 + n + 1.

4Then with < ",/--- 7,

D<_5 q+(-/))

Appendix A. PROPOSITION A.1. Ifx > -1, n(1 + x) < x.
XPROPOSITION A.2. If Ix < a < l, then n(1 + x) _> x 2(-)"

Proofs ofthe above two inequalities can befound in [6].
PROPOSITION A.3. Consider the dual linearprograms

LPr" z* (r) minx aTx LDr" max bTTr -t- rO
7r ,O

s.t. Ax b, s.t. ATTr -!- 0 <_ c.

Tx ?
x>0.

Suppose (Tr*, 0") solves LDo, and let z* z* (0). Then for any x feasible for LP, cTx >_
z* + O* r.

Proof. Because (Tr*, 0") is feasible for the dual LD for any r,

z* (r) >_ bTTr* + rO* z* (0) + rO* z* + rO*.

Therefore, if x is feasible for LP, cTx >_ z*(r) >_ z* + rO*. []

Acknowledgment. I would like to acknowledge Michael Todd for many stimulating
discussions regarding the warm start LP problem that had an influence on the research herein.
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AN IMPLICIT FILTERING ALGORITHM FOR OPTIMIZATION OF
FUNCTIONS WITH MANY LOCAL MINIMA *

P. GILMOREt AND C. T. KELLEY$

Abstract. In this paper we describe and analyze an algorithm for certain box constrained
optimization problems that may have several local minima. A paraiigm for these problems is one
in which the function to be minimized is the sum of a simple function, such as a convex quadratic,
and high frequency, low amplitude terms that cause local minima away from the global minimum of
the simple function. Our method is graiient based and therefore the performance can be improved
by use of quasi-Newton methods.

Key words, filtering, projected gradient algorithm, quasi-Newton method

AMS subject classifications. 65H10, 65K05, 65K10

1. Introduction. In this paper we describe and analyze an algorithm for bound
constrained optimization problems that may have several local minima. The type of
problem we have in mind is one in which the function to be minimized is the sum
of a simple function, such as a convex quadratic, and high frequency, low amplitude
terms that cause the local minima. Of particular interest is the case in which the
amplitude of the high frequency components decays to zero near the local minima
of the simple function. This algorithm, at various stages of its development, has
been applied to such problems by a group in the Departments of Mathematics and
Electrical and Computer Engineering at North Carolina State University to a variety
of optimization problems that arise in computer-aided design of microwave devices
[17], [16], [19], [20]. The algorithm is an extension of the projected gradient method
[1] and as such is simple to implement and its performance can be improved by
application of quasi-Newton methods. The purpose of this theoretical paper is to
analyze the convergence properties of the method. The algorithm discussed in this
paper was designed for the specific applications described fully in [17], [16], [19], and
[20]. These papers put the numerical properties of the algorithm in context.

An example of the type of problem we have in mind is plotted in Fig. 1.1, taken
from [20], which is a graph of a negative of the power-added efficiency of a simulated
semiconductor device against the real and imaginary parts of the second harmonic
of load impedance, which are constrained to lie in the interval [0, 80]. The small
amplitude, high frequency perturbation that dies off near the optimal point, (0, 0), is
clearly visible.

In this section we begin by discussing in general terms the class of problems we
seek to solve, then mention some other possibilities, and give a brief description of
our approach. We formally describe the basic form of our algorithm in 2. In 3
we relate the output of the algorithm to a class of problems like that represented in
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FIC. 1.1. Power added efficiency.

Fig. 1.1. In 4 and 5 we state and prove some convergence results.
We seek to minimize a function f subject to simple bound constraints:

x t {xll <_ x < u},

where x denotes the ith component of the vector x E RN, but that we can only
observe ] f + , where is small in magnitude relative to f but has high frequency
oscillations that cause local minima. We do not require that be smooth or even
continuous.

One way to avoid such local minima is to filter the high frequency components
from some expansion of ], by means of a discrete Fourier transform, for example.
In this way one might expect that the filtered form of ] is a good approximation to
f and does not have as many local minima as ] does. By applying a conventional
minimization algorithm to the filtered form of ], one might find the minimizer of f up
to the accuracy allowed by the noise in the observation. By changing the filter as an
iteration progresses, to admit higher frequencies near the minimizer, or by restarting
the iteration with a filter that admits higher frequencies after convergence, one might
hope to even avoid local minima in f itself. Another advantage of refining the filter
as the iteration progresses is to deal with problems, such as the one represented in
Fig. 1.1, for which the perturbation is much smaller near the minimizer of f than
elsewhere. Such problems were encountered in [17], [16], [19], and [20] in which noise
from model errors was reduced near the solution of the optimization problem.

The disadvantage of applying a filter to ] is that one must sample the entire
variable space to use the filter. An example of such an algorithm has been reported
recently in [12]. From the point of view of this paper, but not from that of [12], an
advantage of such an algorithm is that large amplitude high frequency terms may be
eliminated and therefore the iterates may avoid steep valleys. In the work reported
in [17], [16], [19], and [20], steep valleys in the objective could be attributed to errors.
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Filtering algorithms might not be appropriate in situations where steep valleys are
significant.

Another approach is stochastic smoothing [13], where f is replaced by an average
and the averages are changed as the iteration progresses. Almost sure convergence to
the global minimum is proved in [13]. We do not prove such a strong result for the
algorithm we propose. The advantages that our algorithm offers are simplicity and
efficiency of implementation in that there is no preprocessing of the objective function
and the analysis is completely deterministic. The price paid for this efficiency and
simplicity is that some features of the objective, such as steep valleys, may be missed.
This is reflected in the convergence results, which, in broad terms, assert that a local
minimum of the unperturbed function will be identified up to the accuracy permitted
by the perturbation . However, for the types of problems considered in [17], [16], [19],
and [20], the decay of near the minimum allowed for high accuracy. We quantify
this in Theorem 3.1.

We should also mention the multidirectional search algorithm for unconstrained
problems proposed in [18]. This algorithm is based on the Nelder-Mead simplex algo-
rithm. The multidirectional search algorithm uses a simplex that is rotated, expanded,
and contracted as the algorithm proceeds. The size of this simplex corresponds to the
length of the scales used in the implicit filtering algorithm. At the beginning of the
optimization process the initial simplex is taken to be relatively large. This could, in
principal, allow the multidirectional search algorithm to avoid local minima caused
by the low amplitude high frequency term, although this was not the purpose of its
design and is not covered by its analysis. As the algorithm proceeds the size of the
simplex decreases allowing the structure of the merit function to be resolved to a finer
level of resolution. Torczon proved convergence of this algorithm to local minima
for continuous functions in [18]. The cost of application of the algorithm in [18] is
roughly the same as ours if centered differences are used to approximate gradients.
In [9], Dennis and Torczon showed how the multidirectional search algorithm could
be efficiently implemented on parallel processor computers.

Rather than sample the variable space as a true filtering algorithm would, we
propose the use of a finite-difference gradient-based method, for example the projected
gradient method [1], with the step size in the difference chosen as it would be if
were floating point round-off; for example, in the case of forward differences h
V/llll. Since I111 is not known, we apply the finite-difference gradient-based
method, decrease h after convergence, and apply the finite-difference gradient-based
method again. We could terminate this outer iteration after a predetermined smallest
value of h is reached or if we determine that no further progress is being made. We
refer to the algorithm as implicit filtering because we use the differencing to "step over"
the noise at varying levels of resolution, hence implicitly filtering the objective. This
algorithm is, therefore, deterministic in both its implementation and its analysis.

A significant difference from the alternative approaches listed above is that the
performance in the terminal phase of the iteration can be accelerated by a quasi-
Newton method. This was very important from the point of view of the applications
discussed in [17], [16], [19], and [20]. In those papers the SR1 update was found to
be very useful and roughly 10% more efficient than the Broyden-Fletcher, Goldfarb,
Shanno (BFGS) update. In 4 we present some simple examples using the secant
update for one-dimensional problems that illustrate this point.
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2. Specification of the algorithm. As a basic algorithm we use the projected-
gradient-Armijo algorithm from [1]. The form we use employs finite difference gra-
dients. We let X7h be some finite difference gradient using, for example, forward or
centered differences, computed with step h. The algorithm takes as its input the
function to be minimized, an initial iterate x that is overwritten with an approxima-
tion to the minimizer, a step size h for the finite difference, a function T(h) used for
termination, a minimum step size for the line search, and a (small) parameter a
used to measure sufficient decrease. In the specification of Algorithm projgrad we
use the notation

x(o, h, f) (x aVhf),

where 7 denotes the projection onto the feasible set

?i X U

p(x) x < x <_u
x < i.

In the description of the algorithms that follow and in the discussion in 5, the Eu-
clidean norm is denoted by ]]. ]1 and the l norm ]]. ]]oo with a subscript.

ALGORITHM 2.1. Algorithm projgrad(f, x, h, T, , a)
1. k=0
2. Compute Vhf.

(a) If ]x x(1, h, f) T(h) terminate successfully.
3. Set 1.
4. (a) If < terminate unsuccessfully.

(b) Compute f(x(, h, f)).
(c) If

f(x) f(x(a, h, f)) >_ allx x(a, h, f)ll 2

set x x(a, h, f), k k + 1 and go to step 2.
(d) a a.

The roles of the parameters a and 3 are the same as in standard discussions of
the Armijo rule [1], [8], [14]. The role of is that of a safeguard to keep from reducing
the step size too often when --Vhf is not a descent direction and to determine when
no further reduction in h should be done. We have used -/31 in the application
work reported in [17], [16], [19], and [20]. The analysis in 5 can be directly extended
to more general line search rules, such as the polynomial models in [8]. The cubic
model was used in [17], [16], [19], and [20]. Extension to a trust region approach such
as that in [5] or [15] should also be possible.

The basic form of the algorithm we propose in this paper requires a decreasing,
finite sequence of difference steps {hi}im=l called scales and consists of the repeated
application of Algorithm projgrad to ].

ALGORITHM 2.2. Algorithm imf+/-iter(], x, {hi}, T, , a)
for 1,...m
call projgrad();, x, hi, ’, , a).
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Passing through the decreasing sequence of scales is intended to have the effect
of changing the filter as the iteration progresses to admit higher frequencies in ].
However, this is only a heuristic, as we do no actual filtering. Our strategy for
selection of the sequence (hi} is also a heuristic. We make some more remarks on
that later in this section. Note that hi, like the temperature in an annealing algorithm,
the simplex size in multidirectional search, or the time step in the algorithm in [12],
in a sense measures the resolution of the optimizer. The important difference in
Algorithm imfilter from these algorithms is that it is gradient based. Therefore
it has the simultaneous advantages that it does not require sampling of the variable
space, can be analyzed with Taylor series methods, is simple to implement, and can
be accelerated by quasi-Newton methods.

At this point we make a few remarks on the goals and properties of Algo-
rithm imfilter. As is the case with other filtering algorithms, such as that given in

[12], our algorithm may miss global minima caused by large amplitude "spikes" in .
We view this as desirable and do not think of our algorithm as a global optimization
method, but rather as a method for dealing with a particular class of noisy functions.
In the work reported in [17], [16], [19], and [20], spikes represented error and were
best avoided.

A proper criterion for determining if Algorithm imf+/-lter has succeeded is also
a question. Even if each call to projgrad terminates successfully with a solution x,
there is no guarantee that a second call to +/-mf+/-lter would leave x invariant since

could change the output from the early calls to projgrad. Therefore it might be
necessary to restart +/-mf+/-lter. We show in 3 that such restarts are not necessary
if decays sufficiently rapidly near a global minimum of f. We set as our goal the
computation of x such that x is a minimum at every scale.

DEFINITION 2.1. x is a minimum at all scales ifprojgrad leaves x invariant for
all h h,..., hm.

We compute a minimum at all scales by Algorithm imfilter and restarting, if
necessary, until each call to projgrad leaves x invariant.

ALGORITHM 2.3. Algorithm allscale(f, x, h, T, 5, a)
Until each call to projgrad leaves x invariant:
call imfilter(], x,

The central theoretical contributions of this paper are to show how a minimum at
11 scales is related to a global minimum for functions of the type plotted in Fig. 1.1,
where the perturbation decays near a minimum of f, and to give conditions on, T, and ( under which Algorithm allscale terminates in finitely many steps and
returns a minimum at all scales. We do these things in 3, 4, and 5.

3. Minima at all scales: examples and characterization. The idea, first
advocated in [17], [16], [19], and [20], that a minimum at all scales, and not a global
minimum or a minimum of an explicitly filtered function, should be the goal of the
iteration is central to the algorithm and reflects the motivating problems where the
amplitude of decays near the minimum. We begin with a theorem that illustrates
the relationship between a minimum at all scales and a global minimum. We follow
that with two examples to illustrate the ideas. A feature of these theorems and their
proofs is the variety of subtle relations between the size of the perturbation and the
curvature of f and the parameters {hi}, a, ( in the specification of the algorithm.
These relationships are further explored in 4 and 5.
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In the following theorem, as in [17], [16], [19], and [20], we use T(h) Th, for
some T > 0 and hk #kho for some it E (0, 1). We assume that Vh is computed in 12
is a way that is at least first order accurate. We must make precise our assumptions
on f and the way that decays near the global minimum of f.

ASSUMPTION 3.1. Assume that ] f + , that f has a global minimum in f at
x*, Vf is Lipschitz continuous in with Lipschitz constant L. Assume that

= {xl l < z < u} c R,
diameter Da max(u- ) < oc. Assume that Vh i8 computed with forward,
backward, or centered differences. Finally assume that there are co, cl, e_, andM >
0 such that for all x f

IIx p(x Vf(x))ll collx x*ll,

(3.1) IlVhf- Vf(x)l < clh,

I(x)l Me rnx{ IIx x* 2, 2 },

THEOREM 3.1. Assume that Assumption 3.1 holds. Then if Me is sufficiently
small there are C,.C2, and K >_ 1, such that if

(3.2) h0 _> 2C1McDft
co CM

h #kho, for some # e (0, 1) and

for k 1,...,m, then

IIx- x*ll Kh_,

where h_ max(e_, hm).
Conversely, there is To such that if T > To and h, > e_ > Ilx- x*ll then x is a

minimum at all scales.
Proof. We note that Assumption 3.1 implies that there are C and C2 such that

if CMe and C2M then either IIx x* < - or

(3.3) IlVh(x)ll _< llx x*ll2/h + max(, h).

In fact, for forward or backward differences we have

IIVh(X)ll _< 2Mcv/(e + h)2/h,

leading to C 2v/ and C2 < 6x/. Using second order centered differences would
reduce C1 and C2 by factors of two but not eliminate entirely. Perhaps because of
this reduction of and t/, centered differences were found to reduce the sensitivity of
the algorithm on the size of in [17]. We have, for M sufficiently small, that

(3.4) $ < Co and 0 < t < Co.4
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We let e IIx- x*ll. Our assumptions imply that either e <_ e_ or for each
k 0,...,m

> IIx- 7,(- v(x))ll- IIv(x)ll

>_ IIx 7(x Vf(x))l clhk -k + max(e, hk)

>_ coe cl hk \-k 4- ’ max(e, hk)

Therefore, either e _< e_ or for each k---0,..., m

2

(3.5) toe IIx (x vf(x))ll < ( + c)hk + + ,max(e, hk).

Setting k 0 and using (3.2) implies that either e <_ h0 or

(co ,)e <_ ( + c)hk + Co l])e

and hence

(3.6) e <_ ah0 #-iahi,

where

4-CI
C0 t/

We now assume that Me is small enough so that

(3.7) max(#-a, 2) < 1

co-u 2’

which is usually stronger (3.4).
We use (3.6) to induct on k and show that either e <_ e_ or e <_ max(a, 1)h.

Assume that e <_ ahk_l

_
#-lahk, which we have verified above for k 1. The goal

of the induction step is to show that either e <_ e_, e <_ hk or e ahk. Assume that
e > e_ and e > hk, then we may apply (3.5) and (3.7) to conclude

e2 - a
e

_
ahk/2 + (Co u)hk - ahk/2 +

c0 12
e <_ ahk/2 + e/2.

Hence, either e <_ e_, e _< hk or e _< ahk and the induction is complete. This completes
the proof of the forward part of the result with K max(a, 1).

To prove the converse, we note that if h >_ e_ >_ e then

llx x(o,h, ])11 Le_ 4- clh 4- e_ 4- h <_ $’h
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if >_ 0 L -I- C -b -t" v’. I3

It is important in the proof of Theorem 3.1 that h0 be large enough to begin the
induction. Heuristically, an initial scale that is too small could lead to entrapment
in a local minimum and that possibility is eliminated by (3.2). The same failure
could be caused by selection of a value of that is too small. The perturbation itself
must be small, which is the role of assumption (3.7). Left unresolved is the issue of
whether the outer iteration or the line search in projgrad will terminate. A deeper
examination of the relation of the termination criteria, i.e., , and the line search, i.e.,
the parameter a, to the size of is done in 4 and 5.

The parameter 0 could be so large that many scales will be rejected; that is

Algorithm projgrad will terminate on entry, before the iteration begins to make
progress. The search for a good heuristic for the choice of -Y is an open problem.

Note that the accuracy of the finite difference plays no direct role in the ultimate
accuracy of the iteration because of the presence of the u max(e, h) term in (3.3). To
see how this term arises, assume that there is C such that

< cIlllo IIx x*

For forward differences we have

IlVh(X)ll <_ 2Cx/llllo(e + h)2/h

leading to the estimates

Using second order centered differences would reduce the estimates of and u by
factors of two but not eliminate entirely. Perhaps because of this reduction of $
and u, centered differences were found to reduce the sensitivity of the algorithm on
the size of in [17], [16], [19], and [20].

As an example of the type of function we consider, we take f x2 and
ex2 cos(80x) on the interval [-2, 2]. Here e_ 0. We take 2, # 1/2, and apply
forward differencing. Using the notation in the proof we see that

c0 2, e 1, 2e, and

Hence 6/(2- 6e) Hence (3.7) holds if

24e/(2 6e)2 _< 1/2,

which holds for any e _< 1/20. As Da 4, setting e 1/20 and h0 2 will satisfy
the assumptions of Theorem 3.1. A plot of ] with e 1/20 is in Fig. 3.1.

In the applications it was rare that e_ 0. Typically the noise in ] decayed near
the minimum, but not to zero. In this case the minimum could only be resolved to a
level of size proportional to the square root of the minimum noise. As an example of
such a function consider 2 x2(x) + 2(x) where ft [-2, 2] and

2(x) =.75x2cos(80x)/20 + .25 cos(100x)2 /20.

]2 satisfies the assumptions of Theorem 3.1 with e_ .25/20. We plot e_ in Fig. 3.2.
The perturbations in these examples appear small, but clearly result in substantial
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local minima.
The proof of Theorem 3.1 also provides insight into how Algorithm 2.2 is intended

to function. For functions satisfying the hypothesis of Theorem 3.1, application of
projgrad(], x, hi, T, 6) return xi with Ilxi-x, II <- K max(e_, hi). This should reduce
the size of for the next iterate and allows for the reduction of h.

4. Convergence results. In this section we apply a technical result proved in
5 to give conditions under which Algorithm +/-mf+/-lter will converge to a minimum

at all scales for objectives that satisfy Assumption 3.1. We then give some simple
examples to illustrate the behavior of the Mgorithm and show how quasi-Newton
methods can improve the performance of the algorithm.

In 5 we prove the following result.
THEOREM 4.1. Let Assumption 3.1 hold and assume that Me <_ 1. Let <_ 1/2

and a E (0, 1/4) be given. Let T(h) h. Then there are 1 and ? > 0 so
/1/3 X* X*that if > 1 .. /2 < ?, iix_ > e_, and h.... IIx- II, then Al-

gorithm projgrad(/,x, h, T, (, a) will terminate successfully and return x such that

llx- x(1, h, ])11 <- h. Moreover, either x is unchanged or ] is reduced by at least
a(2h2

From the technical result Theorem 4.1 we can directly obtain conditions that
insure that Algorithm imf+/-lter will terminate successfully with a minimum at all
scales. We consider sequences of scales of the form hk #kho with # E (0, 1).

THEOREM 4.2. Assume that Assumption 3.1 holds, that Me <_ 1, that M/3/2

zl/37, and that > o. Let# (0,1) be such that.. K <_ #. Then if ho >_ D/2,
hk #kho, and hm >_ e_, then Algorithm imfiiter will terminate and return a
minimum at all scales.

Proof. Either IIx- x* -< e_ and we terminate with a minimum at all scales by
Theorem 3.1 or by Theorem 4.1, Algorithm projgrad(/, x, h0, , 6, a) will terminate

with IIx- x(1, h0, ])11-< ?h0. We may then conclude from Theorem 3.1 that

e- IIx- x*ll <_ Kho.

If we require that .. K <_ # then either e < e_ or

#ho > M1/3Kho > ]/1/3

and we may apply Algorithm projgrad(], x, h, r, 6, a) with h #h0.
We may continue this, replacing h by #h as the iteration progresses. Eventually

the iteration will terminate at a minimum at all scales since the reduction in h implies
that there is a reduction in the bound for e, and any x such that e _< e_ is a minimum
at all scales.

Note that the restart feature of Algorithm a:[:[sca:[e was not used in Theorem 4.2.
It was not needed in the work reported in [17], [16], [19], and [20] either. A corollary
of Theorem 4.2 is that if projgrad fails, as it can if there are too many step size
reductions, then e _< e_. Hence monitoring the Armijo rule is a way to detect the
limit for the scales.

COROLLARY 4.1. Let the assumption of Theorem 4.2 hold. If Algorithm +/-mf+/-lter

is initiated as in the statement of that result and #hm is the first scale for which
Algorithm projgrad fails, then Kh, >_ e_.
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While Corollary 4.1 does not guarantee that Khm >_ e_ >_ K#hm, we have used
it with success in the applications to determine when to terminate the iteration when
no a priori knowledge of the size of was available.

We applied algorithm imfilter to the function

](x) + cos(S0x)/ 
on the interval [-2, 2]. We used x0 -1.75, h0 2, and hi 2-ih0 for i
1,..., 12. We used 2. In Table 4.1 we tabulate h, the iteration counter ip for
Algorithm projgrad for that h, the number of step size reductions iA at that iteration,
X, l](X) IX--P(X--Vh](X))I, and ](x). The last entry for each value of h corresponds
to the terminal iterate for Algorithm projgrad. After evaluation of f at the initial
iterate, the cost in function evaluations is like that for the projected gradient method.
For each value of h and ip one function evaluation is performed to compute Vh],
f(x) being provided by the termination at the previous value of h or ip iA counts
the number of additional function evaluations for each value of ip required to obtain
sufficient decrease in the Armijo rule. For Table 4.1 a total of 39 function evaluations
are performed. An interesting feature of the table is how the iterates can remain

TABLE 4.1
One sweep of implicit filtering, e_ O.

h ip iA x ,(x) f(x)
2 0 0 -1.750e+0 2.947e+0 6.024e+0
1 0 1 -1.750e-t-0 3.750e+0 6.024e+0
1 1 2 7.442e-1 2.744e+0 1.016e+0
1 2 0 -5.564e-1 2.895e-1 6.637e-1

5.000e-1 0 1 -5.564e-1 1.315e+0 6.637e-1
5.000e-1 1 3 1.011e-1 1.336e-+-0 2.004e-2
5.000e-1 2 0 -6.595e-2 6.735e-1 9.087e-3
2.500e-1 0 0 -6.595e-2 2.221e-1 9.087e-3
1.250e-1 0 0 -6.595e-2 1.685e-2 9.087e-3
6.250e-2 0 1 -6.595e-2 1.450e-1 9.087e-3
6.250e-2 1 4 6.536e-3 1.603e-1 9.161e-5
6.250e-2 2 0 -3.480e-3 1.111e-1 2.616e-5
3.125e-2 0 0 -3.480e-3 4.603e-2 2.616e-5
1.562e-2 0 0 -3.480e-3 1.809e-2 2.616e-5
7.812e-3 0 0 -3.480e-3 1.834e-3 2.616e-5
3.906e-3 0 0 -3.480e-3 6.596e-3 2.616e-5
1.953e-3 0 1 -3.480e-3 1.081e-2 2.616e-5
1.953e-3 2 1.925e-3 1.252e-2 8.020e-6
1.953e-3 2 0 -1.204e-3 9.849e-4 3.140e-6
9.766e-4 0 1 -1.204e-3 3.100e-3 3.140e-6
9.766e-4 1 3 3.461e-4 3.614e-3 2.595e-7
9.766e-4 2 0 -1.056e-4 1.658e-3 2.418e-8

unchanged as the scale is reduced. It is normal behavior for algorithm imfilter to
pass through more than one scale with the termination criterion satisfied on entry
before finally taking a step and changing the iterate. The iteration terminated at
a minimum at all scales and hence a full application of Algorithm allscale would
terminate as well.

We also applied Algorithm imfilter to

](x) + cos(S0x)/ + cos(100x)/ .
On the interval [-2,2], x0 -1.75, h0 2, and hi 2-ih0 for 1,..., 12, and

2. Here e_ .25/6. Since e_ 0 we might expect Algorithm projgrad, and
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TABLE 4.2
One sweep of implicit filtering, e_ O.

h ip iA x (x) f(x)
2 0 0 -1.750eT0 2.948e-t-0 6.064e0
1 0 1 -1.750e0 3.750e-t-0 6.064e-0
1 1 2 7.354e-1 2.735eT0 1.041e-0
1 2 0 -5.934e-1 3.195e-1 6.996e-1

5.000e-1 0 -5.934e--1 1.28leT0 6.996e-1
5.000e-1 1 13 4.701e-2 1.268e-t-0 4.200e-3
5.000e-1 2 17 4.686e-2 1.267e-+-0 4.195e-3
5.000e-1 3 0 4.686e-2 1.267e-l-0 4.195e-3

TABLE 4.3
One sweep of secant method implicit filtering, e_ O.

h ip iA x (x)
2 0 0 -1.750e0 2.947e0 6.024e-0
1 0 1 -1.750e-t-0 3.750eT0 6.024e0
1 1 0 7.442e-1 2.744e0 1.016e-0
1 2 0 -5.291e-1 7.538e-2 5.559e-1

5.000e-1 0 1 -5.291e-1 1.109e-t-0 5.559e-1
5.000e-1 1 3 2.520e-2 1.065e-l-0 1.224e-3
5.000e-1 2 0 -8.757e-3 9.626e-1 1.631e-4
2.500e-1 0 0 -8.757e-3 4.999e-1 1.631e-4
1.250e-1 0 0 -8.757e-3 1.970e-1 1.631e-4
6.250e-2 0 0 -8.757e-3 8.672e-2 1.631e-4
3.125e-2 0 0 -8.757e-3 2.655e-2 1.631e-4
1.562e-2 0 0 -8.757e-3 3.974e-3 1.631e-4
7.812e-3 0 1 -8.757e-3 2.063e-2 1.631e-4
7.812e-3 1 1.560e-3 2.319e-2 5.272e-6
7.812e-3 2 0 -1.169e-3 1.173e-2 2.961e-6
3.906e-3 0 0 -1.169e-3 3.390e-3 2.961e-6
1.953e-3 0 0 -1.169e-3 8.344e-4 2.961e-6
9.766e-4 0 1 -1.169e-3 2.950e-3 2.961e-6
9.766e-4 1 1 3.056e-4 3.439e-3 2.024e-7
9.766e-4 2 0 -9.131e-5 1.720e-3 1.806e-8

hence Algorithm +/-mf+/-:[ter, to fail when e < e_. This happens as we can see from
the large number of step size reductions in the latter phases of the iteration reported
in Table 4.2. The version of Algorithm +/-mf+/-lter used in the applications would have
terminated the iteration at when h .5 and ip 2 (since ( 2-1), finding a

h 6minimum at all scales for the scales ( }=0.
The example in Table 4.2 illustrates the heuristic we use to estimate e_, i.e.,

the point where further reductions in h give no advantage. Whea the Armijo rule in
Algorithm projgrad fails, we conclude that the nature of the problem has changed
and that a minimum scale has been found. While this heuristic is certainly far from
a theorem, and examples can easily be constructed for which it fails, we found it to
be very useful in the applications reported in [17], [16], [19], and [20].

We close this section with remarks on enhancements that improve the performance
of Algorithm allscale in practice. First of all, for the work reported in [17], [16], [19],
and [20] experience showed that it was not necessary to call imfilter more than once,
hence the loop in Algorithm allscale that tests the invariance of imfilter, which is
necessary for the theoretical results, was not used in the practical results reported in
[17], [16], [19], and [20]. Convergence in the final phases of the iteration was improved



IMPLICIT FILTERING 281

TABLE 4.4
One sweep of secant method implicit filtering, e_ y O.

h ip iA (x) f(x)
2 0 0 -1.750e+0 2.948e+0 6.064e+0
1 0 1 -1.750e+0 3.750e+0 6.064e+0
1 1 0 7.354e-1 2.735e-l-0 1.041e+0
1 2 0 -5.489e-1 2.269e-1 6.405e-1

5.000e-1 0 1 -5.489e-1 1.269e+0 6.405e-1
5.000e-1 1 1 8.569e-2 1.238e+0 3.338e-2
5.000e-1 2 0 -7.101e-2 6.495e-1 3.008e-2
2.’500e-1 0 0 -’7.101e-2 1.893e-1 3.008e-2

by using a projected SR1 [3] iteration such as that proposed in [6]. The SR1 update
performed somewhat better than the BFGS update in the preliminary experiments
for our work in [17], [16], [19], and [20]. This is consistent with other reports [7],
[11], [10], and we used it in the computations reported in [17], [16], [19], and [20].
We point out that for problems of moderate size, a projected Newton formulation [2]
would be equally desirable if the Hessian could be computed accurately and cheaply,
but that was certainly not the case for the problems considered in [17], [16], [19], and
[20] where function evaluations were quite expensive making Hessian evaluation too
expensive.

To illustrate the benefits of incorporation of a quasi-Newton update into Algo-
rithm projgrad we applied a secant update to the examples tabulated in Tables 4.1
and 4.2 and report the results in Tables 4.3 and 4.4. Twenty-eight function evaluations
were required for the computation reported in Table 4.3, an improvement over the 39
for the results in Table 4.1. The conclusions from a comparison of Tables 4.2 and 4.4
are not so clear. While a substantial reduction in function evaluations is provided by
the secant approach, the final value of the objective function is larger.

One could also use a different forward difference step for each component of Vhf.
Our implementation in [17], [16], [19], and [20] did this by scaling the feasible set to
the unit cube in RN. We let the largest scale h0 .5 be half the diameter of the
cube and let hi .5hi-1. Selection of the smallest scale is problem dependent and
was determined in [17], [16], [19], and [20] by physical estimates of the error in the
objective function.

5. Proof of Theorem 4.1. Throughout this section we assume that the as-
sumptions of Theorem 4.1 hold. As in 1 Vh](X) represent a forward, backward, or
centered difference approximation to Vf(x). In this section, since the context will be
clear, we abbreviate x(a, h,/) by x(a).

We require several lemmas.
az/3LEMMA 5 1 Let Assumption 3.1 hold. Let h > .. IIx-x*ll. Then there is MI

such that

(5.1) IIVhll <_ MM/3h.

Proof. As in the proof of Theorem 3.1,

I[Vh(X)l

_
2Mcv/(e + h)2/h

and hence, for orward differences,

IIv.(x)ll < +
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This completes the proof with
h/fl/3 x*LEMMA 5 2 Let Assumption 3.1 hold. Let h > .. IIx- II. Then there is M2

such that

Proof. Equation (5.2) is a direct consequence of Lemma 5.1 and Assumption 3.1
zl/3with M2 cl + (Co + M)...

The next lemma, which we give without proof, is a direct consequence of the
projection theorem [4].

LEMMA 5.3. Let x E , 0 < <_ 1, and x(a) x(a, h, ]). Then. llz- x() llVh](X),
2. For any e {1,...,n}, ffx(1) x Vh/(X) then
3. g ]Ix- x(1)] h then x- x(a)]]
4. v](x)(z- x()) llx- x()ll
Next we prove a lemm that specifies an interval for the step size for which the

criteria for sufficient decree given in the description of Algorithm projgrad is always
stisfied.

LEMMA 5.4. Let Assumption 3.1 hold and assume that Me 1. Let 1/2,
1/(2L + 8), and a (0, 1/4) be given. Let T(h) h. Then there are > 0 so

1/3 X*that if M/3/2 < , lx x*] > e_, and h > . llx II, then if z x()ll h
then the generalized Armijo step size rule

(.3) ](x) ](x()) >

is satisfied for all a with

1 3
(5.4)

2L + 8M
< a <

2L + 8M

Hence there is m such that (5.3) is satisfied with m.
Proof. Let 5(a) x- x(a) and assume that _> 0, so that the converse part of

Theorem 3.1 holds. Therefore e > e_.

Using the definition of ](x), and the fundamental theorem of.calculus we obtain,

](x) ](X(O)) f(x) f(x(c)) + (x)

(5.5)

5(a)T Vf(x tS(a))dt + (x) (x(a))

5(a)T (Vf(x)+ 01(Vf(x--tS(a))-Vf(x))dt)
+ (x) (x())

> 5(()TVf(x)- LIl(x- x(c))ll 2
2 + (x) (x().



IMPLICIT FILTERING 283

Now assume that IIx x(1)l > h, and hence e > e_. We estimate the parts of
the right-hand side of (5.5) in turn. First, by Lemmas 5.2 and 5.3,

5(a)Tv’f(x) >--IIt(O/)]12- M2]It(C)II2
>CCT- /1- 2/ 115(c)112

"c

We set 1 max(o, 4M2) and require >_ 1 to obtain

(5.6) 6(o)TVf(x)

Using Assumption 3.1 we have, as we assume e > e_,

I(x())l Mllx() x*ll 2 2M(ll()ll2 + 2),

By the estimates

and Lemma 5.3, we have

Since

We have, since a < 1,

I(x(a))l <_ 2M(llS(a)ll2 + M2/3h2)

c c2

](X)l < Mce2 < /t/fl/3h2 <

(5.7) I(x) (x(a))l _< llS(a)ll2a (2M +

Using (5.6) and (5.7)in (5.5) yields

c a2

(5.s)

where

](x)- ](x()) > ll6()ll (3/4- Do/o- D2a)

Do . and D2 2M + L/2.

If MI3/e2 is small enough so that

(5.9)

then

DoDg. _< 1/64,

--D2a2 + a/2- Do _> 0,
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for all e [1/(4D0), 3/(4D0)]. Hence 3/4- Do/c- D2 >_ a holds for all a e (0, 1/4)
and all c e [1/(400), 3/(400)]. This completes the proof. [:l

To complete the proof of Theorem 4.1 we note that Lemma 5.4 implies that if
IIx-x(1)ll > h, then the line search in Algorithm projgrad(f, x, h, T, (, a) will return
x() and, using Lemma 5.3,

](x) ](x(a)) > a IIx x(c)ll2 22h2
_
a

_
o’(2h2.

Boundedness of and continuity of f then imply that Algorithm projgrad must
terminate successfully.
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Abstract. This paper extends the theory of trust region subproblems in two ways: (i) it
allows indefinite inner products in the quadratic constraint, and (ii) it uses a two-sided (upper and
lower bound) quadratic constraint. Characterizations of optimality are presented that have no gap
between necessity and sufficiency. Conditions for the existence of solutions are given in terms of the
definiteness of a matrix pencil. A simple dual program is introduced that involves the maximization
of a strictly concave function on an interval. This dual program simplifies the theory and algorithms
for trust region subproblems. It also illustrates that the trust region subproblems are implicit convex
programming problems, and thus explains why they are so tractable.

The duality theory also provides connections to eigenvalue perturbation theory. Trust region
subproblems with zero linear term in the objective function correspond to eigenvalue problems, and
adding a linear term in the objective function is seen to correspond to a perturbed eigenvalue problem.
Some eigenvalue interlacing results are presented.

Key words, indefinite trust region subproblems, existence and optimality conditions, numerical
solutions, hard case, matrix pencils, nonsymmetric eigenvalue perturbation theory
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1. Introduction. Calculation of the step between iterates in trust region nu-
merical methods for minimization problems involves the minimization of a quadratic
objective function subject to a norm constraint. This trust region subproblem is

rain
(P) subject to

#(y) ytBy 2Cry
Ay b,
ytDy <_ 5, y E .n,

where n; B :nxn is symmetric, A is m x n; b e }m, D is a positive
definite scaling matrix, and 5 > 0 is the trust region radius. The objective function #
provides a quadratic model of a merit function, while the linear constraint Ay b is
a linear model of possibly nonlinear constraints. Note that the trust region quadratic
constraint has the implicit, or hidden, constraint 0 _< ytDy, while a positive 5 yields
the standard generalized Slater constraint qualification of convex programming.

By representing the linear constraint Ay b as y + Zw, where the range of
Z is equal to the null space of A, and ) is a particular solution of Ay b, we can
eliminate this linear constraint. Moreover, we can also eliminate the scaling matrix
D and use complementary slackness to get the simplified problem

min #(y) ytBy 2ty(/SE) subject to yty 1, y n.

Trust region problems have proven to be very successful and important in both
unconstrained and constrained optimization. The theory, algorithms, and applications
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have been described in many papers and textbooks; see, e.g., [3], [9], [6], [11]-[13],
[23], [24], [30], [31], [33]. A well-known algorithm for numerically approximating a
global minimum is given in [13] and [26]. Other numerical algorithms are presented in
[15], [12]. Recently, the trust region subproblem, with the additional linear constraint
Ax b, has been employed as the basic step in the affine scaling variation of interior
point methods for solving linear programming problems; see, e.g., [7], [2], [35]. Affine
scaling methods for general quadratic programming problems, which solve a trust
region subproblem at each step, are given in [16]. In addition, many continuous
relaxations of discrete optimization problems result in norm constraints and therefore
trust region subproblems arise; see, e.g., [22] for a survey.

Generalizations of (/5) are also important. Subproblems with two trust region
constraints appear in sequential quadratic programming (SQP) algorithms; see, e.g.,
[4], [39], [37]. In [37], an algorithm is presented that treats the two trust region prob-
lem by restricting it to two dimensions. More recently, Zhang [40] treated the two
trust region problem using a parametric approach and assuming positive definiteness
of the objective function. (In both [39] and [40], the condition that B- AC is positive
definite for some A, where C is the Hessian for the second trust region constraint, is
very important. This condition is studied here for the indefinite case and shown to be
equally important.) Two trust region subproblems also appear in parametric identifi-
cation problems; see, e.g., [21], [17]. Moreover, it is often useful to consider modelling
the general nonlinear programming problem using quadratic approximations for both
the objective function as well as for the constraints; see, e.g., [5], [27]. Such problems
have up to now been considered too difficult to solve without further modelling using
linear approximations for the constraints One reason for this is that the quadratic
approximations can result in indefinite Hessians for the objective function as well as
for the constraints, resulting in possible unboundedness and infeasibility problens.

The success of trust region methods depends in part on the fact that one can char-
acterize, and hence numerically approximate, the global minimum of the subproblem
(/5). The characterization, which has no gap between necessity and sufficiency, is
independent of any convexity assumptions on the quadratic function it; that is, B
can be indefinite. The choice of the .scaling matrix D can be very important It
is currently restricted to be positive definite in order to maintain tractability of the
subproblem, but it would be advantageous and important to allow a larger class of
matrices in order to obtain scale invariance; see, e.g., [99 p. 59]. Of more interest and
importance is the fact that the feasible set {yyy 1} in (/3) being nonconvex
does not present a problem in the characterization of optimality. Note that we can
add k(yty 1), k > 0, to the objective function without changing the optimum. Thus
if k is large, then the objective function becomes convex. This means that we can
assume that the objective function is convex if desired. However, this is no longer
true if the constraint yty 1 is changed to an indefinite constraint.

In case 0 (no linear term) the stationary points of the trust region subproblem
correspond to the eigenvalues of Bo In [32], the authors related stationarity properties
of (/5) to spectral properties of the parametric border perturbation of B given by

Hence, the above perturbation o B has, as an analog, the perturbation of the purely
quadratic function ytBy by the linear term -2tx in (/5). Other connections be-
tween trust region problems and eigenvalue problems are known in the literature
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If one considers a symmetric perturbation in (1.1), then connections with the trust
region problem are studied in [29] and show up in the theory of divide and conquer
algorithms for symmetric eigenvalue problems; see, e.g., [1]. Moreover, the algorithms
in [13] and [26] are based on finding a Lagrange multiplier smaller than the small-
est eigenvalue of B, and therefore guaranteeing positive definiteness of the Hessian
of the Lagrangian. The success and importance of trust region methods in both
unconstrained and constrained optimization can be attributed to the fact that the
subproblems can be solved very efficiently and robustly, which can be attributed to
their being implicit eigenvalue problems.

In this paper we consider generalizing (/5) in two ways and relating these trust
region subproblems to eigenvalue perturbation theory. The ellipsoidal constraint
ytDy <_ is replaced by a two-sided constraint, while the positive definite scaling
matrix D is replaced by a possibly indefinite matrix C. Specifically, we consider the
problem

min
(P) subject to

it(y) ytBy 2Cry
<_ ytCy <_ , y E n,

where B and C are symmetric matrices with no definiteness assumed, and -oc _< _<
( <_ cx. The motivation for this paper is to extend the existing theory of trust region
subproblems (in light of the above discussion on applications) in the hope that this
will be a step in the direction of solving general problems with quadratic objectives
and quadratic constraints. Note that unlike the definite case, a change of variables
will not reduce the problem to the form (/5). Moreover, it is not clear that solving
the equality constrained problem is equivalent to solving the inequality constrained
problem, along with a complementary slackness condition. For example, if

then the equality constrained problem ytCy I is bounded below while the inequality
case, with -c, a 1, is unbounded.

Indefinite quadratic constraints arise when considering indefinite inner product
spaces or Minkowski spaces; see, e.g., [14], [8]. In this case, the generalized distance
function, or norm, arising from the indefinite inner product, can be zero and/or
complex valued. The two-sided constraint is a step toward the solution of problems
with two quadratic.constraints and generalizes the standard problem where the left-
hand side constraint is implicitly understood to be >_ 0.

The paper is organized as follows. In 2 we give necessary and sufficient optimality
conditions for (P), as well as a general existence theorem. Then in 3 a further
analysis is undertaken. We transform (P) to a "standard form" where the matrix
pencil B- AC satisfies a certain regularity condition, and use this form to catalog the
various conditions under which an optimum for (P) can exist.

In 4, we apply our results to obtain spectral information regarding the completely
general parametric border perturbation of B given by

(1.2) A(t)= vt t

under the assumption that the spectral decomposition of B is known.
In 5 we present a general dual program for (P). This dual program is a true

concave maximization problem and shows that these trust region subproblems are
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implicitly convex. Moreover, the dual program provides bounds on the optimal value
of (P). This provides stopping criteria for algorithms for (P) based on duality gap
considerations.

We conclude with an appendix to show how the algorithm and results in [13] and
[26] can be extended to our more general two-sided indefinite trust region subproblems.
Note that an interior point primal-duM algorithm, based on the duality theory given
here, is presented in [28].

1.1. Notations. M - 0 means that a real symmetric matrix M is positive def-
inite, while M - 0 indicates that M is positive semidefinite. (The reverse notations
M -< 0, M 0 will be used to denote negative definiteness and negative semidefi-
niteness, respectively.) 7(M) denotes the range space of M; while Af(M) denotes the
null space of M. M is the Moore-Penrose generalized inverse of M. For

if, _> O,, N, (3)+ "=
0 otherwise.. Optimality conditions. Our results will generally be stated for the mini-

mization problem

min #(y) ytBy- 2Cry(P) subject to

where -cx _</3 <_ a _< cx, and both B and C may be indefinite. The maximization
versions of the results will always be analogous in an obvious way.

We have the following theorem, which extends a result of Gay [13] and Sorensen
[30], where C was assumed to be positive definite and/3 0 < a is implicitly assumed;
see, also, Fletcher [9]. Our theorem does not tell us when problem (P) possesses
minimizing point, but rather, it tells us when a given feasible point yields a minimum.
There is no gap between the necessary and sufficient optimality conditions and there
is no assumption on boundedness of the feasible set or the objective function. The
three optimality conditions are, respectively, stationarity, nonnegative definiteness,
and complementary slackness and multiplier sign.

THEOREM 2.1. Let y be a feasible point for (P). Then y gives the global minimum
for (P) if there exists a Lagrange multiplier ) E such that

(2.1) (B )C)y

(2.2) B-ACO,

and

(2.3) ik(t3 ytCy) >_ 0 >_ A(ytCy c).

Furthermore, if

(2.4) B-/C - 0,

then y is the unique minimizing point. Moreover, suppose that the following constraint
qualification holds:

(2.5) Cy 0 implies
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Then y solves (P) if and only if the conditions (2.1)-(2.3) hold, for some
Proof. First consider sufficiency. Let y, A satisfy the above optimality conditions,

where y is feasible. There are three cases to consider. [:l

Case (i). Suppose that < ytCy < a. Then, the optimality condition (2.3)
implies that 0. That # is convex now follows from (2.2). Thus y is a global
unconstrained minimum of the convex function # and y solves (P).

Case (ii). Suppose that

(2.6) ytCy c

By (2.1),(2.2), we see that y minimizes the Lagrangian function

L(z, A):- #(z)- A(zCz-

over [}n. That is,

#(y) L(y, A)

_
L(z, A)

Since < yCy implies A

_
0, it follows that A(zCz- c)

_
O, for all feasible z. This

in turn yields #(y)

_
#(z), for all feasible z.

Case (iii). Suppose that yCy . Then the conclusion follows similarly to Case
(ii).

This proves the if part. The furthermore part of the theorem now follows easily.
Now consider the necessity part of the statement. If Cy O, then the constraint

qualification implies that we have an unconstrained problem and the optimality con-
ditions hold trivially with A 0. Otherwise, we again need to consider the same three
cases. For Case (i), we again conclude that the quadratic function # must be convex.
Therefore we can choose A 0 to satisfy the optimality conditions. For Case (ii), we
associate with the constraint the (isotropic) cone

K {w E n wtCw 0}.

(Note that the standard linear independence constraint qualification holds, since
Cy 0 by the constraint qualification assumption.) Suppose that y solves (P).
By differentiating the Lagrangian function with respect to y, we obtain the Lagrange
equation (2.1) as a first-order necessary condition for optimality. Hence there exists

_< 0 such that (2.1) holds, and it only remains to verify the second-order condition
(2.2). Let us denote by Ty the set of tangent directions to the constraint at y; that is,

Ty {w n wtCy 0}.

The standard second-order conditions state that B AC is positive semidefinite on
Ty. Now let v n be a direction such that

(2.7) v C_ K U Ty.

For each such v, we can construct a feasible point z y + Ov, where 0 0 and
ztCz c. In order to accomplish this, consider the solvability of the equation

(2.s) (y + Ov)C(y + Ov)
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This becomes

(2.9) ytCy + 20vtCy + 02vtCv ,
and from (2.6), this in turn becomes

(2.10) O[2vtCy + OvtCv] O.

Now in view of (2.7), we see that

(2.11) 0
-2vtCy
vtCv

has the required properties.
Note that the value of the Lagrangian at a feasible point satisfying (2.6) is equal

to the value of the objective function at that point. Moreover, the Lagrangian is a
quadratic and so the second-order Taylor expansions are exact:

+ (z

L(y, ) + (z y)t V2L(y, A)(z y).

This means that

(2.12) () () ( v)’(B C)(z v).

Thus the optimality of y implies

(2.13) vt(B- AC)v >_ 0 Vv

_
K U Ty.

Since the set K has no interior points, by analyticity of the function ytCy, we see
that (2.13), the standard second-order conditions on Ty, and a continuity argument
yield (2.2).

Case (iii) with ytCy follows similarly.
Remark 1. One can use homogenization to apply Theorem 2.1 to more general

quadratic constraints, namely, ytCy + ty, where C is nonsingular.
Remark 2. The optimality conditions (2.1),(2.2),(2.3) are a compact version of

the usual optimality conditions with two constraints that involve two multipliers.
Terminology. If. A is such that the Lagrange equation (2.1) holds for a feasible y,

then is called a Lagrange multiplier and we say that y is a stationary point belonging
to . The set of all such y is denoted by E(A), while the set of all Lagrange multipliers
is denoted by A.

In view of Theorem 2.1, we get the following necessary condition on the symmetric
natrix pencil B- C for (P) to possess a minimizing point.

COROLLARY 2.2. Suppose that C is nonsingular and max{lal, !1} > 0. /f y
solves (P), then

(2.14) Be s.t. B-C0.

ProoJ: If y 0, then the result follows from the nonsingularity of C and Theorem
If y 0, then necessarily we have 0, the optimal value #* 0, and
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/ <_ 0 _< . Since we cannot have both and/ equal to 0, we can assume without
loss of generality that/ < 0. Therefore optimality implies that the system

ytCy < 0, ytBy < 0

is inconsistent. The result now follows from the theorem of the alternative in Lemma
2.3 in [38].

Before stating our main existence result (Theorem 2.4 below), we distinguish
between two subcases of (2.14).

We say that we are in the regular case or the positive definite pencil case provided
that (P) is feasible and

:t X s.t.B- XC - 0.

We are in the irregular case or the positive semidefinite pencil case if (P) is
feasible and (2.14) holds, but for no A E R do we have B- AC 0.

Remark 3. Characterizations of various definiteness properties for matrix pencils
were given by Hershkowitz and Schneider [18] and by Wsing and Vhlig [34]. See also
[14]. We do not use those results in this paper, however.

In the next section we see that in the regular case, the set

J "= {A e R" B- AC - 0}

is an open subinterval of the real line which is bounded if C is indefinite and unbounded
if C is definite. On the other hand, in the irregular case with a nonsingular pencil
B- tC, the number is unique. This is taken up in the following lemma. (Recall
that a pencil being singular means that det(B tC) =_ O. The pencil is nonsingular,
for example, if either B or C is a nonsingular matrix.)

LEMMA 2.3. Suppose that the irregular case holds and the function det(B tC)
is not identically 0 in t. Then there is only one value such that (2.14) holds.

Proof. Suppose’that 5 is such that B-hC

_
O. Then any convex combination

of B- AC and B- 5C is positive semidefinite. Hence

(2.16) B C c(5 )C
_

0 Va e [0, 11.
Now consider the analytic function

h(a) det[B C a(5 )C].

Then h(0) det(B C) 0, and the assumption on the determinant implies that
there exists/ R such that h(/) 0. Hence analyticity implies that h(c) = 0 for
all sufficiently small a > 0. But then by (2.16), for such a we would have

B- XC- X)C 0,

which contradicts being in the irregular case.
We now have the following result regarding the existence of a minimizing point

for problem (P).
THEOREM 2.4. Consider problem (P) with C nonsingular.
1. If (P) possesses a minimizing point and max{lal, I/1} > 0, then condition

(2.14) holdS.
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2. Conversely, assume that (P) is feasible, (2.14) holds, and both c and are

finite. Then we have the following cases.

(a) regular. (P) possesses a minimizing point.
(b) irregular. (P) possesses a minimizing point if and only if (2.1) (2.3) are

consistent, in which case y is a minimizing point with associated Lagrange multiplier

Proof. Part 1 follows immediately .from Corollary 2.2. To prove Part 2(a) assume
that (2.15) holds and suppose, to the contrary, that (P) does not possess a minimum.
Suppose that y is a feasible point. Then there would exist a sequence of feasible
vectors {Yi}=l such that

< vi,

and

Without loss of generality we can assume that

Yi ,d as i---,x3.
I1  11

We claim that

(2.20) dtBd < O.

If this did not hold, then dtBd a > 0 would imply that

for all sufficiently large i. But then (2.18) yields #(y) cx3, contradicting (2.17).
Now (2.20) and the regularity condition (2.15) together imply

(2.22) d Cd < b < O,

for some b. It then follows that

(2.23)
XyCyi
i1  11

<

for all sufficiently large i. From (2.18) we then obtain
which contradicts the feasibility of the sequence {Yi}=l. This completes the proof of
Part 2(a).

To prove Part 2(b), suppose that the optimality conditions are satisfied. Since
we have an irregular pencil, i.e., is unique in (2.14) and B- AC is singular, then
from the lemma in [20, p. 408], the two systems

Bu O, utCu < O,
By=O,. vtCv > O,

must be consistent. Therefore, if ytCy < B, we can find a feasible point using y + tv,
since (y + tv)tC(y / tv) > , for sufficiently large t. Similarly, we can use y + tu if
ytCy > a. These points satisfy the stationarity conditions and so are optimal. [3

The following is an example of the irregular case, with the necessary and sufficient
optimality conditions in Part 2(b) of the previous theorem not holding, i.e., with the
problem being unbounded. Take B diag(2,-2), C- diag(-1, 1), and (1,2).
It is readily checked that there does not exist a minimizing y for problem (P). Now
note that -2 and B-C 0. Hence the equation (B- C)y is inconsistent.
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3. Further analysis(a / 1). In this section we treat the special case of
(P) where C is nonsingular and a 1, i.e., we have the single constraint problem

min
subject to

#(y) "= ytBy- 2Cry
ytCy 1, y E n.

The results are used in our analysis of eigenvalue perturbations.

3.1. The regular case. The condition (2.15) implies that there exists a nonsin-
gular real n n matrix T such that TtBT D and TtCT S are both diagonal.
(We here are utilizing a well-known result on simultaneous diagonalization via congru-
ence; see, e.g., Theorem 7.6.4 in Horn and Johnson [19].) By building a permutation
and a scaling into T if necessary, we can without loss of generality assume that the
matrices D and S are of the forms

D diag(D, Db) diag(d, d dn., db db2,’", dbn)
and

S diag(-Ia, Ib),

where

d > d >.-. > da

> eg >... >

and where Ia and Ib denote identity matrices of orders na and rib, respectively. Here

na nb

where possibly na O. By Sylvester’s Theorem of Inertia, see, e.g., [19], feasibility of
(P) is equivalent to nb > O.

We now introduce the problem

min #T(X) :-- xtDx- 2rtx(PT) subject to xtSx 1.

Upon identifying

y=Tx

and

7 Tt),

it is easy to check that

and

ytCy xtSx.
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Furthermore, it is clear that in the regular case, the problems (P) and (PT) have the
same Lagrange multiplier set A, and for each Lagrange multiplier A we have

E(I) TET(A),

where ’T() denotes the set of stationary points of problem (PT) belonging to A.
Finally, it will be convenient to write

where the number of components of r/a and T]b are na and rib, respectively.
Whenever the regular case holds, we can accomplish this transformation of (P) to

(PT), which we say is a problem in standard form. The regular case of the standardized
problem will now be discussed. Hence we shall assume that (PT) is feasible (i.e.,
nb> 0) and

3E s.t. D-S-O.
Two subcases of (3.1) are going to be considered. These will be referred to as the
"easy" and "hard" subcases. Our analysis of these subcases generalizes that found in
Gander, Golub, and Von Matt [12], where it was assumed that n 0; that is, S I.
(See also [33].)

3.1.1. The easy subcase. In this subcase of (3.1), we assume feasibility and

(3.2) /is not orthogonal to Af(D- AS) for all A s.t. JV’(D- AS) # 0.

Equivalently, if Z {i (D- AS)ii 0}, then there exists at least one component
i E Z such that r/i 0. It is important to note that for fixed A we then have

(3.3) r/e 7(D AS) == rank(D AS) n.

In other words, (3.2) implies that congistency of the first-order condition

(3.4) (D AS)x rl

yields invertibility of D- AS. (Likewise, consistency of (2.1) implies invertibility of
B- AC when (3.2) holds.) For A, denote the unique solution to (3.4) by

(3.5) x (D- S)-1/.

Let us now introduce the function

(3.6) fT()) "= 1 rlt(D S)-2S.

(Note that fT(,h)"= 1 --yt),Cy,, where yx (B- C)-1). Since

(3.7) D- AS S(SD- AI),

it follows that the singularities of fT(’) are the eigenvalues of SD. We call fT(’) the
secular function for problem (PT). It reduces to the secular function in [12] when
n. 0. Define

ro .= # 0}
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and

b.= # 0}.

One can readily check that

Remark 4. Note the use of the distinct subscripts i and j in (3.8). This is adopted
here, and in what follows, for notational convenience.

Feasibility of x), for (PT) is characterized by the equivalence

(3.9) x[Sxx 1 ,==V fT() O.

It is now clear that in the easy subcase of (3.1),

in which case xx, as given by (3.5), is the unique associated stationary point.
Since nb > 0 (feasibility of (PT)), the assumption that (3.1) holds implies that

either

na>O and -dana <dbnb
or

(3.12) na =0.

(See Figs. 1 and 2 for plots of gT for the above two cases, respectively.)
holds, then

If (3.11)

B AC>-Oc==>D AS>.-Oc==A(-da b

while if (3.12) holds, then

(3.14) B- AC >- O <===> D- AS>-O==>A(-,dnb)
We summarize the above discussion in the following lemma.

LEMMA 3.1. Problem (PT) is feasible if and only ifC is not negative semidefinite.
Moreover, the set of t where B- tC is positive definite is an open interval which is
bounded if and only if C is indefinite.

We now introduce the function

(3.15) gT(A) rt(D AS)-lr,

which is called the secular antiderivative function for problem (PT). The implicit
form of this function is

(3.16) g(,,) :: )t(B -/C)-I).

The singularities of gT(’) are those of fT(’) and, what is more,

(3.17) g(A) fT(A)
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10
Plot 1" Case (3.11)

10

FIG. 1. Secular antideriviative.

at all real numbers A which are not singularities. It is readily verified that

At nonsingular points A we also have

(3.19) g()) -2r/(D- ,kS)-3r/.

Now suppose that (3.11) holds. Then, by (3.19), gT(’) is strictly concave on the
interval (-da dbb), which by (3.13) is where B- C >- 0 Furthermore,

gT(A) --OC as A -da
na

and

gT A -oo as , T db.rb

Then there exists a unique A* e (- ,a, dbb) such that g, (A*) fT (A*) 0. It follows
that A* E A, and x. minimizes (PT). Also, for indices i < na we have

gT(A)--OO as A-d’
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10

-5

-10

Plot 2: Case (3.12)

10

FIe. 2. Secular antideriviative.

gT()Toc as AT-d,

while for indices j < nb we have

bgT(A)[Oc as Adj,

Now suppose that (3.12) holds. Then gT(’) is strictly concave on (--oc, dbnb),
gT ,k .].--oc as J,--cx)

gT (, ,], -oo as ) T dbnb
Hence there exists a unique A* e (-oo, db) such that g,(A*) fT(A*) 0. Then
A* E A, and x. minimizes problem (PT). For indices j < nb we have the same
behavior as when (3.11) holds.

Remark 5. If one analyzes the function gT(’) in the special case where na 0,
additional graphical properties may be obtained. In particular, one can exploit the
fact that g() < 0 at every nonsingular point ; see [32] for the details.
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We now can give the following existence and uniqueness result for the easy case.
It includes a necessary and sufficient condition for the simultaneous existence of a
maximizing point and a minimizing point for (P).

THEOREM 3.2. Consider the easy subcase of the regular case of problem (P); that
is, (P) is feasible (i.e., nb > 0), and (3.1), (3.2) hold. Then we have the following:

1. The set of Lagrange multipliers A is finite;
2. (P) possesses a unique minimizing point;
3. (P) possesses a maximizing point if and only if na O.
Proof. We can without loss of generality assume that (P) is in the standard form

(PT). Parts 1 and 2 of the theorem follow from the discussion above. (In Part 1
we used the rational property of fT(’) on any open interval that does not contain
a singularity, i.e., using a common denominator reduces the problem to finding the
zeros of a polynomial in A, since the denominator is positive on the open interval.)
In order to prove Part 3, assume first that na > 0. For there to exist a maximizing
point, there would necessarily exist E A such that

This implies

which contradicts (3.11). Sufficiency in Part 3 follows from compactness of the feasible
set and continuity. [:]

Remark 6. Let the hypotheses of Theorem 3.2 hold, with na > 0. In view of the
preceding discussion, we see that there exists at least one Lagrange multiplier (that
is, a critical point of gT(’)) such that g(A) > 0. In particular, there must be such
a number in the interval (dbl, c). However, in view of the preceding theorem, the
corresponding stationary point x, does not give a maximum for problem (PT). In
fact, in Example 4.1 in 4, it will be seen that x, need not even give a local maximum.

We conclude the discussion of the easy subcase with a key lemma that will be
used in the following sections. The lemma also provides a (concave) dual program.
The lemma asserts that in the easy case, the values of the secular antiderivative at its
critical points (which are the Lagrange multipliers) equal the values of the objective
functions of (P) and its standardization at the corresponding set of stationary points.
A variant of this result can be found in [11]; see also [32]. The proof is by direct
substitution, and is omitted.

LEMMA 3.3. Let the hypotheses of Lemma 3.2 hold, and let A. Then

(3.22) gT(A) #T(X) #(y),

where y (B- AC)-1.
The above results yield the following dual program, i.e., the optimal values of the

primal and dual are equal. The details are presented in 5.
max gT(.)DUAL PROGRAM
subject to B-AC___0.

3.1.2. The hard subcase. In this subcase of (3.1), we assume feasibility and
the following condition:

(3.23) r/is orthogonal to Af(D- AS) - 0 for some A .

(3.20) (D- S) _< 0.
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As in the easy case, there is an equivalent statement concerning components of that
are now 0 and correspond to the 0 components of D- AS. We again use the (possibly
empty) index sets

ro {i.v o}

and

r (j., # 0).

The secular function for problem (PT) is

(3.24)
o (v?)fT(A) I + .= (d + /k) 2
iFa jEPb

and the secular antiderivative correspondingly becomes

(3.25)

Since we are still in the regular case, the interval J of real numbers A for which the
matrix pencil D- AS - 0 is given by

J- a b(-dna,dnb)
when na O,
when na > O.

The following discussion deals with both forms of J at once. We introduce the index
sets

Aa={i’d=da )na

and

Ab (j d dbnb).
1. If J contains a critical point A* of gT(’), then necessarily 0 and gTt! ( O.

This implies that we have an isolated local maximum of gT(’) and A* E A, since a
unique minimizing point x for problem (PT) can be obtained by solving (D-)S)x
?. Necessarily then xi 0 for all i Fa, xj 0 for all j Fb, and automatically
x Sx 1 since fT(*) O.

2. Now suppose that J does not contain a critical point of gT(’). Then since gT(’)
is concave on J, we see that gT(’) is monotone on J. We need to consider both the
monotone-increasing and monotone-decreasing possibilities.

(a) If g,(/) > 0 on J, then

for otherwise the assumed monotonicity is violated. (Here denotes the empty set.)
Therefore gT()) has no pole for dbb. Also,
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because a minimizing vector x for (PT) can be found by simultaneously solving (D-
)* S)x ? and x Sx 1. Necessarily then

xi 0 Vi Fa

and

x=0 VjCAU

Note that selected components xj can be nonzero for j E Ab, j Fb. The set of
vectors x thusly obtained is a submanifold of n-1. However, x will be unique in the
special case where g’T (dbnb) ---O.

(b) If g,(,) < 0 on J, then monotonicity yields

Recall that na > O. Also,

,* -da A,na

because now a minimizing vector x for (PT) can be found by simultaneously solving
(D )* S)x 1 and xtSx 1. Then

0 vj

and

xi 0 Vi Aa U Fa.

Since certain components x may be nonzero for Aa, Fa, the set of vectors
x obtained in this way is a submanifold of ’-1, with x being unique in the special
case where gT(da) O.

3.2. The irregular case. In the irregular case it may be that (P) cannot be
transformed into standard form. Nevertheless, we will study the irregular case of the
standard form problem (PT). We therefore assume that

(3.26) BXe s.t. D-XS>_O,

and (by Lemma 2.3) that is unique. We have the following lemma.
LEMMA 3.4. In the irregular case of the feasible problem (PT), we have

(3.27) na > 0

and

(3.28) _da b
na dnb

Proof. If n 0, then we would have D- AS - 0 on the interval (-oc, dbnb),
violating the uniqueness of . Hence (3.27) holds. Similarly, we must have -de < dbnb
for (3.6) to hold, and if -de K dbnb then D- ,kS - 0 on the interval (-d, d’bnb
which also violates the uniqueness of . Consequently, (3.28) holds, cl
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What follows is an existence theorem for the irregular case of the standard form.
THEOREM 3.5. Assume that we are in the irregular case of problem (PT). Then

(PT) possesses a minimizing point if and only if

(3.29) Aa N Fa
and

(3.30) Ab N Fb .
Proof. Suppose that (PT) possesses a minimizing point x. We first verify (3.29).

It must be shown that

r/ 0 Vi E

To this end, let i E Aa. Then for the necessary condition (3.4) to hold, we must have

(d7 +
Since d + --0, (3.29) follows. Condition (3.4) leads to (3.30) in a similar way.

Now suppose that (3.29) and (3.30) hold. If g,() _> 0, then e A, since a
minimizing vector x* may be constructed by simultaneously solving (D A*S)x 1
and xtSx 1. Then

xi 0 Vi Fa
and

xj 0 Vj A
Since selected components xj can be nonzero for j Ab, j Fb, it follows that the
set of vectors x determined in this way is a submanifold of n-1, with x being unique
in the special case where g,() 0. The analysis for the possibility g,()

_
0 is

similar.

4. Nonsymmetric eigenvalue perturbations. We wish to obtain spectral in-
formation about the real n n parametric border perturbation of B given by (1.2);
that is

where B is a symmetric (n- 1) (n- 1) matrix. We assume that the spectral
decomposition of B is known. In other words, we know an orthogonal matrix P such
that PtBP is diagonal. Then (after including a permutation in P, if necessary) we
have a unitary matrix

such that

(4.1) J(t) "= PtA(t)P
Do 0 0 a
0 D+ 0 a+
0 0 D_

t
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where

and

Do diag(71, 72,..., "no),
D_ diag(/{-, /-,..., "-_ ),

D+ diag(+, 2+,..., /n++),
o oa 0 Vi 1,2,... ,no,
+ +ai >0 Vi=l,2,...,n+,

a-- < 0 Vi 1,2,...,n_,

no+n++n_=n-1.

Note that we allow no, n+, or n_ to be zero.
The spectrum of (t) consists of the no numbers o along with the spectrum of

A(t) := 0 D_ a-
t

Hence we focus attention on A(t).
Without loss of generality we can assume the diagonal orderings

Define

(4.3) S diag(-1,-1,... ,-1, 1, 1,..., 1),

where the number of-l’s is n+ and the number of l’s is n_.
We associate with A(t) the following problem in n, where

=n++n_:

min #(x) :-- tSD2- 2It5(P) subject to 2tS2 1.

Here

diag(D+, D_),
1/2 Vi 1,2,...,n+,

and
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It is readily checked that the secular antiderivative associated with (P) is given

+ (+) - (,7)(4.4) (A) + Ei=l (/+ ) .= (/- A)

We require the following lemma. The proof, which relies on Schur complements,
is similar to that of Lemma 3.1 in [32], and is therefore omitted.

LEMMA 4.1. The real eigenvalues "of A(t) which differ from the t diagonal entries

9/+ and / are the solutions of

(4.) () t.

The next theorem follows from the discussion in 3.1.1. (Only the minimization
version is stated here; the maximization version is analogous.) The theorem gives
sufficient conditions for realness of the spectrum of A(t) and describes the associated
interlacing.

THEOREM 4.2. Assume that problem (P) is feasible; that is, n_ > O, and that
either

(4.6) n+>0 and %+<_

or

(4.7) n+ 0.

Then problem (P) possesses a unique minimizing point, and the following hold.
1. The matrix A(t) has n- 2 real eigenvalues, including all the eigenvalues of Do

and ft- 1 eigenvalues of ft(t) that interlace the n- 1 eigenvalues of B.
2. Suppose that (4.6) holds. Let Aa denote the unique critical point of (. in the

interval (+ /_). A suJficient condition for the other two eigenvalues of A(t), say
5a <_ 55, tO be real i’s that

(4.8) t _< .().

If the inequality is strict, we get the interlacing

(4.9)

If the inequality is not strict, then

(4.10)

3. Now suppose that (4.7) holds, and let denote the unique critical point of
gt(’) in the interval (-oo, 7_). A sufficient condition for the other two eigenvalues of
(t), again denoted 6a <_ 6b, to be real, is that (4.8) holds. In case (4.8) holds strictly,
we obtain the interlacing

(4.11)

If the inequality (4.8) is not strict, then

(4.12) -oo < 5a ) 5, < %_.
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Remark 7. (a) Suppose that problem (/5) is infeasible. (This includes the case of
purely symmetric border perturbation.) Then

(4.13)
i--1

From the graphical analysis of this function, one can prove the classical result that for
every value t, the spectrum of B interlaces that of A(t). (See Wilkinson [36, 2.39].)

(b) A specialized version of Theorem 4.2 appears in [32], where it was assumed
that n+ 0.

The following example illustrates Lemma 4.1 and the preceding theorem.
Example 4.1. Let

Then

A(t) A(t)= 0 2 1
1 -1 t

1 1
 T(X) X + (e-

In view of Theorem 3.2, there is no maximizing point for problem (P). There is
a minimizing point, however, with corresponding Lagrange multiplier As 1.5310
and critical value -2.4844. The other critical point is A 2.8832 with critical
value 3.4844. (If one uses MATLAB to graph #T(’), then it is seen that A does not
correspond to a local maximum, even though one might suspect this from the graph of
(.).) The eigenvalues of A(t) are real if t <_ -2.4844 or if t _> 3.4844. For the selected
value t -3, the spectrum of n(-3) is {-3.0489, 1.3569, 1.6920}. The interlacing is
of type (4.9).

5. A general dual program. We now return to studying the general program
(P):

min it(y) ytBy- 2Cry(P) subject to <_ytCy<_a, yEn.

In this section we derive a dual problem for (P) which is a true concave maximization
programming problem. This illustrates that (P) is an implicit convex program and
shows why the global minimum can be characterized and found. In fact, it is also
shown that Lagrangian duality holds without any duality gap.

THEOREM 5.1. Suppose that y* solves (P) with optimal value #* it(y*) and
Lagrange multiplier *. Let

(5.1) L(y,,w) it(y) + (a -ytCy) +w(ytCy )

denote the Lagrangian function for (P); let

(5.2) (, w) inf L(y, , w)
y

denote the Lagrange dual functional; and let

(5.3) h(u,w) ua- co- bt(B uC + wC)-lO
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denote the quadratic dual functional. Then the optimal value of (P) satisfies

(5.4) #*= max (p,w),
v_<o,w_<o

while if the regular case holds, then in addition we have

(5.5) #* sup h(p,w).
B--vC+wCO
v<_O,w<_O

Moreover, the maximum in (5.4) is attained by

p* -(-A*)+ and w* -(A*)+,

where

(A)+=(A  fA>O,
0 otherwise.

Proof. If B pC + wC - O, then (p, w) in (5.2) is finite. Moreover, L(y, p, w)
(p, w) for y (B vC + wC)-l. Substituting for y in L yields

(5.7) h(v, w) (, w).

Now if z is feasible for (P), then for all nonpositive v,w we have (u,w) <
L(z, p, w) < #(z). We now have

min #(z)
feasible

sup (u, w),
_<0,w_<0

sup (v, w)
B--vC+wCO
<O,w<O

> sup h(,w).
v<_O,w<_O

Now, from Theorem 2.1, there exists a Lagrange multiplier *. Let * and w* be
chosen as in (5.6). Then

#* L(y*, p*,w*)

_< max (v,w),
v<_O,o_<O

i.e., this and (5.8) imply that (5.4) holds.
If the easy case holds, i.e., y* (B A*C)- , then (5.7) implies

v* *) #*h(v*,w*)=n(y*, ,w

so (5.8) implies that (5.5) holds. Now suppose that the hard case holds. If B- A*C -0, then (5.4) holds by the above. Now suppose that the regular case holds and B-A*C
is singular. Equivalently, D- A*S is singular, where TtBT D and TtCT S
are both diagonal, T nonsingular. Let T(D- A*S)tTt, where denotes the
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Moore-Penrose generalized inverse. From the optimality conditions, we have that
E T4(B- *C). Let k --* * with B- ;kC positive definite (see Lemma 3.1). Let

bk,Odk correspond to Ak as *,w* corresponds to A*. Then, from the simultaneous
diagonalization, we conclude that

(5.9) Yk (B- AkC)-I T(D- AkS)-ITt -. .
Moreover, y* + z for some z in the null space of B- A*C, and we also have z _l_ .
Now L(y,,w) yt(B- C +wC)y- 2Cry + a-w. So

h(k, wk) L(yk, k, w) L(I, *, w*) L(y*, *, w*) #*,

i.e., this and (5.8) yields (5.5). Attainment follows directly from Theorem 2.1.
The equality (5.4) provides the standard Lagrangian dual program without any

duality gap, while the second equality (5.5) provides a quadratic program type dual.
Both duals have no duality gap and both duals are maximizing a concave function
over a convex set and so illustrate that the trust region subproblems are implicit
convex programs. The constraint qualification avoids trivial exceptional cases such
as minimizing x subject to x2 _< 0. Unfortunately, it can rule out cases where a or
is 0 and 0 is optimal for (P) as well as being an unconstrained minimum for , e.g.,
when a 0, 0, B _> 0. The key observation is that there is no duality gap for
the above dual programs. Therefore, we can use a dual algorithm to find the optimal
Lagrange multiplier and then worry about the primal optimum point.

The hard case illustrates the difficulty that can arise in duality, i.e., a Lagrange
multiplier may exist such that the dual is attained, but the infimum of the Lagrangian
may not be attained at a feasible point of the original primal problem.

We can obtain a duality result with only one multiplier.
COROLLARY 5.2. Suppose that we are in the regular case and y solves (P) with

optimal Lagrange multiplier ;k. Define

+ ’(B

Then the optimal value of (P) satisfies

(5.11) #*- sup h(A).
B-)C-O,

Moreover, in the easy case, the maximum is attained, while in the hard case it is
attained for ;k with B )C positive semidefinite and possibly singular.

Proof. From the three cases in Theorem 2.1, we see that at least one side of the
constraint of (P) can be discarded. Therefore we can assume that at least one of
or w is 0 in Theorem 5.1. This yields (5.11). Attainment also follows directly from
Theorem 2.1. D

COROLLARY 5.3. Suppose that C I and < 0 < a, i.e., (P) is the standard
trust region subproblem. Let

(5.12)

Then

(5.13) #*= sup

<0
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Moreover, the maximum is attained in the easy case, while it is attained for , with
B- AC 0 and possibly singular, in the hard case. In addition, if the hard case holds
and the Hessian of the Lagrangian at the optimum A is singular, then

(5.14) #*- sup (A)-- max (A).
B--AC>-O B--AC>-O
)<o A<_o

Proof. The proof is similar to that of Corollary 5.2. The final statement follows
from Theorem 2.1 since the optimum multiplier A* is the only point where B- AC is
positive semidefinite and singular. [3

Note that in the standard version of (P), we could just as well choose < 0,
which implies that the constraint qualification is automatically satisfied.

6. Appendix. We now follow some of the development in [26] and outline an
algorithm for (P) that exploits the Cholesky factorization of B- AC. (See Algorithm
6.1.) We assume that C is nonsingular and that the regular case holds, i.e., there
exits A such that B- AC - 0. In our framework, the algorithm is a primal-dual
type algorithm. We maximize the dual function in order to solve the dual problem.
Therefore each such iteration provides an improved Lagrange multiplier estimator A
and, by weak duality, an improved lower bound on the optimal value. In addition, if
the corresponding solution x is feasible, we get an upper bound on the optimal value.
This upper bound is then further improved by moving along a direction of negative
curvature toward the boundary of the feasible set. When the gap between lower and
upper bounds is small enough, the algorithm stops. Convergence of the algorithm
follows immediately from the concavity of the dual function.

This frameworl also simplifies the description of the algorithm in [26], where the
special case that C I and 0 < a is treated. ( can be set to any negative number.)
Note that in this case, feasibility of x, i.e., xCx <_ a, is a necessary condition of
the hard case and is used as an indicator that the hard case might have occurred.
The Newton step in the hard case will generally be too large, which results in slow
convergence. However, only in this case do we get the added improvement in the
upper bound. A log barrier penalty function can be added to avoid the large step.
Thus it appears that the hard case might actually be preferable.

Many of the statements and results are straightforward extensions from [26] and
we include some of them for completeness. We include results involving our dual
function (see (5.10))

{ ’(B ifA <0,
ifA >_0,

and we discuss some of the advantages that occur by using this dual. This dual
function is concave on the interval where B-AC is positive definite. It is differentiable
if A # 0 with derivative

a-xtCxx if A<0,’(A) [3- xtCx if A > 0.

(Recall that x (B AC)-Ib.) The subdifferential at A 0 is the interval

o (o) x oCxo,  gc 0].
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The signs of h(A) and A tell us which side of the trust region constraint is becoming
active. For example, if A < 0 and a > 0, then we maximize h(A) by solving

o ’() xCz,
and exploit the rational structure of this equation by applying Newton’s method to
solve

1 1
(6.2) 0, z (B AC)-,

i.e we iterate using A ,- A-__(5L The function is almost linear but has a singularity,().
where xtCxa 0. The algorithm is based on solving for feasibility of xa, while
maintaining the optimality conditions. In our framework we are solving the simple
dual problem, which means that we are equivalently maximizing the function h(A)
rather than just solving (6.1). The dual function does not have the singularity at

xtCxa O. By using implicit differentiation on the Lagrange equation (2.1), we see
that

O (B- C)-Cx,

0(a) z[C(B- aC)-Cx’(a)= Oa (xCx)

Oh’()t)
O -2xtC(B-

() ((x[Cz)1/2 ,/-) zCx
’() v x[C(B- C)-Cx"

If both a and xtCx are negative, then we can replace them by their negative values
in the definition of . We exploit the Cholesky factorization of the positive definite
pencil B- AC RtR, where R is upper triangular. The following algorithm applies
Newton’s method to update A.

ALGORITHM 6.1.
Let and x be given with B- )C RtR positive definite and RtRx .
Let y Cx and "y ytx. Solve Rtq y.
If < 0 or" () 0 and 9/> a),

If a7 > O, let ) )- (1"11/2-1) _7_

-[ qt q

If a’y <_ O, let ,k - (’- a)2qtq.

Else if ) > 0 or ( 0 and "y < ),

If ’y > O, let/ - (111/2 -/)_7_
f qt q
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If 2qt q
End

If C is positive definite, then c is positive and this algorithm reduces to that
presented in [26]. Note that the algorithm stops if b 0. However, this is not
a failure, since this indicates that we have solved the dual problem if we solve an
eigenvalue problem, e.g., if >_ > 0 we need to solve suPB_AC0 A. We have
therefore found the optimal value of the primal problem.

The following lemma is generalization of Lemma 3.4 in [26]. We have modified
the results and added comments to include the role of our dual function. We include
the proof for completeness. Note that for A < 0, the dual function satisfies

(A)

with h(A) h(A) if B- AC 0. (The case A > 0 follows similarly.)
LEMMA 6.1. Let 0 < a < 1 be given and suppose that

B- AC RR, (B- AC)x , A<0,

where x (B- AC)# when B- AC is singular. Let z satisfy

(6.3) (x

Then

where #* is the optimal value of (P).
Proof. For any z E n we have

(6.5) (x / z) -(llRxll2 A(x + z)C(x + z)) + IIRzll 2.

Then for any z which satisfies (6.3), we have

#(x -t- z) (A) + IIRzll 2 <_ (A) / al(A)l.

Moreover, if #* #(x + z*), where x + z* is feasible, then (6.5) implies

( + z*) > -(lIRxll ) (),

i.e., weak duality holds. The last two inequalities yield the lemma. [:l

From the lemma we now conclude that if #* _< 0, then -#(x+z) >_ (1-a)(-(A))
and so

Similarly, if #* > 0, then for good approximations , we have h() > 0 and -(x+z)
(1 + a)(-h(A)) >_ (1 / a)(-#*). Therefore, in both cases we conclude that

i.e., the lemma yields a nearly optimal solution to (P). Alternatively, we get the
interval

(6.6) () < ,* < ,( + z) < h() + lh()l.
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(Note that the error hi#* <_ alh(,k)l if/* <_ 0, which is the case if, e.g., y 0 is
feasible as in the standard trust region subproblem. This is reversed if h(A) > 0.)

The lemma is used in the case that the current iterate yields a strictly feasible
estimate, i.e., < ,Cx, < a. Then a vector z with ]]z] 1 and ]]Rz]] smM1, is
computed using a Linpack routine for estimating the smallest singular value. om
(6.5), we see that if we can find T such that X+TZ satisfies the constraint with equality,
then we should get a good improvement in our estimate of the optimum. In addition,
note that x is optimal for subproblem, e.g., if A < 0, then x is optimal for (P) with
a replaced by xCx. We can therefore continue with a new modified problem with

replaced by xCx. In addition, if we know that the optimal Lagrange multiplier
is negative, then we can actually replace by a.

The lemma provides stopping criterion since we can conclude that the duality
gp is bounded by a#*. However, a smller gap is obtained from (x + z) h().

Safeguarding must be done in order to maintain positive definiteness of the pencil
during the iterations. The safeguarding procedure needs parameters AL, AU,AS, and
A, such that [AL, Au] is an interval of uncertainty that contains the optimal Lagrange
multiplier A*, while - As T with the interval [AS, AT] containing the
intervM of positive definiteness. For example, given B- AC 0, updating AL, Au
follows from the concavity of the dual function.

ALGORITHM 6.2.
Safeguarding A"

< 0,
Au min{Av, A}

Else
AL max{AL, A}

End

Note that we do not have to consider A 0 as a speciM case unless it is the
optimal multiplier, in which case the algorithm stops. However, updating As and
AT does not follow as easily. It is not immediately clear how to use the information
from the Cholesky factorization to improve the estimates for the interval of positive
definiteness. Note that only one of these needs to be updated since we can immediately
determine which side of the current A the optimal A* is on. Initial estimates can be
calculated from

bi biAs max --, AT min
c<0 Cii c>0 Cii

The following outlines an iteration for an algorithm for (P). Convergence is
guaranteed by the properties of the dual program. We have not included the instances
where safeguarding and updating of the safeguarding parameters are done.

ALGOPTHM 6.3.
Suppose A and x are given with B AC RtR positive definite and R Rx.

1. If the convergence criteria is satisfied, then STOP.
2. Take a Newton step as described in Algorithm 6.1.
3. Backtrack if necessary until the dul functional is improved and the pencil is

positive definite. (Find the Cholesky factorization B- AC RtR.)
4. If < xtCx < a, then #(x) provides an upper bound on the optimal value;

improve this upper bound using, e.g., T, or use some other technique for the
primal problem.
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A MATLAB program has been written and tested on randomly generated prob-
lems that satisfy our assumptions. The test results showed an average of 3.4 iterations
for convergence. This program can be obtained using anonymous ftp from prince-
ton.edu in the directory pub/henry. See the readme file for the description of the
contents of this directory. A detailed numerical study of this algorithm is currently
being done. Moreover, the dual program is particularly well-suited for interior point
methods. A primal-dual interior point method is presented in [28]. It is shown to be
very robust and efficient. In particular, it does not need to treat the hard case in any
special way.
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Abstract. We propose a quasi-Newton algorithm for solving large optimization problems with
nonlinear equality constraints. It is designed for problems with few degrees of freedom and is moti-
vated by the need to use sparse matrix factorizations. The algorithm incorporates a correction vector
that approximates the cross term zTWYpy in order to estimate the curvature in both the range
and null spaces of the constraints. The algorithm can be considered to be, in some sense, a practical
implementation of an algorithm of Coleman and Conn. We give conditions under which local and
superlinear convergence is obtained.
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1. Introduction. We consider the nonlinear optimization problem

(1) min f(x)
xER,

subject to (x) 0,

where f Rn -- R and c Rn -, Rm are smooth functions. We are particularly
interested in the case when the number of variables n is large, and the algorithm we
propose, which is a variation of the successive quadratic programming (SQP) method,
is designed to be efficient in this case. We assume that the first derivatives of f and
c are available, but our algorithm does not require second derivatives.

The SQP method for solving (1)-(2) generates, at an iterate xk, a search direction
dk by solving

1
(3) min g(xk)Td + dTW(xk,)d

dER -(4) subject to c(xk) + A(xk)Td O,

where g denotes the gradient of f, W denotes the Hessian of the Lagrangian function
L(x, ,) f(x) + ATc(x), and A denotes the n m matrix of constraint gradients

(5) A(x) [Vcl (x),..., Vcm(x)].
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A new iterate is then computed as

(6) xk+l x. + akda,

where ck is a steplength parameter chosen so as to reduce the value of the merit
function. In this study we use the gl merit function

.(x) f(x) +
where # is a penalty parameter; see, for example, Conn [13], Han [24], or Fletcher [17].
We could have used other merit functions, but the essential points we wish to convey
in this article are not dependent upon the particular choice of the merit function.

The solution of the quadratic program (3)-(4) can be written in a simple form
if we choose a suitable basis of Rn to represent the search direction dk. For this
purpose, we introduce a nonsingular matrix of dimension n, which we write as

(8)

where Yk E Rnm and Zk Rn(n-m), and we assume that

(9) dZk O.

(From now on we abbreviate A(xk) as Ak, 9(x) as 9k, etc.) Thus Zk is a basis for
the tangent space of the constraints. We can now express dk, the solution to (3)-(4),

(10) dk YkP, + ZkPz,

for some vectors Pv e Rm and pz Rn-too Due to (9) the linear constraints (4)
become

T(11) c + Ak YPv O.

If we assume that Ak has full column rank, then the nonsingularity of [Y Zk] and (9)
imply that the matrix TAk Y is nonsingular, so that Pv is determined by (11)

(12) p. --[AYk]-ck.
Substituting this in (10), we have

(13) dk -Yk[AzYk]-ck + Zkpz.

Note that

(14) Yk[AYk]-1

is a right inverse of AT and that the first term in (13) represents a particular solution
of the linear equations (4).

We have thus reduced the size of the SQP subproblem, which can now be expressed
exclusively in terms of the variables Pz. Indeed, substituting (10) into (3), considering
Ypv as constant, and ignoring constant terms, we obtain the unconstrained quadratic
problem

(15) rain 1_ Tt,TT(Z[gk + Z[WkYkpv)Tpz + -pz ,z, WkZk)pz.
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If we assume that Z[WkZk is positive definite, the solution of (15) is

(16) Pz --(Z’[WkZk)-l[Z’gk + Z[WkYkP.].

This determines the search direction of the SQP method.
We are particularly interested in the class of problems in which the number of

variables n is large, but n- m is small. In this case it is practical to approximate
Z[WkZk using a variable metric formula such as Broyden-Fletcher, Goldfarb, Shan-
non (BFGS). On the other hand, the matrix Z[WkYk, of dimension (n- m) m may
be too expensive to compute directly when m is large. For this reason several authors
simply ignore the "cross term" Z[WkYkpy in (16) and compute only an approxi-
mation to the reduced Hessian Z’[WZt:; see Coleman and Corm [11], Nocedal and
Overton [26], and Xie [29]. This approach is quite adequate when the basis matrices

Yk and Zk in (8) are chosen to be orthonormal (Gurwitz and Overton [23]).
For large problems, however, computing orthogonal bases can be expensive, and

it is more efficient to obtain Y and Zk by simple elimination of variables (cf. Fletcher
[17]). Unfortunately, in this case ignoring the cross term Z[WkYkp, can make the
algorithm inefficient, as is illustrated by an example given in a companion paper
(Biegler, Nocedal, and Schmid [1]). The central point is that the range space com-
ponent YkP. may be very large, and ignoring the contribution from the cross term in
(16) can result in a poor step.

Therefore, here we suggest ways of approximating the cross term zTkwkYkPv by
a vector wk,

without computing the matrix Z[WkYk. We consider two approaches for calculating
wk; the first involves an approximation to the matrix [zTwkYk] using Broyden’s
update, and the second generates wk using finite differences. We will show that the
rate of convergence of the new algorithm is 1-step Q-superlinear, as opposed to the
2-step superlinear rate for methods that ignore the cross term (Byrd [3] and Yuan
[30]). The null space step (16) of our algorithm is given by

(8) -1 [z g + w],

where 0 < Ck < 1 is a damping factor to be discussed later.
To describe our first strategy for computing the vector w, we consider a quasi-

Newton method i/ which the rectangular matrix TZ W is approximated by a matrix

Sk, using Broyden’s method. We then obtain wk by multiplying this matrix by Yp.,
that is,

wk SkY.p..

How should Sk be updated? Since W+I V2xL(x+, +.), we have that

(19) Z[Wk+(x+ xk) ,. Z[[VxL(x+, A+I) VxL(x, Ak+)],

when xk+l is close to xk. We use this relation to establish the following secant
equation: we demand that Sk+ satisfy

(20) S+(xk+ x) Z[[VL(xk+, ,Xk+) VL(xk,)+.)].
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One point in this derivation requires clarification. In the left-hand side of (19) we
have Z[Wk+I, and not ZkTw1wk_t_l We could have used Zk+l in (19), avoiding an
inconsistency of indices, but this is not necessary since we will show that using Zk
instead of Zk+l in (20) results in algorithms with all the desirable properties. This
fact will not be surprising to readers familiar with the analysis of SQP methods; see,
for example, Coleman and Conn [11] or Nocedal and Overton [26]. In addition, using
Zk allows updating of Sk+ and Bk+l prior to creating Z}+ at the new point.

Let us now consider how to approximate the reduced Hessian matrix ZWkZk

Using (6) and (10)in (20), we obtain

[S}+Zk]pz -cS+(Y}p) / zT [vxL(xk+ Ak+l) VxL(xk, Ak+l)].

Since Sk+l approximates ZWk, this suggests the following secant equation for.Bk+l,
the quasi-Newton approximation to the reduced Hessian ZkTWkzk"

(21) B}+sk Yk,

where Sk is defined by

8k Okpz

and Yk by

(22) Yk Z[[VxL(xk+I,Ak+I) VxL(xk, Ak+)] k,

with

(23) k CkSk+ (YkP).

We will update Bk by the BFGS formula (cf. Fletcher [17])
T TBksksk Bk YkYk(24) Bk+l Bk-

8kTBksk y[sk’

provided T
Sk Yk is sufficiently positive.

We highlight a subtle but important point. We have defined two correction terms,
Wk and }. Both are approximations to the cross term (zTWY)p. The first term,
wk, which is needed to define the null-space step (18) and thus the new iterate

xk+ makes use of the matrix S. The second term, , which is used in (22) to
define the BFGS update of Bk, is computed by using the new Broyden matrix Sk+
and takes into account the steplength k. We see below that it is useful to incorporate
the most recent information in k. Note that this requires the Broyden update to be
applied before the vector Yk for the BFGS update can be calculated from (22).

The Lagrange multiplier estimates Ak needed in the definition (22) of Yk are
defined by

(25)

This formula is motivated by the fact that, at a solution x, of (1)-(2), we have
[A, Y,] is a right inverse of A,T,-g, A,A, and since Y, T -1

A, -[y,TA,]-y,Tg,.
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Using the same right inverse (14) in the definitions of p. and Ak allows us a convenient
simplification in the formulae presented in the following sections. We stress, however,
that other Lagrange multiplier estimates can be used and that the best choice in
practice might be the one that involves the least computation or storage.

We can now outline the sequential quadratic programming method analyzed in
this paper.
ALGORITHM I

1. Choose constants r] E (0, 1/2) and , with 0 < < T < 1. Set k 1, and
choose a starting point xl and an (n m) (n- m) symmetric and positive
definite starting matrix B1.

2. Evaluate fk, gk, ck, and Ak, and compute Yk and Zk.
3. Compute p by solving the system

(26) T (range space step)(Ak Yk)Pv --ck

4. Compute an approximation wk to (Z[WkYk)p.
5. Choose the damping parameter Ck E (0, 1] and compute Pz from

T(27) Bkpz -[Zk gk -t-kwk]. (null space step)

Define the search direction by

(28) dk Ykp, + Zkpz.

6. Set ck 1, and choose the weight #k of the merit function (7).
7. Test the line search condition

(29) (xk + ckdk) <_ (xk) / ?kD,(Xk; dk),

whereD(xk;dk) is the directional derivative of the merit function in the
direction dk.

8. If (29) is not satisfied, choose a new k ITChy, 7’Ck] and go to (7); otherwise
set

(30) x+ xk + (dk.

9. Evaluate fc+,gk+j.,ck+, and Ak+, and compute Y+I and Z+I.
10. Compute the Lagrange multiplier estimate

(31) A+1 [ylA+].- TYc+tg+t.

Define k (as discussed in 3), and compute

(32) sk aPz

and

(33) yk, Z’[]xL(xk+l, Ak.+) V,L(x,,k+)] .
If the update criterion (discussed in 3.3) is satisfied, compute B+ by the
BFGS formula (24); else set Bk+ Bk.

11. Set k := k + 1, and go to (3).
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The algorithm has been left in a very general form, but in the next sections we
discuss all its aspects in detail. In 2 we consider the choice of the basis matrices

Yk and Zk. In 3 we describe the calculation of the correction terms wk and k,
the conditions under which BFGS updating takes place, the choice of the damping
parameter Ck, and the procedure for updating the weight ttk in the merit function. In
4 and 5 we .analyze of the local behavior of the algorithm and show that the rate
of convergence is at least R-linear. In 6 we present a superlinear convergence result,
and some final remarks in 7 conclude the paper.

We now make a few comments about our notation. Throughout the paper, the
vectors p and Pz are computed at xk and could be denoted by p() and pz(), but
we normally omit the superscript for simplicity. The symbol I1" II denotes the 12 vector
norm or the corresponding induced matrix norm. When using the 11 or l norms we
indicate it explicitly by writing I1" II1 or I1" I1. A solution of problem (1) is denoted
by x,, and we deride

(34) e x x, and a max{llekll, lick+ill}.

Here, and for the rest of the paper, VL(x, A) indicates the gradient of the Lagrangian
with respect to x only.

2. The basis matrices. As long as Zk spans the null space of AkT, and [Yk Zk]
is nonsingular, the choice of Yk and Zk is arbitrary. However, from the viewpoint of
numerical stability and robustness of the algorithm, it is desirable to define Yk and
Zk to be orthonormal, that is,

Z(x) z(x)
Y(x)Ty(x) I,,
V(x) Z(x) =o.

One way of obtaining these matrices is by forming the QR factorization of A. For large
problems, however, computing this QR factorization is often too expensive. Therefore
many researchers, including Gabay [18], Gilbert [20], Fletcher [17], Murray and Prieto
[25], and Xie [30], consider other, nonorthogonal choices of Y and Z. For example, if
we partition x into m basic or dependent variables (which without loss of generality
are assumed to be the first m variables) and n- m nonbasic or control variables, we
induce the partition

(35) A(x)T [C(x) N(x)],

where the m m basis matrix C(x) is assumed to be nonsingular. We now define
Z(x) and Y(x) to be

(36} Z(x)= [ -C(x)-lN(x) ] Y(x)= I I ]I 0

When A(x) is large and sparse, a sparse LU decomposition of C(x) can often be
computed efficiently, and this approach will be considerably less expensive than the
QR factorization of A. Note that from the assumed nonsingularity of C(x) both
Y(x) and Z(x) vary smoothly with x, provided the same partition of the variables
is maintained. In our implementation of the new algorithm (Biegler, Nocedal, and
Schmid [1]) we choose Yk and Zk by (36).
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There is a price to pay for using nonorthogonal bases. If the matrix C is ill condi-
tioned (and this can be difficult to detect), the step computation may be inaccurate.
Moreover, even if the basis is well conditioned, the range space step Yt:pv can be
large, and ignoring the cross term can cause serious difficulties. This phenomenon is
illustrated in a two-dimensional example given by Biegler, Nocedal, and Schmid [1].
It is shown in that example that if the cross term ZWkYkpy is ignored, the ratio

I[Xk + dk]l/[lXk[[ can be arbitrarily large, even close to the solution. It is also shown
that these inefficiencies disappear if the cross term is approximated as suggested in
the following sections.

In the rest of the paper we allow much freedom in the choice of the basis matrices.
They can be given by (36), can be orthonormal, or can be chosen in other ways. The
only restrictions we impose are that AZk 0 is satisfied, that the n n matrix

[Yk Zk] is nonsingular and well conditioned, and that this matrix varies smoothly in
a neighborhood of the solution.

3. Further details of the algorithm. In this section we consider how to cal-
culate approximations wk and k to T(Zk WkYt:)py to be used in the determination
of the search direction pz and in updating B, respectively. We also discuss when to
skip the BFGS update of the reduced Hessian approximation, as well as the selection
of the damping factor Ck and the penalty parameter #.

To calculate approximations to (zTWY)p,, we propose two approaches. First, we
consider a finite difference approximation to zTwk along the direction YkP,. While
this approach requires additional evaluations of reduced gradients at each iteration, it
gives rise to a very good step. The second, more economical approach defines wk and
wk in terms of a Broyden approximation to TZk Wt:, as discussed in 1, and requires
no additional function or gradient evaluations. Our algorithm will normally use this
second approach, but as we later see, it is sometimes necessary to use finite differences.

3.1. Calculating wk and through finite differences. We first calculate
the range space step pv at xk through (26). Next we compute the reduced gradient
of the Lagrangian at x + YkP, and define

(37) wk Z’[[VL(xk -t- Yt:p,, )k) VL(xt:, Ak)].

After the step to the new iterate xk+l has been taken, we define

(38) Z[[VL(x + okYp,,,k+)- VL(x, +)],

which requires a new evaluation of gradients if a 1. Thus, up to three evaluations
of the objective function gradient may be required at each iteration.

We note that this finite-difference approach is very similar to the algorithm of
Coleman and Corm [10], [11]. Starting at a point z, the Coleman-Corm algorithm
(with steplength ak 1) is given by

(39) Zpz -Z(zk)B- Z(zk)Tg(zk),

(40) YkP, --Y(zk)[A(zk)Ty(zk)]-c(zk + ZkPz),

(41) Zk+l Zk + ZkPz - YkP,.
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Let us now consider Algorithm I, and to better illustrate its similarity with the Cole-
man and Conn method, let us assume that instead of (37), wk is defined by

Wk Z(xk + Ykpy)Tg(xk + YkPv) Z(xk)Tg(xk),

which differs from (37) by terms of order O([[pyII ). Then Algorithm I with ak 1
and Ck 1 is given by

(42) YkPY -Y(xk [A(x)TY(x ]-1c(xk ),

(43)
Z,p +

-Z(x )B- l[Z(xk + Ykp )Tg(xk + YkPv)],

(44) Xk+l xk + YkPY + ZkPz.

The similarity between the two approaches is apparent in Fig. 1, especially if we
consider the intermediate points in the Coleman-Conn iteration to be the starting
and final points, respectively.

z z + Zp Xk

x + Yp x+

Coleman-Conn step The step of Algorithm I

FIG. 1. Comparison of Coleman-Conn method and Algorithm I.

In the Coleman-Conn algorithm, the approximation Bk to reduced Hessian Z[WkZ
is obtained by moving along the null space direction ZkPz, and making a new evalua-
tion of the function and constraint gradients. To be more precise, Coleman and Conn
define

Yk Z[[VL(xk + ZkPz, )k) VL(xk,

and sk Z[[xk+l --Xk] and apply a quasi-Newton formula to update Ba. Algorithm
I, using finite differences, amounts essentially to the same thing. To see this, note
that if Formula (38) is used in (33), then

Yk Z[[VL(xk+I, Ak+I) VL(xk -t-

which represents a difference in reduced gradients of the Lagrangian along the null
space direction Zkpz.

Byrd [4] and Gilbert [19] showed that the sequence {zk + Zkpz} (but not the se-

quence {zk }) generated by the Coleman-Conn method converges 1-step Q-superlinearly.
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If Algorithm I always computed the correction terms wk and k byfinite differences,
its cost and convergence behavior would be similar to those of the Coleman-Conn
method (except when Ck 1, which requires one extra gradient evaluation for Algo-
rithm I). However, we are often able to avoid the use of finite differences and instead
use the more economical approach discussed next.

3.2. Using Broyden’s method to compute wk and k. We can approximate
the rectangular mat’rix Z[Wk by a matrix Sk updated by Broyden’s method, and then
compute wk and by post-multiplying this matrix by YkP, or by a multiple of this
vector. As discussed in 1, it is reasonable to impose the secant equation (20) on this
Broyden approximation, which can therefore be updated by the formula (cf. Fletcher
[])

(45) +

where

(46) zTk [VL(xk+,Ak+) VL(xk,

and

(47) Xk+ x}.

We now define

(48) wk SkYkP. and k oSk+Ykp..

It should be noted that this approach requires the storage of the (n- m) n
matrix Sk, in addition to the reduced Hessian approximation, Bk. For problems
where n- m is small, this expense is far less than the storage of a full Hessian
approximation to Wk. On the other hand, if n- m is not very small, it may be
preferable to use a limited-memory implementation of Broyden’s method. Here the
matrices S are represented implicitly, using, for example, the compact representation
described in Byrd, Nocedal, and Schnabel [7]. The advantage of the limited memory
implementation is that it requires the storage of only a few n-vectors to represent S.

Since there is no guarantee that the Broyden approximations Sk will remain
bounded, we need to safeguard them. At the beginning of the algorithm we choose a
positive constant F and define

Fw if I1  11 <- "llP:ll,i IIp.ll,
(49) wk "= rllPll/Wk I111 otherwise.

The correction k will be safeguarded in a different way. We choose a sequence of
positive numbers (’k} such that ]=l/k < c, and we set

if II <(50) k :----
k llPYII otherwise.1111

As the iterates converge to the solution, pv --. 0, so that from (48) and from the
boundedness of Yk we see that these safeguards allow the Broyden updates Sk to
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become unbounded, but in a controlled manner. We show in 4 and 5 that with the
safeguards (49) and (50) Algorithm I is locally and R-linearly convergent and that
this implies that the Broyden updates Sk do, in fact, remain bounded, so that the
safeguards become inactive asymptotically.

Our Broyden approximation to the correction terms wk and k was motivated by
recent work of Gurwitz [22]. She approximates Z[WkZk by the BFGS formula with

Z[[X +l

Yk Z[[VL(xk+I, )k+l) VL(xk, k+l)]

and approximates Z[WY by a matrix Dk using Broyden’s formula (45) with

k Z[[VL(xt:+I, )t:+l) VL(xt:, At:+1)] Bapz.

Since the updates may not always be defined, Gurwitz proposes to sometimes skip the
update of Bt: or Dt:. She shows 1-step Q-superlinear convergence if and only if one of
the updates is taken at each iteration, but this cannot be guaranteed. The analysis
of this paper shows that it is preferable to update an approximation to Z[Wt:, as in
Algorithm I, instead of an approximation to Z[WkYt:, as proposed by Gurwitz, since
our approach leads to 1-step superlinear convergence in all cases.

A related method was derived by Coleman and Fenyes [12]. Their lower parti-
tion BFGS formula (LPB) simultaneously updates approximations to Z[WkZt: and
Z[Wt:Yt:, by means of a new variational problem. The resulting updating formula
requires the solution of a cubic equation, and its roots can correspond to cases where
updates should be avoided (e.g. Tst: yt: <_ 0). The drawback of this approach is that
choosing the correct root is not always easy.

An earlier proposal by Tagliaferro [28] consists of approximating the matrices

Z[Wt:Zt: and TZt: WkYt: using the Powell-symmetric-Broyden (PSB) update formula
and Broyden’s method, respectively. One disadvantage of this approach is that the
matrices generated by this updating procedure may become very ill conditioned.

3.3. Update criterion. It is well known that the BFGS update (24) is well
defined only if the curvature condition Tst: yt: > 0 is satisfied. This condition can always
be enforced in the unconstrained case by performing an appropriate line search; see,
for example, Fletcher [17]. When constraints are present, however, the curvature
condition Tst: yt: > 0 can be difficult to obtain, even near the solution.

To show this, we first note from (33), (28), and (32) and from the mean value
theorem that

o
=_

(51)

where we have defined

f0 2VxxL(xk + Takdk, k-l-1)dT"
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Thus

(53) 8k Yk S 8k

Near the solution, the first term on the right-hand side will be positive, since
Z[ITVkZk can be assumed positive definite. Nevertheless, the last two terms are of

Tuncertain sign and can make sk Yk negative. Several reduced Hessian methods in the
literature set k equal to zero for all k, and update Bk only if py is small enough
compared with sk that the first term in the right-hand side of (53) dominates the
second term (see Nocedal and Overton [26], Gurwitz and Overton [23], and Xie [29]).

Skipping the BFGS update may appea to be a crude heuristic, but we argue that
it gives rise to a sound algorithm. First of all, the last two terms in (53) normally
converge to zero faster than the first term, so that the right-hand side of (53) will
often be positive near the solution and BFGS updating will take place frequently.
Furthermore, if the right-hand side of (53) is negative, the range space step YkPY is
relatively large, resulting in sufficient progress towards the solution. These arguments
will be made more precise in 5.

We therefore opt for skipping the BFGS update, when necessary, and we now
present a strategy for deciding when to do so. Recall that ak, defined by (34), con-
verges to zero if the iterates converge to x..

Update Criterion I. Choose a constant d > 0 and a sequence of positive
numbers {/k} such that E=lk < c (this is the same sequence {/k} that was used
in (50)).

TIf k is computed by Broyden’s method, and if both sk Yk > 0 and

(54) IlPvlI-< 7llPzll
hold at iteration k, then update the matrix Bk by means of the BFGS formula (24)
with sk and yk given by (32) and (33). Otherwise, set

If k is computed by finite differences, and if both syk > 0 and

(55)

hold at iteration k, then update the matrix Bk by means of the BFGS formula (24)
with Sk and Yk given by (32) and (33). Otherwise, set Bk+l Bk.

Note that 6k requires knowledge of the solution vector x. and is therefore not
computable. However, later we see that ak can be replaced by any quantity that is of
the same order as the error ek, for example, the optimality conditions (llZ[gkll + Ilckll).
Nevertheless, for convenience we will leave ak in (55).

We now closely consider the properties of the BFGS matrices Bk when Update
Criterion I is used..Let us define

sBksk(56) cos 0k
ilSk IIBksk I1’

which, as we will see, is a measure of the goodness of the null space step Zkpz. We
begin by restating a theorem from Byrd and Nocedal [5] regarding the behavior of
cos Ok when the matrix Bk is updated by the BFGS formula.

THEOREM 3.1. Let {Bk} be generated by the BFGS formula (24) where, for all
k >_ l, sk O and

T
> m > 0,

8k 8k
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(58) T8
<_M.

Yk k

Then, there exist constants 1, 2,3 > 0 such that, for any k >_ 1, the relations

(59) cos Oj 1,

(60) /2 _< IIBjsjll
_
3

hold for at least [1/2k values of j e [1, k].
This theorem refers to the iterates for which BFGS updating takes place; but

since, for the other iterates, B+ B, the theorem characterizes the whole sequence
of matrices (Bk}. Theorem 3.1 states that, if Tst: Yk is always sufficiently positive, in
the sense that conditions (57) and (58) are satisfied, then at least half of the iterates
at which updating takes place are such that cos Oy is bounded away from zero and
Bjsi O(llsill). Since it will be useful to refer easily to these iterates, we make the
following definition.

DEFINITION 3.2. We define J to be the set of iterates for which (59) and (60)
hold. We call J the set of "good iterates" and define Jk J

Note that if the matrices Bk are updated only a finite number of times, their
condition number is bounded, and (59)-(60) are satisfied for all k. Thus in this case
all iterates are good iterates.

We now study the case when BFGS updating takes place an infinite number of
times. Let us assume that all functions under consideration are smooth and bounded.
If at a solution point x, the reduced Hessian zT,w,z, is positive definite, then for
all xk in a neighborhood of x, the smallest eigenvalue of ZITVkZk is bounded away
from zero (l is defined in (52)). We now show that in such a neighborhood Update
Criterion I implies (57)-(58).

Let us first consider the case when k is computed by Broyden’s method. Using
(53), (54), and (50), and since "Yk converges to zero, we have

T

(61) >_ mll 2,

for some positive constants C, m. Also, from (51), (54), and (50) we hve that

Ily ll < O(ll  ll) + o(7 1ts 11) +
(62) -< O(llkll).

We thus see from (61)-(62) that there is a constant M such that for all k for which
updating takes place,

<_M,T8Yk k

which together with (61) shows that (57)-(58) hold when Broyden’s method is used.
If k is computed by the finite-difference formula (38), we see from (33) and the

mean value theorem that there is a matrix lfidk such that

Yk Z[[VL(xk+,)+)- VL(x +
=_ z[w Z s .
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Reasoning as before we see that (61) and (62) also hold in this case, and that (57)-(58)
are satisfied in the case when finite differences are used. We have therefore established
the following result.

LEMMA 3.3. In a neighborhood of a solution point x., and whenever BFGS
Tupdating takes plac’e as stipulated by Update Criterion I, sk Yk is sufficiently positive

in the sense that (57)-(58) hold.

3.4. Choosing #k and Ck. We will now see that by appropriately choosing the
penalty parameter #k and the damping parameter Ck for Wk, the search direction gen-
erated by Algorithm I is always a descent direction for the merit function. Moreover,
for the good iterates J, it is a direction of strong descent.

Since dk satisfies the linearized constraint (11), it is easy to show (see Eq. (2.24)
of Byrd and Nocedal [6]) that the directional derivative of the/71 merit function in
the direction dk is given by

(63)

The fact that the same right inverse of A is used in (26) and (31) implies that

(64) Tg Yp c.
Recalling the decomposition (28) and using (64), we obtain

D(xk da T

(65) T(Zk gk + Ckwk)Tpz Ck T
WkPz --,kllckll + Ck.

Now from (32) and (27) we have that

(66) BkSk ak
TZ g + w).

Substituting this in (56), we obtain

T--(Zk gk + Ckwk)Tpz
(aT) cos0 IIZ/a +1 Ilpzll"

TRecalling the inequality Ak ck llAklllckl, and using (67)in (65), we obtain, for
all k,

(68) D,(xk;dk) T
Wrz a +11 llpzll cos0 z (, I111)1111.

Note also from (66) and (32) that

I111 Ilpzll

We now concentrate on the good iterates J, as given in Definition 3.2. If j J, we
have from (69) and (60) that

1 1 zz(70)

Using this and (59) in (68), we obtain, for j e J,

1
zj gy + Cjwjll cos0y ; j p (y -IIyll)llyll
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where we have dropped the nonpositive term -y cos 0j Ilwy 2/3. Since we can assume
that 3 > 1 (it is defined as an upper bound in (60)), we have

1 T [.2 +D(x; d) <_ T (j)]
It is now clear that if

(71)
for some constant p, and if

(72) #y >_ IIAyll + 2p,

then for all j E J,

1 T 2(73) D. (xj dj

This means that if (71) and (72) hold, then for the good iterates j E J, the search
direction dj is a strong direction of descent for the gl merit function in the sense that
the first-order reduction is proportional to the Karush-Kuhn-Tucker (KKT) error.

We will choose Ck so that (71) holds for all iterations. To show how to do this,
we note from (27) that

T
Wk,Pz -BIzk gk kB

so that, for j k, (71) can be written as

74)  [2cose Ig ’z   l-l- w[B TZk g + kwB-[Wk] <_ plIckl[1.

Clearly this condition is satisfied for a sufficiently small and positive value of k.
Specifically, at the beginning of the algorithm we choose a constant p > 0 and, at
every iteration k, define

(75) k min{ 1, k },

where k is the largest value that satisfies (74) as an equality.
The penalty prameter #k must satisfy (72), so we define it at every iteration of

the algorithm by

(76) #k []Ak[[ + 3p otherwise.

The damping factor Ck and the updating formula for the penalty parameter #
have been defined so as to give strong descent for the good iterates J. We now show
that they ensure that the search direction is also a direction of descent (but not
necessarily of strong descent) for the other iterates, k J. Since (71) holds for all
iterations by our choice of (k, we have in particular

T-kwkPz <_ PllCkIl.
Using this and (76) in (68), we have

(77) De,k(xa;d) <_ T + II zll cose 
The directional derivative is thus nonpositive. Furthermore, since w 0 whenever
ck 0 (regardless of whether wk is obtained by finite differences or through Broyden’s
method), it is easy to show that this directional derivative can be zero only at a

stationary point of problem (1)-(2).
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3.5. The algorithm. We can now give a complete description of the algorithm
that incorporates all the ideas discussed so far and that specifies the only remaining
question, namely, when to apply finite differences and when to use Broyden’s method
to approximate the cross term. The idea is to consider the relative sizes of p. and pz.
Update Criterion I generates the three regions R1, R2, and R3 illustrated in Fig. 2.
The algorithm starts by computing wk through Broyden’s method and by calculating
p and pz. If the search direction is in R1 or R3, we proceed. Otherwise we recompute
wk by finite differences, use this value to recompute pz, and proceed. The reason for
applying finite differences in this fashion is that in the middle region R2 Broyden’s
method is not good enough, nor is the convergence sufficiently tangential, to give
a superlinear step. Therefore we must resort to finite differences to obtain a good
estimate of wk. The motivation behind this strategy will become clearer when we
study the rate of convergence of the algorithm in 6.

R2

FIG. 2. Three regions generated by Update Criterion I.

Note from Updating Criterion I that the BFGS update of Bk is skipped if the
search direction is in R3. A precise description of the algorithm follows.

ALGORITHM II
1. Choose constants v] E (0, 1/2), p > 0 and T,T’ with 0 < T < T’ < 1, and

positive constants F and fd for conditions (49) and (55), respectively. For
conditions (50) and (54), select a summable sequence of positive numbers
{}. Set k :- 1, and choose a starting point xl, an initial value #1 for the
penalty parameter, an (n- m) (n- m) symmetric and positive definite
starting matrix B, and an (n- m) n starting matrix S.

2. Evaluate fk, gk, Ck, and Ak, and compute Yk and Z.
3. Set findiff false and compute pv by solving the system

(78) (ATkyk)p, --ck. (range space step)

4. Calculate wk using Broyden’s method, from (48) and (49).
5. Choose the damping parameter Ck from (74) and (75), and compute pz from

T(79) Bkpz -[Z gk + wk]. (null space step)
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6. If (55) is satisfied and (54) is not satisfied, set findiff true and recompute
wk from (37). (In practice we replace ak by IIZ[gkll-t-IIcll in (55).)

7. If findiff true, use this new value of w} to choose the damping parameter
Ck from (74) and (75), and recompute pz from (79).

8. Define the search direction by

(80) dk Ykpv + Zkpz,

and set k 1.
9. Test the line search condition

(81) Ct, (xk + ad}) <_ dpt, (xk) + aDdpt, (xk; dk).

10. If (81) is not satisfied, choose a new ak E [TOlk,TtOlk] and go to step 9;
otherwise set

(82) xk+l Xk + ckdk.

11. Evaluate fk+i,gk+,ck+l,Ak+l, and compute Yk+i and Zk+.
12. Compute the Lagrange multiplier estimate

(83) k+ -[YlA+1-1YkT+lgk+l,

and update #k so as to satisfy (76).
13. Update Sk+ using (45) to (47). If findiff false, calculate k by Broyden’s

method through (48) and (50); otherwise calculate k by (38).
14. If (s’yk

_
0) or if (findiff--true and (55) is not satisfied) or if (findiff--false

and (54) is not satisfied), set B+ B. Else, compute

(84) s kPz,

(85) Yk Z[[VL(x+,A+i) VL(xk,+)] k,

and compute Bk+l by the BFGS formula (24).
15. Set k := k + 1, and go to 3.

We mentioned in 3.1 that, when using finite differences, there are various ways of
defining w and k, but for concreteness we now assume in steps 6 and 13 that they
are computed by (37) and (38), respectively. We should also point out that the curves
in Fig. 2 may intersect, creating a fourth region, and in practice we should stipulate
a new set of conditions in this region. We discuss these conditions in another paper
that considers the implementation of the algorithm (Biegler, Nocedal, and Schmid
[1])o

In the next sections we present several convergence results for Algorithm II. The
analysis, which does not assume that the BFGS matrices Bk or the Broyden matrices

Sk are bounded, is based on the results of Byrd and Nocedal [6], who have studied
the convergence of the Coleman-Conn updating algorithm. We also make use of some
results of Xie [29], who has analyzed the algorithm proposed by Nocedal and Overton
[26] using nonorthogonal bases Y and Z. The main difference between this paper
and that of Xie stems from our use of the correction terms Wk and k, which are not
employed in his method.
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4. Semilocal behavior of the algorithm. We first show that the merit func-
tion decreases significantly at the good iterates J and that this gives the algorithm
a weak convergence property. To establish the results of this section, we make the
following assumptions.

Assumption 4.1. The sequence {xk} generated by Algorithm II is contained in a
convex set D with the following properties:

(I) The functions f Rn --+ R and c Rn -- Rm and their first and second
derivatives are uniformly bounded in norm over D.

(II) The matrix A(x) has full column rank for all x E D, and there exist constants

o and flo such that

(86) IIY(x)[A(x)Ty(x)]-II <_ "o, IIZ(x)ll <_ o,

for all x E D.
(III) For all k _> 1 for which Bk is updated, (57) and (58) hold.
(IV) The correction term wk is chosen so that there is a constant n > 0 such that

for all k,

(87) I1,,11 <_ ,11akll 1/2.

Note that Condition (I) is rather strong, since it would often be satisfied only if
D is bounded, and it is far from certain that the iterates will remain in a bounded
set. Nevertheless, the convergence result of this section can be combined with the
local analysis of 5 to give a satisfactory semiglobal result. Condition (II) requires
that the basis matrices Y and Z be chosen carefully, and is important to obtain good
behavior in practice. Note that (86) and (78) imply that

(88) IIY,p,,,II

Condition (III) is justified by Lemma 3.1. Condition (III) and Theorem 3.1 ensure
that at least half of the iterates at which BFGS updating takes place are good iterates.

We have left some freedom in the choice ofw since (87) suffices for the analysis of
this section. Relation (87) holds for the finite-difference approach, since (37) implies
that wk O(YkPv) and since Condition (I) ensures that {llcll} is uniformly bounded
(see (121)). Furthermore, the safeguard (49) and (88)immediately imply that (87)is
satisfied when the Broyden approximation is used.

The following result concerns the good iterates J, as given in Definition 3.2.
LEMMA 4.1. If. Assumptions 4.1 hold and if #j # is constant for all sufficiently

large j, then there is a positive constant " such that for all large j J,

(89) O(xj) (xy+) [11 TZ 11 + I111]

Proof. Using (73), we have for all j J

(90) D. (xj; d) <_ b2 [[I Tzj gj + Ilcj II1],
where b2 min(fll/fl3, p). Note that the line search enforces the Armijo condition
(81),

(91) ,j (xj) ,j (xj+l) >_ -ajD,(xj; dy).
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It is then clear from (90) that (89) holds, provided the aj, j E J, can be bounded
from below. Suppose that aj < 1, which means that (91) failed for a steplength &:

(92) Cm (xj + ad) Cm (xj) > vaDm (xj; dj),

where

(93)

(see step 10 of Algorithm II). On the other hand, expanding to second order, we have

(94) Cm(xj + &dj) Cm (xj) < &DCm(xj;dj) + &2bllldjll2

where bl depends on #j. Combining (92) and (94), we have

(95) 07- 1)&DCm (xj; dj) <

Next we show that, for j E J,

(96)

for some constant b3. To do this, we make repeated use of the following elementary
result"

(97) a,b > O = a2 + 2ab + b2<_3a2+3b2.

Using (80), (97), (86), and (88), we have

(gs)

zIIdll II + 11 II IIYP(YJ)II + IIYjP)11

Also by (70), (97), and (87) and noting that I1" < I1" IIx ,we have that for j e J

since j <_ 1. Since Ilcjll is uniformly bounded on D, we see from this relation and
(98) that (96) holds, where

b3 max{9,5’o//7, 3(32o2/22 + "/o sup
xD

Combining (95), (90), and (96), and recalling that r/< 1, we obtain

(99) & > (1 r/)b2
bb3
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This relation and (93) imply that the steplengths cj are bounded away from zero for
all j E J. Since by assumption #j # for all large j, we conclude that (89) holds
with / rib2 min{1, (1 vl)Tb2/(blb3)}. D

It is now easy to show that the penalty parameter settles down and that the set
of iterates is not bounded away from stationary points of the problem.

THEOREM 4.2. If Assumptions 4.1 hold, then the weights {ttk} are constant for
all sufficiently large k and

liminf( T
-oo IIZ gll / IIcll) 0.

Proof. First note that by Assumptiops 4.1 (I)-(II) and (83) that {1111} is
bounded. Therefore, since the procedure (76) increases #k by at least p whenever it
changes the penalty parameter, it follows that there are an index k0 and a value #
such that for all k > k0, #k # >_ IIkll + 2p.

If BFGS updating is performed an infinite number of times, by Assumption 4.1
(III) and Theorem 3.1 there is an infinite set J of good iterates, and by Lemma 4.1
and the fact that the Armijo condition (81) forces Ct,(Xk) to decrease at each iterate,
we have that for k > k0,

k

(o) ,(+) (,(x)
j--ko

jeg[ko,k]

zj gill + Ilcjllx].
jeJ[k0,k]

By Assumption 4.1(I) (x) is bounded below for all x D, so the lt sum is finite,
and thus the term i.nside the square brackets converges to zero. Therefore

(100) lim (11 Tz gll + IIcll)= 0.
j

If BFGS updating is performed a finite number of times, then, as discussed after
Definition 3.1, all iterates are good iterates, and in this ce we obtain the stronger
result

lim ([i T
k---cx

5. Local convergence. In this section we show that if x, is a local minimizer
that satisfies the second-order optimality conditions, and if the penalty parameter #k
is chosen large enough, then x, is a point of attraction for the sequence of iterates (Xk }
generated by Algorithm II. To prove this result, we make the following assumptions.
In what follows, G denotes the reduced Hessian of the Lagrangian function, namely,

(101) G ZTVL(x,)Z.

Assumptions 5.1. The point x, is a local minimizer for problem (1)-(2), at which
the following conditions hold.
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1. The functions f Rn R and c: Rn Rm are twice continuously differ-
entiable in a neighborhood of x,, and their Hessians are Lipschitz continuous in a
neighborhood of x,.

2. The matrix A(x,) has full column rank. This implies that there exists a vector,, E pm such that

VL(x,, A,) g(x,) + A(x,)A, 0.

3. For all q In-m, q 7 O, we have qTG,q > O.
4. There exist constants ’70,/30, and ’7c such that, for all x in a neighborhood of

IIY(x)[A(x)Ty(x)]-II o, IIZ(x)ll o,

lilY(x) Z(x)]-ll < %.

5. Z(x) and A(x) are Lipschitz continuous in a neighborhood of x,. That is, there
exist constants ’7z and ’7 such that

IIX(x)- X(z)ll ,llx- zll,
IIZ(x)- z(z)ll zllx- zll,

for all x, z near x,.

Note that conditions 1, 3, and 5 imply that for all (x,/k) sufficiently near (x,, A,), and
for all q Rn-m

(106) mllqll 2 _< qTG(x,,)q <_ MIIqll,
for some positive constants m, M. We also note that Assumptions 5.1 ensure that the
conditions (57)-(58) required by Theorem 3.1 hold whenever BFGS updating takes
place in a neighborhood of x,, as shown in Lemma 5.1. Therefore Theorem 3.1 can
be applied in the convergence analysis.

The following two lemmas are proved by Xie [29] for very general choices of Y
and Z. His result generalizes Lemmas 4.1 and 4.2 of Byrd and Nocedal [6]; see also
Powell [27].

LEMMA 5.1. If Assumptions 5.1 hold, then for all x sufficiently near x,

(lO7) O’lllX- x, II(x)ll + IIZ(x)Tg(x)ll llx- x.ll,

for some positive constants "71, "72.
This result states that, near x,, the quantities c(x) and Z(x)Tg(x) may be re-

garded as a measure of the error at x. The next lemma states that, for a large enough
weight, the merit function may also be regarded as a measure of the error.

LEMMA 5.2. Suppose that Assumptions 5.1 hold at x,. Then for any # > II;,11o
there exist constants "73 > 0 and "74 > O, such that for all x sufficiently near x,

(108) 3IIx- x,[[ 2 <_ ,(x)- O,(x,) 4 [[[Z(x)Tg(x)l] 2 + [la(x)[[1].
Note that the left inequality in (108) implies that, for a sufficiently large value of

the penalty parameter, the merit function will have a strong local minimizer at x,. We
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now use the descent property of Algorithm II to show convergence of the algorithm.
However, because of the nonconvexity of the problem, the line search could generate a
step that decreases the merit function but that takes us away from the neighborhood
of x,. To rule this out, we make the following assumption.

Assumption 5.2. The line search has the property that, for all large k, ((1
0)xk + 0Xk+l) <_ ,(Xk) for all E [0, 1]. In other words, Xk+l is in the connected
component of the level set {x: ,(x) _< ,(xk)} that contains xk.

There is no practical line search algorithm that can guarantee this condition,
but it is likely to hold close to x,. Assumption 5.2 is made by Byrd, Nocedal, and
Yuan [8] when analyzing the convergence of variable metric methods for unconstrained
problems, as well as by Byrd and Nocedal [6] in the analysis of Coleman-Conn updates
for equality constrained optimization.

LEMMA 5.3. Suppose that the iterates generated by Algorithm II (with a line
search satisfying Assumption 5.2) are contained in a convex region D satisfying As-
sumptions 4.1. If an iterate Xko is suJficiently close to a solution point x, that satisfies
Assumptions 5.1, and if the weight #ko is large enough, then the sequence of iterates
converges to x,.

Proof. By Assumptions 4.1 (I)-(II) and (83) we know that {IIAII} is bounded.
Therefore the procedure (76) ensures that the weights #k are constant, say # #
for all large k. Moreover, if an iterate gets sufficiently close to x,, we know by (76)
and by the continuity of A that # > IIA, II. For such value of #, Lemma 5.2 implies
that the merit function has a strict local minimizer at x,. Now suppose that once the
penalty parameter has settled, and for a given e > 0, there is an iterate Xko such that

.40
where "0 is such that I1" II1 -< 011" II. Assumption 5.2 shows that for any k >_ k0, xk
is in the connected component of the level set of Xko that contains Xko, and we can
assume that e is small enough that Lemmas 5.1 and 5.2 hold in this level set. Thus
since dp(xk) <_ ,(xko) for k >_ k0, and since we can assume that IIZkTogoll _< 1, we
have from Lemmas 5.1 and 5.2, for any k _> k0

< % (,(x 0) ,(x,))

[llz + I1 ]

Z og oll

This implies that the whole sequence of iterates remains in a neighborhood of radius
e of x,. If e is small enough, we conclude by (108), by the monotonicity of
and by Theorem 4.2 that the iterates converge to x,.
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The assumptions of this lemma, which is modeled after a result in Xie [29], are
restrictive especially the assumption on the penalty parameter. One can relax
these assumptions and obtain a stronger result, such as Theorem 4.3 in Byrd and
Nocedal [6], but the proof would be more complex and is not particularly relevant to
Algorithm II since it is based only on the properties of the merit function. Therefore,
instead of further analyzing the local convergence properties of the new algorithm, we
will study its rate of convergence.

5.1. R-linear convergence. For the rest of the paper we assume that the line
search strategy satisfies Assumption 5.2. We also assume that the iterates generated
by Algorithm II converge to a point x, at which Assumptions 5.1 hold, which implies
that for all large k, #k P > ,. The analysis that follows depends on how often
BFGS updating is applied. To make this concept precise, we define U to be the set
of iterates at which BFGS updating takes place,

(109) U {k" Bk+ BFGS(Bk, Sk, Yk)},
and let

(110) Uk U {1,2,...,k}.
The number of elemems in Uk will be denoted by Uk.

THEOREM 5.4. Suppose that the iterates {x} generated by Algorithm II converge
to a point x, that atisfies Assumptions 5.1. Then for any k U and any j k

for some constants C > 0 and 0 r < 1.

Proof. Using (89) and (108), we have for e J,

(112)

Let us define r (1 -7,/74)/4. Then for J

(113)
We know that the merit function decreases at each step, and by (108) we have, for
jkandkU,

We continue in this fhion, bounding the right-hand side by terms involving earlier
iterates, but using now (113) for all good iterates. Since by Theorem 3.1 at let half

weof the iterates at which updating tkes place are good iterates (i.e., ]Jk[
have

_1

_1

N [2 5 (,(Xl) .(x,))lrTM
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This result implies that if {IUkl/k} is bounded away from zero, then Algorithm
II is R-linearly convergent. However, BFGS updating could take place only a finite
number of times, in which case this ratio would converge to zero. It is also possible for
BFGS updating to take place an infinite number of times, but every time less often,
in such a way that IUkl/k -- O. We therefore need to examine the iteration more
closely.

We make use of the matrix function defined by

(114) (B) tr(B) -ln(det(B)),

where tr denotes the trace, and det the determinant. It can be shown that

(115) In cond(B)

for any positive definite matrix B (Byrd and Nocedal [5]). We also make use of the
weighted quantities

y-l/2(116) k GI/2yk, Sk .. Sk,

(117) /k G{I/2BkG{1/2,

(118)
8k~Tkkcos II’

and

(119)

One can show (see Eq. (3.22) of Byrd and Nocedal [51) that if Bk is updated by
the BFGS formula, then

(120)

This expression characterizes the behavior of the BFGS matrices Bk and is crucial
to the analysis of this section. Before we can make use of this relation, however, we
need to consider the accuracy of the correction terms. We begin by showing that
when finite differences are used to estimate Wk and k, these are accurate to second
order.

LEMMA 5.5. If at the iterate xk, the corrections Wk and k are computed by the

finite-difference formulae (37)-(38), and if xk is sufficiently close to a solution point
x. that satisfies Assumptions 5.1, then

(121) wk O(llpyll),

(122)
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and

(123)

Proof. Recalling that VL(x, A) g(x) + A(x)A, we have from (37) that

wk Z[[VL(xk + YkP., Ak) VL(xk,
Z[[VL(x + Ykpv, A.) VL(xk, A.)]
+Z[[(A(x + Ykpv) Ak)(Ak A.)]

o

+z2[(( + gpl l(a
(4 z2gp. + z2[(( +gp )(a a,ll.

Let us sume that z is in the neighborhood of z, where (102)-(10g) hold. Then

I ,1 o(llell) 0(), where k is defined by (a4). Therefore the lt term
in (124) is O(IIPII), which proves (121). Also, a simple computation shows that

Using these facts in (124) yields the desired result (122). To prove (12a), we note only
that N 1 and re,on in the same manner.

Next we show that the condition number of the matrices Bk is bounded and that,
in the limit, at the iterates U at which BGS updating takes place, the matrices Bk
are accurate approximations of the reduced Hessian of the Lagrangian.
TOaM g.6. Sppose that the iterates {zk} 9eeerated b Algorithm II converge

to sol,floe point z, that sti4es Assumptions .1. Thee
bounded, d for all k U

Pro@ We only consider iterates k for which BFGS updating of Bk takes place.
We have from (8g), (82), (80), (g2), and (84)

z2[(z+, +1) (z,+1)1

z. w.)gp + (z. .gp ).

Since Nk can be computed by Broyden’s method or by finite differences, we need
consider these two cases separately.

Part I. Let us first sume that Nk is determined by Broyden’s method. A simple
computation shows that IIz zw, o(), and from (g0) we have that

O(llpll/). Using this and Assumptions g.1 in (127), we have

T
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Recalling (116) and noting that -T- T
8Yk st: Yk k we have

Tk k sTk (z[ikZk G,)sk + ]]k]2 + (ak + 1 + 1/7)O(a]]pv]])]]k,

since ]]gk] and ]Sk]] are of the same order. Therefore

Yk k _1+ sk +(a+l+l/yk)O ]]aPv]]

(129)

Similarly from (128) nd (116) we have

+ 2(k +
+ ( +

and thus

iikll 2
< 1 + O(ak) + (ak + 1 + 1/k)(1 + ak)O

(130) + (ak + 1 + 1/k)20 (]akPv]]2)
At this point we invoke the update criterion and note from (54) that, if BFGS

updating of Bk takes place at iteration k, then ]akPv]] 7]]sk], where {Tk} is
summable. Using this, the sumption that ak converges to zero, and (129), we see
that for large k

Yk 8k(11) ]] + o( + z),

and using (130)

Therefore

+ o( + ,).

(132) 11112 IIkl12 I]kll2
1 + O(ak + 3’k).~T ~T

We now consider (+) given by (120). A simple expansion shows that for
large k, ln(1 + O(ak + k)) O(ak + k). Using this, (131), and (132), we have

(133) (k+) (k) + O(ak + k) + lncos2 0k + [l. Ok +ln 0.]COS2 k Cos2

Note that for x 0 the function 1 x + In x is nonpositive, implying that the term in
square brackets is nonpositive and that In cos2 Ok is also nonpositive. We can therefore
delete these terms to obtain

(134) (+) _< (h)+ o(o +).
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Before proceeding further we show that a similar expression holds when finite differ-
ences are used.

Part II. Let us now consider the iterates k for which updating takes place and for
which k is computed by finite differences. In this case (55) holds. Again we begin
by considering (127),

z[z +(z- Z, W,)Ykpv + (akZW,Ykpv --).

Using (123) the last term is of order ak(ak]]Pvl), and so is the second term. Thus

z[z +o()
() (z[Wz a,) + a, +o().
Noting once more that [k y[sk and recalling the definition (116), we have-- (z[z a,) + + o(,,i).YkSk

since ][k{ and [lsk]] are of the same order. Therefore

(z[z ,)Yk k 1 + sk + 0IIk IIk IIk
(laa) 1 + 0() + 0 gl

Similarly from (135) and (116) we have

and thus

(137)

We now invoke Update Criterion I and note from (55) that, if BFGS updating of
/ 1/2B takes place at iteration k then IlPvll < /fdllPzll,ak Using this, (136), and the

fact that ak converges to zero, we see that for large k

1/2l + Oat: ),IIII
and using (137)

1 + O(a/2).

Therefore

(138) 1 + O(a/2).
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1/2 1/2We now consider (Bk+l) given by (120). Noting that ln(1 + O(ak )) t(ak for
all large k, we see t’hat if updating takes place at iteration k

1/2 [ k(139) (/)+1)=(/))/O(ak )+1ncos2+ 1 lncos: cos 
Since both In cos2 k and the term inside the square brackets are nonpositive, we can
delete them to obtain

1/2(140) (k+) (B)+ O(ak ).

We now combine the results of Parts I and II of this proof. Let us subdivide the set
of iterates U for which BFGS updating takes place into two subsets: U’ corresponds
to the iterates in which is computed by Broyden’s method, and U" to the iterates

in which finite differences are used. We also define U U {1,2,...,k} and
v"

Summing over the set of iterates in Uk, using (134) and (140), and noting that
Bj+ Bj for j Uk, we have

(14 ) <
jeU jeU’ U’

for some constants C, C2, Ca. Since 0 r 1 and U’] Uy we have, from (111)

1/2 C1/2 /2

ju" ju"

C1/2rIv}’l/2
jU"

C1/2ri/2
i=1

Similarly,

and since {/_} is summable, we conclude from (141) that {(/)k)} is bounded above.
By (114) (Bk) }"il(li --ln/i), where li are the eigenvalues of/)k, and it is easy
to see that this implies that both ]]Bk ]1 and IIB-1 II are bounded.

To prove (126), we sum relations (133) and (139), recalling that ak, 7k and a/2
are summable, to obtain

b(k+l) <_ C + E (lncos2 Ok
_

[1 Ok

j uk
cos2 k

for some constant C. Since (/k+l) > 0, and since both In cos2 Ok and the term inside
the square brackets are nonpositive, we see that

lim In cos2/}k 0
k6U
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and

lim[1- cos2 0 t- In 0.
k U

CO82 k
Now, for x >_ 0 the function 1 x + In x is concave and has its unique maximizer at
x 1. Therefore the relations above imply that

(142) lim cos0k lim k 1.
k--*oo

kEU kEU

Now from (118)-(119)

IIGj1/2(Bk G,)pzll 2

1/2ll. pzll
I1( I)11

I111

~ 2k + 1.
cos 0

It is clear from (142) that the last term converges to 0 for k E U, which implies that
(126) holds. []

This result immediately implies that the iterates are R-linearly convergent, re-
gardless of how often updating takes place.

THEOREM 5.7. Suppose that the iterates {xk} generated by Algorithm II converge
to a solution point x, that satisfies Assumptions 5.1 and the fact that IUI -- oc. Then
the rate of convergence is at least R-linear.

Proof. Theorem 5.6 implies that the condition number of the matrices {Bk} is
bounded. Therefore, all the iterates are good iterates. Reasoning as in the proof of
Theorem 5.4, we conclude that for all j

for some constants C > 0 and 0 < r < 1. []

Prior to considering the convergence rate, we show that the Broyden matrices Sk
are bounded.

LEMMA 5.8. Suppose that the iterates {xk} generated by Algorithm II converge
R-linearly to a solution point x, that satisfies Assumptions 5.1. Then the Broyden
matrices Sk are bounded and the safeguards (49) and (50) become inactive for all large
k.

Proof. We make use of the well-known bounded deterioration property for Broy-
den’s method (cf. Lemma 8.2.1 in Dennis and Schnabel [15]), which states that under
Assumptions 5.1

IIS+ z,w, _< IIs z,w, + c,
for some constant C > 0. As a result of the R-linear convergence of {x}, we obtain

k
T TIlSk+l- Z, W, II <_ IIS1 -Z,W, +Ck

i=1
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which shows that the matrices Sk remain bounded. We then see from (48) that the
Broyden corrections wk and k satisfy

(143) Wk O(IIPYII) O(IIP II),

and it is clear that safeguards (49) and (50) become inactive for all large k. D
Therefore, the algorithm will not modify the information supplied by Broyden’s

method, asymptotically. This is an important point in establishing superlinear con-
vergence.

6. Superlinear convergence. Without the correction terms wk and k, and
with appropriate update criteria, Algorithm II is 2-step Q-superlinearly convergent.
This was proved by Nocedal and Overton [26] assuming that Yk and Zk are orthogonal
bases and assuming that a good starting matrix B1 is used. This result has been
extended by Xie [291 for more general bases and for any starting matrix B1 > 0. In
this section we show that if the correction terms are used in Algorithm II, the rate
of convergence is 1-step Q-superlinear. This result is possible by Update Criterion I
and by the selected application of finite-difference approximations, which allow BFGS
updating to occur more frequently.

To establish superlinear convergence, we need to ensure that the steplengths ck
have the value 1 for all large k. When a smooth merit function, such as Fletcher’s
differentiable function (Fletcher [17]) is used, it is not difficult to show that, near the
solution, unit steplengths give a sufficient reduction in the merit function and will
be accepted. However, the nondifferentiable el merit function (7) used in this paper
may reject steplengths of one, even very close to the solution. This so-called Maratos
effect requires that the algorithm be modified to allow unit steplengths and to achieve
a fast rate of convergence. We do not consider this modification here, so as not to
complicate our already lengthy analysis and since it does not affect the main structure
of the algorithm or its essential properties. In the companion paper (Biegler, Nocedal,
and Schmid [1]), which is devoted to a numerical investigation of Algorithm II, we
describe how to incorporate the nonmonotone line search (or watchdog technique) of
Chamberlain et al. [9] that allows unit steplengths to be accepted for all large k. The
analysis of the modified algorithm would be similar to that presented in 5.5 of Byrd
and Nocedal [6].

In the remainder of this section we assume that the iterates generated by Algo-
rithm II converge R-linearly to a solution and that unit steplengths are taken for all
large k. In the presentation of the results that follow we do not restate the assump-
tions under which R-linear convergence was proved in 5, but simply assume that
R-linear convergence occurs. We begin by showing that the damping parameter k,
used in (79) to ensure that descent directions are always generated, has the value of
1 for all large k.

We have shown in Theorem 5.6 that I[B-II is bounded above. Also, (121), (102),
and (78) show that, when finite differences are used, wk O(llp, ll) O(llckll), and
by (143) we see that this is also the case when Broyden’s method is used. Using these
facts, and noting that I1" -< I1" II1, we see that there is a constant C such that the
left-hand side of (74) can be bounded by

cos + rZk gk /  w B;Xwk] <_ [CkC(ll kll /  ll  ll)]llckllx,

since d[Zk O(llell), .As the iterates converge to the solution, and since ff <_ 1, the
term inside the square brackets is less than the constant p given in (74), showing that
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Ck 1 for all large k. This and the remarks made at the end of 5 show that all the
safeguards included in Algorithm II become inactive asymptotically.

We can now show that the Broyden matrices satisfy the condition of Dennis and
Mor [14] for superlinear convergence. Note from Algorithm II that a Broyden update
of Sk is always performed, regardless of whether a BFGS update of Bk takes place or
not. The following result is a straightforward modification of a well-known property
for Broyden’s method.

LEMMA 6.1. Suppose that the iterates generated by Algorithm II converge R-
linearly to a point x, that satisfies Assumptions 5.1. Then

(144) limk-oo
II(Sk zT* W*)dkll O.

Proof. The proof is essentially given in Griewank [21] and is also very similar to
the analysis in Dennis and Schnabel [15, pp. 183-184], but we give it here for the
sake of completeness. Using the Broyden formula (45), we have

Defining Ek Sk TZ, W,, applying Lemma 8.2.5 of Dennis and Schnabel [15],
recalling (46)-(47), and using the mean value theorem, we obtain

IIE/IIF llEk(I $k’/$’’Sk)llF + O(ak)
llEk kll 2

Rearranging this expression yields

(145) llEk kll 2 211E IIF [IIEklIF -IIE+IIF +

By Lemma 5.8, we know that the matrices S remain bounded, therefore there exists
some A such that for all k >_ k, IIEkll <_ A/2 and

_< A[IIE II  +

Since {a} converges R-linearly, the last term is summable, which implies that

Noting that $, Ozkdk gives the desired result. O
This lemma shows that in the limit Sk is an accurate approximation to z,Tw,

along dk, and Theorem 5.6 shows that, when updating takes place, Bk is an accurate
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approximation to zT.w.z, along pv. We use these two facts and the following lemma,
which is an application of the well-known result of Boggs, Tolle, and Wang [2].

LEMMA 6.2. Suppose that the iterates generated by Algorithm II converge R-
linearly to a point x. that satisfies Assumptions 5.1, and suppose that ak 1 for all
large k. If, in addition,

(146) lim
IIBpz + w zT, W,dII O,

-’ IIdll
then the rate of convergence is 1-step Q-superlinear.

Proof. Nocedal and Overton [26, Thm. 3.2] show that if an algorithm of the form

(aT)
r

A dk c

Xk-bl Xk -[-dk,

converges to a point x. that satisfies Assumptions 5.1, and if

(148) lim
II( zT, W,)daII O,

k-

then the rate of convergence is superlinear. Algorithm II clearly satisfies the second
equation in (147), TAk dk -ck. Now, since dk YkPY - ZkPz, we have

[Yk Zk dk [ P" ]
Let us write wk Tkp for some matrix Tk. Then, recalling that } 1 for all large
k, we have from (79) that

T[Tk B}][Yk Zk]-ldk -Z} gk.

Thus we can define
convergence is

[Tk Bk][Yk Zk] -1 and the condition (148) for superlinear

Z, W,)dkll O.lim
II([Tk Bk][Yk Zk]- T

However, using (149) and wk Tkpv, we have that [Tk Bk][Y Zk]-ldk Tkpv +
Bpz wk + Bpz, giving the desired result.

We can now prove the final result of this section. The analysis is complicated
by the fact that BFGS updating may not always take place and by the fact that
the correction terms are sometimes computed by finite differences and sometimes by
Broyden’s method. We therefore consider the following three sets of iterates, based
on Update Criterion I and illustrated in Fig. 2.

R3 {Jl IIp > Ilp(z)
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and note that both "Yk and ak are summable.
THEOREM 6.3. Suppose that the iterates generated by Algorithm II converge R-

linearly to a point x, that satisfies Assumptions 5.1, and suppose that Ck 1 for all
large k. Then the rate of convergence is 1-step Q-superlinear.

Proof. Since dk YkPY + ZkPz, we have

PY ] [Y Zk dk.
Pz

Therefore, assumption (103) implies that

(150)

Now

[[Bepz + w zT, W,d[[ < IIBpz zT. w,ZepzII + [[we zT. w.YP.II
<_ [IBkPz zT. w.Z.PzII + Ilwt: zT. w.YP,I[

Since by (150) the last term is of order o(llpzll o(lldll ), the objective of the proof
is to show that

(i5i) [iBkpz zT. w.Z.pz]] + ilwk TZ. W.YkPv I[ o(I] dk

for this together with (146) will give the desired result. We consider the three regions
R1, R2, and R3 separately. Algorithm II is designed so that, in R2, wk must be
computed by finite differences. On the other hand, since Pz is recomputed in step 7,
after which we can be in any of the three regions, we see that in R1 and R3 Wk may
be computed by finite differences or by Broyden.

If k E Ri, we have that IlPvll o(llPzll) o(lldkll). We also know from (143)
that wk O(llpvll) when the correction is computed by Broyden’s method, and by
(121) this relation also holds when wk is computed by finite differences. Therefore,
for k E R1,

(152) Z, W,YkPII o(lldkll).

Furthermore, since updating always takes place in R1, (126) holds:

(153) IIBkpz zT, w,Z,pzll o(lldkll ).

We have thus established (151) for all k
Let us now suppose that k R2, in which case wk is computed by finite differences.

Using (122), we have that

(154)

where the last step follows from (150). Since updating always takes place in R2, (153)
also holds in this case, and we conclude that (151) holds for all k R2.

Finally we consider the case when k R3. Now Pz satisfies

(155) pz o(llpYII) o(lldkll),
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If k E R3 and the correction term wk is computed by Broyden’s method as wk

SkYkP (see (48)), we have

< II(S - TZ, W,)de]l + II(Se zT, w,)ZePzII.

Using (144), (155), and the boundedness of Sk, we see that the right-hand side is of
order o(lldkll), so that (154) holds. On the other hand, if wk is computed by finite
differences, we have directly from (122) that (154) holds. In addition, (155) and the
boundedness of Bk show that (153) holds for all k E R3, regardless of whether finite
differences or Broyden’s method are used.

7. Final remarks. We have presented a new reduced Hessian algorithm for
large-scale equality-constrained optimization. The motivation for this work has been
practical: our earlier reduced Hessian code, designed for large problems, was of-
ten subject to instabilities, and we have aimed to develop a more robust algorithm
that resembles the full-space SQP method but is less expensive to implement. In a
forthcoming paper (Biegler, Nocedal, and Schmid [1]), we discuss our computational
experience with the new method. That paper describes how to handle inequality con-
straints and discusses numerous important details of implementation not considered
here. These include, the choices of all constants and tolerances, the strategy for coping
with the case when the basis matrix C in (35) changes, and the procedure for com-
puting the damping parameter , which was only outlined in (75). We also discuss
in that paper how to apply the updating criterion away from the solution. We believe
that the new algorithm can be very useful for solving large problems, especially those
with few degrees of freedom.

We have focused only on convergence results that helped us in the design of the
algorithm and that revealed its main properties. The analysis was complicated by two
factors. We did not assume that the BFGS matrices Bk or the Broyden matrices Sk
were bounded, which required careful consideration of their behavior. This analysis
paid off by suggesting safeguards that are useful in practice and ensure a superlinear
rate of convergence. The other complicating factor was the fact that the frequency
of BFGS updating can vary drastically: it can take place at every iteration, never,
or in various patterns. As was found earlier by Xie [29], it is necessary to develop
the theory in sufficient generality to cover all of these cases, and this significantly
increased the complexity of some of the results.

Acknowledgments. We thank R. Byrd for many interesting discussions on the
subject of this paper. We are also thankful to a referee who made very useful sugges-
tions on how to improve the presentation of the results.
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A ROBUST TRUST-REGION ALGORITHM WITH A
NONMONOTONIC PENALTY PARAMETER SCHEME FOR

CONSTRAINED OPTIMIZATION*

MAHMOUD EL-ALEM?

Abstract. An algorithm for solving the problem of minimizing a nonlinear function subject
to equality constraints is introduced. This algorithm is a trust-region algorithm. In computing the
trial step, a projected-Hessian technique is used that converts the trust-region subproblem to one
similar to that for the unconstrained case. To force global convergence, the augmented Lagrangian
is employed as a merit function.

One of the main advantages of this algorithm is the way that the penalty parameter is updated.
We introduce an updating scheme that allows (for the first time, to the best of our knowledge) the
penalty parameter to be decreased whenever it is warranted. The behavior of this penalty parameter
is studied.

A convergence theory for this algorithm is presented. It is shown that this algorithm is globally
convergent and that the globalization strategy will not disrupt fast local convergence. The local rate
of convergence is also discussed. This theory is sufficiently general so that it holds for any algorithm
that generates steps whose normal components give at least a fraction of Cauchy decrease in the
quadratic model of the constraints and uses Fletcher’s exact penalty function as a merit function.
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1. Introduction. In this paper, we study the following nonlinear equality con-
strained optimization problem

minimize f x(EQ) _=
subject to h(x) 0,

where h(x) [hi (x),..., hm (X)]T. We assume that f and hi, i 1, 2,..., m are twice
continuously differentiable and that Vh has full column rank in the range of interest,
where Vh(x)= [Vhl(x),..., Vhm(x)].

We can obtain first and second order conditions of optimality with reference to the
aagrangian function associated with problem (EQ), namely, l(x, ) f(x) + )Th(x),
where E m is the Lagrange multiplier vector. The first order necessary condition
for a point x, to be a stationary point of problem (EQ) is the existence of a Lagrange
multiplier , such that (x,, A,) is a zero of the following (n + m) (n + m) nonlinear
system of equations

[
Consider an n x (n- m) matrix Z(x), with orthonormal columns that has the

property Z(z)Vh(z) 0. The columns of Z(z) form an orthonormal basis for the
null space of Vh(x)T. The matrix Z(z) can be obtained from the QR factoriation
of Vh(z) as follows:

(1.2) Vh(x) [Y(x) Z(x)] 0
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where Y(x) e nxm. The orthonormal columns of Y(x) form a basis for the column
space of Vh(x) and R(x) is an m m nonsingular upper triangular matrix. It is easy to
see that Y(x)Ty(x) Ira, Z(x)TZ(x) In-m, and Y(x)Y(x)T+Z(x)Z(x)T In.

Using this factorization, an equivalent first order necessary condition can be writ-
ten in the form

(1.3)

The second order sufficiency condition for the point x, to be a solution of problem
(EQ) is the existence of a multiplier A, E ’ such that the point (x,, A,) satisfies
the first order necessary condition (1.1) and the matrix Z(x,)Tvx21(x,,A,)Z(x,) is
positive definite.

Throughout this paper, all the norms used are 2-norms and subscripted values of
functions are used to denote evaluation at a particular point. For example, fk means
f(xk), lk means l(xk, Ak), and so on.

Some of the algorithms that solve problem (EQ) use Newton’s method to find a
zero of (1.1). This gives rise to the following (n + m) (n / m) linear system:

(1.4) [ Vx2lk Vhk ] [ AA h0 1--[
If we premultiply the first block of (1.4) by Z’, we obtain the n n linear system

T 2

Vh" ] I ]l s=- ZVf
hk

Letting sk YkUk + Zkvk and using the factorization (1.2), the above system becomes

T 2

(1.6) Z V lkYk Z[VlZ u Z
0 vk hk

By solving this system of equations for uk and v, we can obtain sk. More details can
be found in Gill and Murray (1974)[9] and Goodman (1985)[10].

The Lagrange multiplier Ak+l is obtained using the least-squares estimate

Ak+l argminllVhk+A + Vfk+ll.

Using (1.2), this problem is equivalent to solving Rk+lAk+ -Y+Vfk+l.
We can proceed by maintaining a quasi-Newton approximation Bk to the Hessian

of the Lagrangian V21 in (1.6). More details can be found in NocedM and Overton
(1985)[14]. So, the algorithm for computing the trial step sk and the multiplier Ak+l
is outlined as follows.

ALGORITHM 1.1
At each iteration k, do

TtSolve Rk k=--h} foruk.
Solve ZT BkZ}v} --Z[Vfk Z[BkYkuk, for vk.
Set sk Ykuk + Zkvk and Xk+ Xk + Sk
Find Ak+ by solving Rk+Ak+ --YkT+ivfk+

End do
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It is easy to see that for problem (EQ), if the exact second-order information
is used, the above algorithm can be viewed as a Newton’s method applied to the
nonlinear system (1.1) (see Goodman (1985)[10]). Hence, it shares the advantages
and the disadvantages of Newton’s method. From the good side of Newton’s method,
it is locally q-quadratically convergent. However, from the bad side of Newton’s
method, it is not a globally convergent method. It is guaranteed to converge only
if the starting point is close enough to the solution. This means that it may not
converge at all if the starting point is far away from the solution. More details can
be found in Wapia (1978)[21].

The next section deals with adding a trust-region modification to this method to
force convergence to a solution from any starting point without sacrificing fast local
convergence.

2. Trust-region globalization. The key idea of the trust-region method is to
restrict the trial step to a region where you trust your model. This can be done by
imposing the trust-region constraint Ilskll <_ Ak where the trust-region radius Ak
is adjusted automatically from iteration to iteration. The intent is to reduce a merit
function I,(x) and the aim is to make the iterates Xk+l Xk q- Sk; k 1, 2, 3,...
acceptable points where sk is obtained by solving some trust-region subproblems.
More details about the trust-region method can be found in Dennis and Schnabel
(1983)[4].

Byrd, Schnabel, and Shultz (1987)[2] suggested computing the trial steps using
the following technique: Set sk Yku + Zvk where Yk and Z are as in (1.2). The
two components uk and v are computed by solving two subproblems. For computing
uk, they suggested solving the following linear system:

RUk --okhk

where ck is a constant that satisfies some specified conditions. The tangential com-
ponent Vk is obtained by solving the trust-region subproblem

T 2 1/2vkT, T721minimize. (Z[Vf + cZk VxlkYkuk)Tvk + Zk x kZkVk
vE

subject to IIvk 2 <_ A2k c IlUk II 2.

This approach suffers from the disadvantage that the step depends on the un-
known parameter ck and there is no clear way for choosing this parameter.

An interesting way of using this approach to compute a trial step that does not
depend on the parameter ck was suggested by Omojokun (1989)[15]. He calculated
s by solving two trust-region subproblems. For computing uk, he suggested solving

minimize IIvhkTykuk + hkll 2uE

subject to IIYukll <_ TAk,

where - E (0, 1) is a constant. The tangential component is obtained by solving the
trust-region subproblem

minimize (Z[Vfk + Z[V2lkYkuk)Tvk + 1/2vkTZkTV2lkZkvk
VN

subject to IlVkl[ 2 /k -[[YkUkl] 2.
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To force global convergence, Byrd, Schnabel, and Shultz (1987)[2] and Omojokun
(1989)[15] employed a nondifferentiable merit function. This type of merit function
suffers from the Maratos effect, which may disrupt fast local convergence. See Maratos
(S)[].

To avoid the Maratos effect, they suggested adding to the step what is called the
second-order correction, and is a step of the form wk -R-Thk+ where k+ is an
intermediate point. See also Coleman and Conn (1982)[3], Fletcher (1982)[7], and
Mayne and Polak (1982)[13]. However, this approach adds extra expense to the step
calculation since it requires an extra constraint evaluation to compute a trial step.

In this paper, we use an inexpensive way to compute the trial steps. We employ,
as a merit function, a differentiable penalty function. We use Fletcher’s exact penalty
function

(2.1) (x, ; r) f(z).+ A(x)Th(x) + rllh(x)ll 2,
where is the least-squares estimate of the multiplier and r is the penalty parameter.
We introduce a new nonmonotonic penalty parameter scheme. This penalty parameter
is very inexpensive to calculate.

We present a convergence theory for this algorithm. Our global convergence
theory is so general that it covers the algorithm of Byrd, Schnabel, and Shultz (1987)[2]
and the algorithm of Omojokun (1989)[15] provided that (2.1) is used as a merit
function and Scheme 3.4 (see 3.3) is used for updating the penalty parameter.

The remainder of this paper is organized as follows. In 3, we describe in detail
the trust-region subproblems that will be considered and the way of computing the
trial steps. A scheme for updating the radius of the trust region is presented together
with a discussion about the criteria for accepting or rejecting the trial steps. Our new
scheme for updating the penalty parameter is presented in 3 as well as the algorithm.
In 4, we state the global assumptions under which we prove global convergence. In
5, we present our global convergence theory. We start with presenting some needed
intermediate results together with some lemmas that analyze the behavior of the
penalty parameter. We end this section by presenting the main global convergence
results of our algorithm. In 6, we present the local convergence analysis. Section 7
contains concluding remarks.

3. The trust-region algorithm. The algorithm has four main ingredients. The
first one is computing the trial step. It is discussed in 3.1. The second one is testing
the step and updating the trust-region radius and is discussed in 3.2. The third one
is updating the penalty parameter and is discussed in 3.3. The fourth ingredient of
our algorithm is how to update the matrix Bk. This is discussed at the end of 3.3.

3.1. Computing the trial steps. In our trust-region algorithm, at each it-
eration, two model subproblems are solved to obtain a trial step sk. Our way of
computing the trial step is similar to that of Byrd, Schnabel, and Schultz (1987)[2]
with a simpler way of determining the parameter ck (see 2). We start by solving for
uk the following linear system of equations:

then we control the size of this step by solving for ak the one-dimensional minimization
problem

minimize IIh / CkVhYkukll
subject to
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where T E (0, 1] is a fixed constant. This is equivalent to setting

(3.2) ak if Ilukll > TAk.

See Zhang and Zhu (1990)[24].
To get the tangential component, we solve for vk the trust-region subproblem

minimize
(a.3)
(3.4) subject to vk Ak,

where Bk is the Hessian of the Lagrangian Vlk or an approximation of it.
The trial step then h the form sk aYkUk + Zv. This is outlined in the

following scheme.
SCHEME 3.1. Computing the trial steps.

Given 0 < T < 1.
At each iteration k, do

Solve (3.1) for Uk, then find a using (3.2).
Solve (3.3) and (3.4) for v.
Set sk aYu + ZkVk and set xk+ xk + Sk.
Find Ak+l by solving Rk+Ak+ -YlVfk+.

End do.
n Ykuk is moreThe Omojokun way of computing the normal component sk

expensive since, to compute uk, it requires solving a trust-region subproblem at each
trial step. Our way requires computing uk only once per acceptable step, namely, when
the algorithm moves to a new point after finding an acceptable step. To compute u,
we solve (3.1), which is an upper triangular linear system. Y and R are obtained with
no extra cost, since they are obtained from the QR factorization that w performed
to compute the multiplier of the last acceptable step.

3.2. Testing the step and updating the trust-region radius. Let Xk+l
x + s where sk is the step computed by the algorithm, and let A+ be the cor-
responding Lagrange multiplier; we test whether the point (Xk+l,k+l) is making
progress towards a solution (x,, ,). To do this we use, a merit function, Fletcher’s
exact penalty function (2.1). We test (x+,+) to determine whether it makes an
improvement in the merit function.

We define the actual reduction in the merit function in moving from (xa, Ak) to
(Xk+, Ak+) to be

Aredk &(Xk, Ak; rk) &(Xk+, +; r),

which can be written

Aredk l(xk, Ak) l(x+,A) (+ A)Th+ + r[]hl ]]h+]]].
The calculation of the step s is based on a quadratic approximation of the Lagrangian
function and a linear approximation to the constraints. Using these approximations
in a straightforward manner, the predicted reduction h the form

1
Predk -Vls sTBs --(+ VAs)T[hk + Vhsk]

+ -llh +
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This form of Predk has been used by Maciel (1992)[11]. An undesirable property
of using the above expression is that Predk depends on VAk, which requires the
evaluation of the Hessians of the objective function and the constraints. To avoid
these calculations, the following form of predicted reduction can be used:

1
Predk --VxlTsk -skTBsk --(Xk+l- Ak)T[hk + Vhs]

This expression for Pred has been used by E1-Alem (1988)[5] and (1991)[6].
definition of the predicted reduction has the form

Our

Predk=-Vxl[sk 1 T (k+-s BZv
+ rk[llhkll 2 --Ilhk + Vhskll2].

1Vhsk1)k)T [hk + -The above expression for Predk was also used by Powell and Yuan (1991)[19]. They
TTBkZkv instead of .sk Bksk and thepointed out that the presence of the terms 1/2sk

term h+ 1/2Vhs instead of h+VhTsk allow for a Q-superlinear rae of convergence.
See 6 for more details about these terms and how they allow for Q-superlinear rate
of convergence.

The normal predicted decrease and the tangential predicted decrease are also
considered. They are denoted by Npredk and Tpredk, respectively. The Npredk is
the decrease at the kth iteration in the linearized model of the constraints by the step
sn aYku and is defined by

It predicts the actual reduction in the constraints obtained by the normal component
n8k

The Tpredk is the decrease at the kth iteration in the quadratic model of the
Lagrangian by the step s Zkv. It predicts the actual reduction in the Lagrangian
function obtained by the tangential component s. It is defined by

1
Tpredk -(Z[Vf / zTkBks)Tvk- -v[Z[BkZvk

The trust-region algorithm should produce steps that result in a decrease in the
merit function (I). To guarantee this, the predicted reduction must be greater than
zero and the actual reduction must be greater than some fraction of the predicted
reduction. Therefore, at each iteration, the penalty parameter rk is chosen such that

Aredk > ?1 > 0, where vii E (0, 1) is a smallPred > 0 and the step is accepted if Pred
fixed constant. We reject the step if Ared

Pred < " In this case, we decrease the radius

of the trust region by picking Ak E
and then go back and compute another trial step with a new value of the trust-region
radius.

If the step is accepted, then the trust-region radius is updated by comparing the
value of Aredk with Predk Namely, if rh < Ared

Pred < ?2 where r]2 (, 1), then
the radius of the trust region is updated by the rule: Ak+l min[Ak, a311sll] where
a3 > . However, if Aredpred >- ?2, then we increase the radius of the trust region

by setting Ak+ min[A,,max(Ak, a311sll)], where A, is a positive constant. This
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can be summarized in the following scheme.
SCHEME 3.2. Testing the step and updating the trust-region radius.

Given 0 < a <_ a2 < < a3, 0 < 71 < ??2 < 1 and A, >_ A > 0.
At each iteration k, do

If Aredk
Predk ?1
then set Ak e [allskll,a211skll ].
goto Scheme 3.1 to find another trial step.
Else, if r < Ared < ?2Predk

then set xk+ xk + sk,

Ak+l min[Ak, a3]lSkll].
Else, set Xk+ Xk + Sk,

Ak+ min[A,, max(Ak, a311Skll)].
End if

End if.
End do

The index k is increased only if the step is accepted. We use the notation kj to
denote the jth unacceptable trial step of iteration k.

It is worth noting that, under suitable assumptions, after a finite number of trial
Aredjsteps, an acceptable step will be found, i.e., the condition Predj ?1 will be satisfied

for some j. See Theorem 5.7.

3.3. Updating the penalty parameter. Now, we describe our strategy for
updating the penalty parameter r. The author in (1988)[5] and (1991)[6] has suggested
a scheme for updating the penalty parameter. The idea behind that scheme was to
keep the penalty parameter as small as possible subject to satisfying conditions needed
to prove global convergence. One of these conditions was that the sequence {rk} of
penalty parameter must be nondecreasing. If that scheme were implemented in our
problem, the scheme would be as follows.

SCHEME 3.3. E1-Alem (1988)[5].
Given a constant p > 0 and ro 1.
At each iteration k, do

Set rk rk-.
If Pred < r [llh ll -IIh /

then set

rk 2 { Vxlsk + -l sBkZkvk + (k+ k)T[hk + 1/2Vhsk] } + PIIh ll -IIh + Vh skll 2

End if
End do.

Even though when this scheme was implemented, good performance was reported,
(see Williamson (1990)[23]), this way of updating the penalty parameter has the dis-
advantage of producing a nondecreasing sequence of penalty parameters. This means
that if at one iteration the value of the penMty parameter is large, all the subsequent
penalty parameters will remain at least as large as this one. Hence, the problem of
obtaining feasibility has more weight than the problem of obtaining optimality. As a
consequence we may progress too fast toward nonlinear feasibility at the expense of
optimality. On the other hand, numerical experiments have suggested that efficient
performance of the algorithm is linked to keeping the penalty parameter as small as
possible (see Gill et al. (1986)[8]). We propose a scheme that allows (for the first
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time, to the best of our knowledge) the penalty parameter to be decreased whenever
it is warranted.

Our convergence theory requires that the predicted reduction in the merit function
at each iteration be at least as much as a fraction of Cauchy decrease in the 2-norm
of the residual of the linearized constraints. (For more detail about the fraction of
Cauchy decrease condition see, for example, Powell (1975)[16].) Hence, we ask for
this condition to be satisfied at each iteration.

Our convergence theory allows the sequence {rk} to be nonmonotonic, provided
that it is controlled by a sequence {pk}, which we introduce below, in the sense that
for all k, pk_ <_ rk.

So, our strategy will be, at each iteration k, pick a number rk >_ Pk-" Then test
for inequality (3.7) (see below) to be satisfied or update the penalty parameter using
(3.6) (see below) which enforces (3.7). This scheme is stated as follows.

SCHEME 3.4. Updating the penalty parameter.
Given a constant p > 0 and an integer N > 0;
Set ro -r-1 r-N+1 1
At each iteration k, do

Find -Pk-1 min{rk_l,rk_2,...,rk_N},
-1 max(rk_l,rk_2,...,rk_N}.

Set

(3.5)

Set rk Pk-1.
If

Pt-i min{ --Pk-1 + p’ Ok-1 }"

Predk < Pk-1 [llhkll2 ilhk _}_ Vh-sll2]
2

then set

T T+ + +(3.6) rk 2
ilhk]] 2 ]lhk + Vhski2 + p

End if
End do.
The following are noteworthy.

1. The way of updating the penalty parameter ensures a predicted decrease in
the merit function given by

rk(3.7) Predk [Ilhk]I2- [hk + VhslI2].

That is, the predicted decrease is at least as much as the decrease in the linearized
model of the constraints obtained by the normal component of sk. So, at each iteration
k, we have

rk(3.8) Predk Npredk

2. If N 1, then Scheme 3.4 will coincide with Scheme 3.3.
3. In the implementation, if we take N equal to the maximum number of iterations

allowed, then we will have a scheme for updating the penalty parameter that has no
requirement on rk except that it satisfies inequality (3.7).
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4. The sequence {Pk} is a monotonically nondecreasing sequence. (See 5.2 for
a proof.) But the sequence {k} is a nonmonotonic sequence and only satisfies for
all k, P-k <- rk <_ -ilk" This inequality shows that even though the sequence {rk} is a
nonmonotonic sequence, it is controlled by the two sequences {_Pk}, {k}"

5. If at any iteration k we have Avedk
Pred < T]I’ then we reject the trial step and do

not increase the iteration count k. As a consequence the set {r-l, rk-N} remains
unchanged. Thus, implicitly, the value of the penalty parameter is rejected and the
only change in the problem by an unacceptable trial step is a decrease in the trust
region radius.

Finally, we discuss our strategy for updating the matrix Bk. If the exact Hessian is
used, then at each iteration k we compute V2l V2fk +72hkk. Otherwise, update
Bk by some updating formula that satisfies global assumption 5 (see 4) if we are
interested in obtaining only global convergence regardless of the rate of convergence,
or that satisfies global assumption 5 and local assumption C (see 6.3) if we are
interested in obtaining global convergence with a fast local rate of convergence.

3.4. Statement of the algorithm. The following is an outline of the algorithm.
Choose x0 E n, e > 0, and Bo nn.
Set k 0.
At each iteration k, do

If IIZ[Vfkll -t- Ilhkll < e, stop.
Compute sk, Ak+x according to Scheme 3.1.
Update the penalty parameter according to Scheme 3.4.
Test the step and update Ak according to Scheme 3.2.
Update Bk (see 3.3).
Set k := k + 1.

End do.

4. The global assumptions. In this section we state the assumptions under
which we prove global convergence.

Let the sequence of iterates generated by the algorithm be {xk}. For such a
sequence we make the following assumptions.

1. For all k, xk and Xk / Sk gt where gt n is a convex set.
2. f and hi C2(t) i-- 1,..., m.
3. Vh(x) has fll column rank forall x e .
4. f(x),h(x),Vh(x),Vf(x),V2f(x), R(x)- and each V2hi(x), for 1,...,m

are all uniformly bounded in norm in t.
5. The sequence of matrices {B}, k 1, 2,... is bounded.
An immediate consequence of the global assumptions is that the matrices Ba,

ZBkZk, and ZBkYk have a uniform upper bound, i.e., there exists a constant
b > 0, such that, for all k,

(4.1) [IBII <_ b, IIZ[BZII <_ b, and IIZBkYll .
Another immediate consequence of these assumptions is the existence of constants
bo > 0, b > 0, b2 > 0, and b3 > 0 such that, for all k,

(4.2)
(a.3)
(4.4)

Ilu ll <_ bollh ll,
_< b lls ll,
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(4.5) IIVhkll <_ b3.

If f were a compact set, assumption 4 would follow from the continuity assump-
tion.

The same assumptions as our global assumptions are used by Byrd, Schnabel, and
Shultz (1987)[2], E1-Alem (1988)[5] and (1991)[6], and Powell and Yuan (1991)[19].

5. Global convergence analysis. In this section we present our global conver-
gence theory. In 5.1, we prove some intermediate lemmas needed for proving global
convergence. The behavior of the penalty parameter is discussed in 5.2. Section 5.3
is devoted to proving our main global convergence results.

We start by stating the main global convergence result in order to understand the
motivation for the lemmas presented in the next two subsections.

The main global convergence result. Under the global assumptions, the algorithm
produces iterates xk satisfying

liminf [[[hk[I + [[zTk vfkl[] O.

The proof of this result is presented in 5.3.
5.1. Sufficient decrease in the model. All the results in this section deal

with the decrease in the model obtained by the trial steps and their tangential and
normal components.

The following lemma shows how accurate our definition of predicted reduction in
the merit function is as an approximation to the actual reduction. It says that, if the
penalty parameter is bounded, it is accurate to within the square of the length of the
trial steps.

LEMMA 5.1. Let the global assumptions hold. Then, for any xk, xk + sk E , we
have

(5.1) IAredk Predkl barkllall,
where b4 is a positive constant independent of k.

Proof. The proof is similar to the proof of Corollary 6.4 of E1-Alem (1991)[6].
Note that in the proof, inequalities (4.1), (4.2), and the fact that IIZkvkll <_ Ilskll are
used. D

The following lemma shows that, at any iteration k, the normal predicted re-
duction Npredk is at least equal to the decrease in the 2-norm of the linearized
constraints obtained by the Cauchy step, i.e., it satisfies the fraction of Cauchy de-
crease condition.

LEMMA 5.2. At any iteration k, we have

(5.e) TAklYpredk > Ilhkll min Ilhkll,---oJ
where bo is as in (.2).

Proof. From the definition of Npredk, we need to show that

TAkl-link + avhTgkull2 > Ilhkll min IIhll,---oJ
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When Ilhkll- 0 the above inequality is true a fortiori. Let IIhll > 0 and consider

Ilhkll 2 --Ilhk J-OkVhYukll2 --Ilhkll 2 --Ilhk + OkRUkll2 [1- (1

We consider two ces.
First, when uk]] TAk. In this ce ak 1 and we obtain

Second, when ]Uk]] > TAk then a and using 0 < ak < 1, we get

]lukll

Using (4.2), we obtain

IIhll IIh +hYll b0
Now, if we combine the two ces, we get the desired result.

If we substitute (5.2) in (3.8), we obtain

(5.3) Pred Ilhkll min IIhkll,]
om the lt lemma, using (1.2), we can write

(5.4) IIhll -Ilhk + Vhsll IIhll min IIhll,
The following lemma shows that the tangential predicted decrease is at least equal

to the decee in the quadratic model of the Lagrangian obtained by the Cauchy step,
i.e., it stisfies the fraction of Cauchy decrease condition.

LEMMA 5.3. For all k, the tangential predicted reduction satisfies

2b

where s is the nodal component of the step s and b is as in (4.1).
Pro@ We first prove that

T nT1 [ T n]z-(z[vI +z B eZ[BZ) > }Z[VI +Z[B] m , Z[VI +

When ] T T nZk Vfk + Zk Bksk 0 the above inequality is valid a fortiori.
Let ]Z[Vf} + ZBks] > 0. If ]]vk] < Ak, then from the way of computing v},

n 0, and we can write

(z[v + Z[B)rv -[Z[BZ
) )+ Z[V ZfB,-(Z/VI + ZB (Z[BZ +

where (Z[B}Zk)+ is the generalized inverse of TZ} B}Z}. We have

8nTv 1 T 2(.) (z[v + Z[B Z[BZ iZ[VI + Z Bii
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On the other hand, if Ilvkll Ak, then from the way of computing vk, there exists
constant ttk >_ 0 such that

(5.7) (ZBZ + u)v + Z[Vf + Z[Bks’ O.

This equation implies that

T nT(Z[Vfk + Zk Bksk) Vk -v[(ZBkZk + #kI)vk
--(Z[Vfk + Z[Bks)T(Z[BkZk

which implies that

(5.8) (Z[Vfk + Z[Bks)Tvk 1

where (Z[SkZk) is the largest eigenvMue of ZBZk. On the other hand, from
(5.7), we have

[h(Z[BZ) +] ,Z[VA + Z[B,,,
where h(Z[BkZk) is the smallest eigenvalue of Z[BkZk. The above inequMity implies
that

T n

(5.9) k < ]]Z[Vfk + Zk BkSk] (Z[BkZk).
k

By substituting (5.9)in (5.8), we obtain

11(Z[Vf + Z[Bs)Tv IIZ/VA + zB
[(Z[BZ) h(Z[BZ)] + II Zk Vf + Zk Bks]

Now, using the fact that (Z[BkZk) (Z[BkZ) 2] TZk BZ the above inequal-
ity becomes

T n]]2k(5.10) (Z[Vf + Z[Bks)Tv < ]]Z[Vf + Zk Bksk

211Z[BZIA + IZ[Vf + ZTBkskn
So, from (5.6) and (5.10), we conclude that in both cases we can write

1 IIZ/Vf + z--(Z[Vfk + Z[Bs)Tvk ]]Z[Vfk + Zk Bkslmin k,

The rest of the proof follows directly from the definition of Tpred, the fact that
n T T(Z[Vf + Z[Bksk)Tvk + Vk Zk BZkvk O, and (4.1).

LEMMA 5.4. Let sk be the step generated by the algorithm at the kth iteration,
then

rkPredk Tpredk b5 ]sk link + Npredk,

where b5 is a positive constant independent of k.
Proof. From the definition of Predk, we have

Predk T T 1 TZk Vf) vk -Sk BkZkvk (Ak+

+ ,’[llhll = -IIh + Vh’ll].
[ 1 1k)T h + -Vhk sk
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This can be written as

Using (4.1)-(4.3), the fact that IIh / 1/2VhTs]l <_ IIhll, and Ilvkll <_ Ilskll, the remain-
der of the proof follows immediately, cl

The following lemma proves that if Ilhkll is small enough, then the penalty pa-
rameter will not be updated using (3.6), i.e., inequality (3.7) will hold for rk Pk-1.
(See Scheme 3.4).

LEMMA 5.5. Let k be the index of an iteration at which the algorithm does not
terminate. If Ilhkll <_ ciAk where c is a small constant that satisfies

(5.11) c < min{ e e e ( e)}3A,’ 3bb0A, 24x/b5A,
min 1, 6bA

then

1 rkPredk >_ -Tpredk + -ff Npredk.

Proof. From Lemmas 5.4 and 5.3, we can write

Predk >_ -Tpreda + -llZ[Vfk + Z[Bksllmin Ak, IIZ[Vfk +2bk k k ll

rk(5.13) -b511skllllhll + -ff Npred.

and because the algorithm does not terminate,Since c < then Ilhkll < -g
IIZ[Vfkll > -, and we obtain

TB sn]lZ’[Vfk /k k kll >-llZ[Vfkll liZBkYl]]lukll,
> 2e

bbollhk[ > 2e e e

-3 -3 3 3

Hence, using I111 <_ we have

Predk >_ -Tpredk + --min 1, 6bA* v/cb5A2k + -Npredk’

> 1Tpredk + min[1 /clbA Ak + Npred.

From (5.11), the quantity {4min[1, 6-.] x/clb5A*} is positive. Hence,

1 rkPredk >_ -Tpredk + -Npredk,
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which is the desired result.
From the proof of the above lemma, we see that the fourth term in (5.13) did

not enter into the calculation. This implies that if we set rk Pk-1 (see Scheme 3.4)
inequality (5.12) remains valid. So, when Ilhkll <_ clAk, the algorithm will not update
the penalty parameter using (3.6). In other words, inequality (3.7) will always be
satisfied.

LEMMA 5.6. If the algorithm does not terminate, then any iteration at which

Ilhkll - ClAk, satisfies

(5.14) Predk >_ C2Ak,

where Cl is given by (5.11) and c2 is a positive constant independent of k.
Proof. When Ilhkll <_ cIA, where c is given by (5.11), then from Lemmas 5.3

and 5.5, we have

-Tpredkl 1 T nllmin [Ak, ]]Z[Vfk wPredk >_ >_ -IIZ[Vfk + Zk Bksk

s then IIh < and because the algorithm does not terminate, weBut, since c < ,
have IIZ[Vfkll >_ . Thus, as in Lemma 5.5, we conclude that. Hence,

Pred >_ --min 1

The result now follows if we set.

mini1,c2 - 6bA,]. D

The following theorem shows that the algorithm is well defined in the sense that
it will never loop ad infinitum without finding an acceptable step.

THEOREM 5.7. Let the global assumptions hold. At any iteration k at which the
penalty parameter rk is bounded, either the termination condition of the algorithm
will be met or an acceptable step will be found.

Proof. In the proof of this lemma we use the notation kJ to mean the jth unac-
ceptable trial step of iteration k.

If the termination condition of the algorithm is satisfied, then there is nothing to
prove. Assume that the point (Xk, Ak) does not satisfy the termination condition of
the algorithm.

Suppose that at iteration k the algorithm loops infinitely without finding an
acceptable step. Hence all the trial steps are rejected and we obtain, for all j

Aredk(5.15) (1 ?) < 1
Predk

First, assume that IIhll 0. Therefore, for all j we have Ilhkll <_ cAk, where
cl is as in (5.11). In this case the penalty parameter remains the same. So, we have
r rk is bounded for all j.

On the other hand, from Lemmas 5.1 and 5.6, for any j such that A > 0, we
have

Ared 1 IAredk- Predl < b4r A.Predk Predk c2
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As j goes to infinity, Akj goes to zero and we get a contradiction with (5.15). So j
cannot go to infinity. But this contradicts the supposition that the algorithm loops
infinitely without finding an acceptable step and means that, after finitely many
rejected trial steps, an acceptable one will be found.

Now assume that Ilhkll > 0. From.(3.7), (5.2), and Lemma 5.1, we can write

Aredkj

Predk
-1 IAredk Pred <

Predkj Ilhk II min{llhk II }bo
Here IIhk II Ilhell > 0 is fixed. Therefore, for sufficiently large j, we have,

Hence,

min IIh II,
b0 b0

Ared 2b4b0
Predk

1 <_ Tiihi
As j goes to infinity, Ak goes to zero and we get a contradiction with (5.15). So j
cannot go to infinity. Again this contradicts the supposition. Hence the supposition
is wrong and the theorem is proved.

Under the assumption that the algorithm does not terminate, the above theorem
is true at any iteration k at which rk is bounded. In the following section we prove
that the penalty parameter is bounded for all k. This implies that Theorem 5.7 is
true for all k.

5.2. The behavior of the penalty parameter. In our analysis of the penalty
parameter, the sequences {_Pk} and {.k} are used. For their definitions see Scheme
3.4.

Our goal is to prove that there exists a constant r, and an integer k such that
rk r, for all k _> k. To this end, we will prove the following. First we prove that
{} is bounded. This of course implies that {r} and {pk} are bounded. Second we
show that {pk} is a nondecreasing sequence. We also discuss the amount of increase
in the sequence {Pk}" Finally we show that the sequences {pk}, {rk}, {k} attain the
same value after finitely many iterations. We start with the following lemma which
we use to conclude that rk is bounded.

LEMMA 5.8. Under the global assumptions, the sequence {k} is bounded.
Proof. If the algorithm terminates, {k} is finite and trivially bounded. So, con-

sider the case when the algorithm does not terminate. The proof is by contradiction.
Suppose that the sequence {} is not bounded. Then there exists an infinite sequence
of indices {ki }, such that

{ x/bo(2bl + bob + 2pba) }(5.16) k > max
min(T, cbo)

for all k {k}. Suppose that m is the first index such that (5.16) holds. It is clear,
using inequality (5.16), that m _> 2.

The only possibility that m > -- is when r, > ,_ and this can only
happen when rm is updated by (3.6). This implies that

rm[llhmll a Ilhm / VhTsmll2] 2(ZnVfm TVm 2t- 8TmBmZrnvm
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1VhTs,)+ 2(Am+l )m)T(hm + -+ P [l{hmll 2 -Ilhm + VhTmsmll2].
Using (5.4) and the fact that 2(ZTmVfm + ZTmB,s)TVm + vTmZTmBmZmvm <_ O, we
can write

rmllh llmin [ bo
IIh l[ < 211Am/ Amll h -i- -Vhmsm

/ IIY BmZmllllUmllllVmll 2p hmVhmsm,T T

T
8Using (4.1)-(4.3) and (4.5) and the fact that lih + Vh 11 < Ilhell, we can write

r,llh,llmin [TA,. ]L bo Ilhmll < (2bl + bbo + 2pba)llh,llllSmll.

If we use the above inequality, together with the fact that rk is updated by (3.6) only
when [Ihkll > cAk, we obtain

x/b0(2b + bbo + 2pb3)
min(T, c b0

This result, together with the fact that m- does not satisfy (5.16) implies that

mdoes not satisfy (5.16). This contradicts the supposition that m is the first index
such that (5.16) is satisfied and means that there is no such m. Hence the sequence

k is bounded. [:l

From the definition of {k} and the last lemma, it follows directly that the se-

quences {rk} and {_Pk} are bounded.
LEMMA 5.9. The sequence {_Pk} is monotonically nondecreasing.

Proof. From the way of updating the penalty parameter r we always have, for all
k, p_k_ <_ rk and since _p_ min{rk, rk-,..., rk-N+l }, then we must have pk_ _< -Pk’
which means that the sequence {_Pk} is monotonically nondecreasing. [:]

Now we argue that {_Pk} will increase in a finite number of iterations until it

reaches its upper bound. In other words, there exists an integer such that -Pk -P
for all k > ].

First of all, we study the possible increase in r over -Pk-l" In other words, if
there is an increase in rk over -Pk-’ how much is this increase? If rk is increased over

-Pk-’ it will increase through one of the following three possibilities:
1. It will be increased by at least p if it is increased according to (3.6) regardless

of the result in (3.5) of Scheme 3.4.
2. It will be increased by at least p if -Pk-1 + p -<- regardless of the result in

the "if" statement of Scheme 3.4.
3. It will be increased by at least (k- _Pk_) if _p_ < k_l, but p_ + p >

Pk-l"
Notice that the amount (_---Pk-) can be very small so that, if at each iteration

the penalty parameter increases by this amount, it seems that the algorithm may take
infinitely many iterations without {_p} reaching its upper bound. Later on we show
that this situation cannot happen.

Also, we notice that, for Pk- < k-1 we always have --Pk-1 < rk, which means a

possible increase in _p_ to _p.
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Finally, we notice that, the only possibility that rk Pk-1 is when Pk-1
and --Pk-1 satisfies (3.7). In this case P-k-1 rk -ilk-1 which implies that -P-Pk
Pk"

Define the following three sets of indices:

Pk-1

I= { k --P:-I+P-<-I }.
J { k ,ok_ < k- but --Pk-
K { k --Pk-1 Pk-1 }"

The following propositions can be easily verified.

PROPOSITION 1. I] k + 1 E I then P---k+N - P--k + p"

PROPOSITION 2. If k K then either k + 1 K, or k + 1,..., k + N- 1 I.
PROPOSITION 3. If k J then either k + 1 J, or k + 1 K, or k + 1,..., k +

N-II.
PROPOSITION 4. Ifk, k+l,...,k+N-1 J, thenk+N K, ork+N,...,k+

2N-2I.
It is easy to see that (in the worst case) every 2N- 1 consecutive iteration at

which the sequence {_p} increases, will increase by at least p. Thus, because {_p} is

bounded, the sequence {_p} will take only a finite number of iterations to attain its
upper bound.

LEMMA 5.10. If the algorithm does not terminate, then there exists a positive
integer k2 and a constant r, > 0 such that, for all k >_ k2, rk r,.

Proof. We notice that, because of Lemma 5.8, after finite number of iterations

kl inequality (3.7) will be satisfied for all k k kl. This implies that there exists an

integer k2 > kl such that _p k for all k _> k2. However, from the way of updating
rk, this will imply that _p rk -ilk for all k >_ k2. This implies rk r, for all
k>_k2.

5.3. The main global results. We show that the algorithm always terminates.
This is shown in two steps. First, it is shown that if the algorithm would not terminate,
then lim__.llh[[ 0. Second, it is shown that if the algorithm would not terminate,
then lim inf_. ii TZk Vfk II 0. Thus for every e > 0 there exists an integer k0 such
that Ilhko + IIZToVfko II < e.

The following lemma is crucial in proving that the algorithm will converge to a
feasible point. Intuitively speaking, it hhows that the trust region will not collapse to
a point as long as Ilhkll is bounded away from zero.

LEMMA 5.11. Let the global assumptions hold. If the sequence of iterates gener-
ated by the algorithm is bounded away from the feasible region, i.e., Ilhkll > eo, for
some fixed positive constant eo and all k, then there exists a constant c3 > O, such
that, for all k

(5.17) Ak >_ c3.

Proof. The proof is by contradiction. Suppose that {Ak} is not bounded away
from zero, then there exists a sequence of indices {kj } such that

alboal(5.18) A. < (1 ’r/2),
T
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for all k E {kj }, where

TA1 r0 }ai min e0, alb0(1 -r2)’ 2vb4b2o
Let m be the first integer such that (5.18) holds. It is clear from the definition of
that

TA
albo(1

which implies that m >_ 2.

Using (5.18) and the way of updating Ak, we can write

(5.19) TIISmJ--lll < TAmilm-ll < < Crl(1- 2) < Crl < aO,
bo aibo

where 8mJ_ is the last rejected step, just before finding an acceptable one and moving
to the point (Xm, Am). Here sm-i Sm-i if there are no rejected ones between Sm-i
and sin. We obtain from (5.3), that

(5.20) Predm_l > rm-lmin 0, >
2 b0 2/b0

On the other hand, from (5.1),

IAredm_l Predm_ll <_ rm_lb4IlSm_lll2.

From (5.19), (5.20), and the above inequality, we have

[Aredm_ Predm_ll < 2/b4bo
l]s._lii

Predm_l "ro

2x/babal(1 72) < (1 2).T20

The above inequality implies that the step 8m_ was an acceptable step, i.e., Sm-i
Sin-1. It also implies that Am-I _< Am and means that Am-i satisfies (5.18).
This contradicts the supposition that m is the first integer such that (5.18) holds.
Therefore, there is no integer k such that (5.18) holds. The lemma is proved, rl

The following theorem proves that under the global assumptions, either the algo-
rithm satisfies its termination condition, or it converges to a feasible point.

THEOREM 5.12. Let the global assumptions hold. If all members of the sequence
of iterates generated by the algorithm fail to satisfy the termination condition, then

lim IIh ll 0.

Proof. We prove the theorem in two steps. First, we show that liminfk__. Ilhkll
0, then we use this result to prove the theorem.

Assume there is an l > 0 such that I[hkll >_ el, for all k. For any k, we have

rh ilhkllmin [TAk ]Ok Ok+l Aredk >_ rlPredk >_ - [---o Ilhkll
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Since {Ok} is bounded below, (I)k+l < Ok, for all k _> k2, where k2 is as in Lemma
5.10 and Ilhkll >_ el for all k, it follows that

lim inf Ak 0.

On the other hand, because Ilhkll >_ el for all k, Lemma 5.11 implies the existence of
a constant 3, such that Ak > 53 for all k, which is a contradiction with the above
limit.

Therefore, the assumption Ilhkll >_ el for all k has led to a contradiction. Hence

(5.22) lim inf Ilhk 0.

This result shows that at least one subsequence of {xk} will converge to a feasible
point.

Now we show that every subsequence will converge to a feasible point. Suppose
that there exists a subsequence {k } of indices such that IIh. II > el. Because of this

and (5.22) we may select two subsequences {kj} and {/j} as follows: Let {ky} C {k}
and for each j we select an li., such that

{ }max e [ky,kj+l) llhill > -, ky <_ <_l

From (5.21), for all iterates such that kj

_ _
lj,j 1,2,..., we have

(Ih-(Ih+l _> min
[ 2

From the above inequality, it follows that

(I)kj (I)lq-1 E ((I)t (I)l--l) > Tlel
4 ---’min|--a

l=k: l=kj

ljThis implies -4=k At --* 0. But

l=k l=kj

So, as j --, oc, -Xl:i-t-lll o. This implies that there exists an integer k3
sufficiently large such that Ilxk -xt+lll < where / max(b2 1) Now, using29,
(4.4), we have

IIh<ll < IIh- h+li + IIh+ll < be----!- e
2 +-- <_el

for all kj sufficiently large, which is a contradiction.
So the supposition that Ilhk} II > el has led to a contradiction. Hence, the suppo-

sition is wrong and the theorem is proved. D
The following lemma is needed in the proof of Theorem 5.14. It proves that under

the assumption that the algorithm does not terminate, if {llZ’Vfkll} is bounded away
from zero, then the trust-region radius will be bounded away froIn zero.
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LEMMA 5.13. Let the global assumptions hold. If all members of the sequence of
iterates generated by the algorithm fail to satisfy the termination condition and satisfy
IIZ[Vfkll > 2, for some fixed constant 2 > O, then

(5.23) Ak >_ ca,

where c4 is a positive constant independent on k.
Proof. Since the algorithm does not terminate, then from Theorem 5.12, Ilhkll

0. Hence there exists an integer ka sufficiently large, such that, for all k >_ k4, we have

2bbo’ 16v/b--- min 1,
4bA,

Now, using (5.24), we can write

2IIZVfk + Z[Bksll >_ IIZVfkll bbollhkll >_ -.
From Lemmas 5.3, 5.4, and the above inequality, we can write

Predk >_ -Tpredk + -min 1,
4bA,

Again, by using (5.24), we obtain

1 1 [ ]Z Vfe + sZk BkPredk > -Tpred > -llZ[Vfk + Z[Bsllmin Ak,
T T n

2b

Hence, for all k >_ k4, we have

(5.25) Predk > 2min Ak16 ’-
The rest of the proof is by contradicting (5.23). Suppose that (Ak} is not bounded
away from zero. Then there exists a sequence of indices (kj } such that

(5.26) Ak

for all k E {kj }, where

2 2 Ak4
a2 min 4-’ 16x/r.b4 al (1

Let m be the first integer such that (5.26) holds. It is clear that m >_ ka / 1. Using
(5.26), then from the way of updating Ak, we can write

<a2(1--2)<a< e2

al -4b’

where Sm- 1 is the last rejected step, just before finding an acceptable one and moving
to the point (Xm,)m). Observe that Sm- 1 Sin--1 if there are no rejected steps
between sin-1 and sin. We obtain from (5.25) and (5.27), that

(5.28) 2Predm_l > 1- Sm- Ii.
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From (5.1), we have

By using the above inequality and (5.28), we obtain

]Aredm_l Prd,-ll < 16v/r,b4 lls-ll <_
16vr,b4a2(1 r/2) _< (1

Predm 2

The above inequality implies that the step 8mi_ was an acceptable one, i.e., 8m_
Sm-. It also implies that Am_ _< Am and means that - 1 satisfies (5.26).
This contradicts the supposition that m is the first integer such that (5.26) holds.
Therefore, there is no integer k such that (5.26) holds. The lemma is proved.

The following theorem proves that under the global assumptions, if each member
of the sequence of iterates generated by the algorithm does not satisfy the termination
condition of the algorithm, then there exists a subsequence (xk } of these iterates for
which (11 zkT Vfk } converges to zero.

THEOREM 5.14. Let the global assumptions hold. If all members of the sequence
of iterates generated by the algorithm fail to satisfy the termination condition, then

lim inf IIZ[Vfkll O.
k--c

Proof. The proof is by contradiction. Suppose that there exists an 3 > 0 such
that II TZk Vfk II >-- e3 for all k. As in Lemma 5.13, there exists an integer ka sufficiently
large such that for all k >_ k4, we have

Pred >_ -i-min A,
On the other hand, for all k >_ k2, rk r,. Hence, for k >_ max(k4, k2 }, we have

(5.29) ?13 3]0 Ok+ Ared >_ IPredk >_ --min Ak,

Since Ok is bounded below and 0+ < Ok, for all k >_ max{k4, k2}, we have

lim inf Ak 0.

On the other hand, because of the assumption that the algorithm does not terminate
and that [IZVfkl[ >_ 3, for all k, Lemma 5.13 implies the existence of a constant
54, such that Ak > 54 for all ko This contradicts the above limit. Therefore, the
supposition IIZ[Vfk]l >_ 3, for all k has led to a contradiction. Hence the supposition
is wrong and the lemma is proved.

The above two theorems imply that under the global assumptions and the as-
sumption that the algorithm does not terminate, the algorithm produces an infinite
sequence of iterates {xk } that satisfies

(5.30) liminf [llh[[ / I[Z[Vf[[]- 0.

This result contradicts the assumption that the algorithm does not terminate and
means that the termination condition of the algorithm will be met after finitely many
iterations.
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Satisfying the termination condition by itself means that the point at which the
algorithm terminates lies in a ball of radius O(e) and center at a stationary point

In practice there is no difference between liminfk__. Ilhkll + TWkll] 0
and limk-. [llhkll + IIZ[Vfkll] 0. Both mean that the algorithm will terminate
after finitely many iterations.

If the point (x,, A,) is not an isolated local minimizer that satisfies the second
order sufficiency condition, then our analysis is stopped here. On the other hand, if
the algorithm avoids the neighborhoods of stationary points that do not satisfy the
second order sufficiency condition, then we remove the termination condition from
the algorithm and proceed, in the following section, with the local analysis.

6. The local analysis. In this section, in addition to the global assumptions,
we add the following assumption.

LOCAL ASSUMPTION A. We assume that the problem has a finite number of
isolated local minimizers and each one satisfies the second order sufficiency condition.

We remove the termination condition from the algorithm and proceed with the
analysis. Because there is no termination condition, Lemma 5.10 and Theorems 5.12
and 5.14 are no longer valid. However, the global analysis still implies that given
any e > 0 there exists a ball Bs(2, ) of radius and center (2, ), where
stationary point of the problem, such that the sequence of iterates generated by the
algorithm is not bounded away from this ball, i.e., for some k sufficiently large, we
have (x,) e Bs(,

The local analysis of our algorithm is presented in three sections. In 6.1 we study
the behavior of the penalty parameter after removing the termination condition from
the algorithm. In 6.2, we prove that the sequence of iterates {(x, A)} converges
to a local minimizer (x,,A,). Section 6.3 is devoted to studying the local rate of
convergence of our algorithm. We show that our globMization strategy will not disrupt
the fast local rate of convergence.

If the point (x,, A,) satisfies the second order sufficiency condition (see 1), then
by the continuity assumption, there exists a neighborhood Af(x,, A,) of (x,, A,) such
that Z(x)TV2xl(x, A)Z(x) > 0 for all (x, A) e Af(z,,

6.1. The local behavior of the penalty parameter. In this section, we prove
technical lemmas needed to study the local behavior of the penalty parameter. At
the end of this section we prove that, under the global assumptions and Assumption
A, the penalty parameter is bounded.

The point (x,, A,) is used in this section to mean a stationary point of the problem
that satisfies the second order sufficiency condition and Af(x,, A,) is used to mean
neighborhood of (x,, ,) such that Z(x)TV2xl(x, ))Z(x) > 0, for all x

LEMMA 6.1. If (Xk, k) E Jf(x,, ,), there exists a positive constant el, such that

Proof. Since (xk, Ak) Af(x,,A,) then ZBkZk is positive definite. Hence,
there exists a positive constant el such that, for all k sufficiently large el llvkll 2 <_
T TVk Zk BkZkvk. Now, since

T T T ZBkB)Tvk,v Zk BZv <_ -(Z Vfk +
we can write

(6.1) elllvkll <_ IIZ[Vfk + Z[Bks’l1.
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This completes the proof. [:1

LEMMA 6.2. If (Xk,Ak) e Af(X,, ,) is such that
and bo is as in (4.2), then2bo

IIZ[Vf + Z[Bs’ll > -I!11.
Poo:f. Since I111 / IIvll > I111, th by uig (4.2) d (.), w obti

IIZ[Vf + Z[Bs’l[ > e(1- ebo)llsll.

Using e2 <_ bo’ we obtain the desired result.
LEMMA 6.3. If (Xk, Ak) e Af(x,,’,k,) is such that Ilhkll <_ e311skll where e3 is a

positive constant that satisfies

(6.2) e3 <_ min e2, 64x/bb5

where b is as in (4.1), b5 is as in Lemma 5.4, el is as in Lemma 6.1, and e2 is as in
Lemma 6.2, then

1 rk(6.3) Predk >_ -Tpredk +-Npredk.

Proof. From Lemmas 5.3 and 5.4, we have

Predk _> -Tpredk + g IIZ[Wk + Z[Bksllmin A, IIZTVfk +2bZ[Bksll
rk(6.4) -ballsllllhell + gpredk.

Now, since IIhll ealll and e3 e2 then by using Lemma 6.2 we have IlZfk
ZTB n
k k% ]lsk [ and using (6.2) we obtain

8 IIZ/V f +Z[Bsllmin A, llZ[Vf +2b
T

min g bbea ilkll 2 O.

The renainder of the proof follows immediately.
From the proof of the above lemma we see that, if llhkl e3lSkl, then the second

term in (6.4) will cancel the third term and the fourth term need never enter into the
calculation. This implies that if we set rk pk_, (see Scheme 3.4), inequality
(6.3) remains valid. In this ce the algorithm will not update rk using (3.6) because
inequality (3.7) will be satisfied.

LEMMA 6.4. 1f for all k, (Xk, Ak) (x,,A,), then rk r*, where r is a
positive constant that does not depend on k.
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Proof. First we follow a proof similar to the proof of Lemma 5.8. We demonstrate
the boundedness of the sequence {k}. The rest of the proof follows because, for all
k, r <_ p.

LEMMA 6.5. Under the global and the local assumptions, the sequence rk is
bounded.

Proof. Because we have a finite number, p say, of local minimizers that satisfies
the second order sufficiency condition (see Assumption A), we can find a radius
such that -(x A,) C Afi(x, A,), for 1, 2, p.

Now consider the set B [-JiP=l B(x,, ,). If any iterate k is such that (xk, Ak)
B then from the global analysis, there exists a constant 4, such that, rk <_ 4,. Observe
that 4, depends on g. Here g is fixed. On the other hand, if (xk, ik) E B then from
Lemma 6.4, there exists a constant *, such that rk

_
4*. Now take - max(f,, *),

we can see that the sequence {r} is bounded by
Now we follow the argument that comes immediately after the proof of Lemma

5.9, and then follow the proof of Lemma 5.10, we conclude that there exists an integer
k such that for all k >_ k the sequence of penalty parameters reaches its upper bound.

In the following section we study the sequence of points {(x, Ak)} generated by
the algorithm after the penalty parameter reaches its upper bound.

Without loss of generality we may assume that the sequence of penalty parameters
is independent of k.

6.2. First order convergence. From the global analysis, there exists a sub-
sequence of points {(xk,
Af(x,, ,), for all k e {kj}.

Consider the level sets . =_ { (x, A) (x, ), r) <_ (xk, Ak, r)}. There exists an

integer sufficiently large, such that/: c Af(x,, ,).
The following lemma proves that there exists an index k such that all the subse-

quent iterates generated by the algorithm will never leave the level set .
LEMMA 6.6. Under the global and local assumptions, there exists an index k

sufficiently large, such that (xk,)k) e , for all k > k.

Proof. From the global analysis and local Assumption A, there exists an index k
such that

The proof now is by contradiction. Suppose that sone iterates leave the set .
Let m + 1 be the first iterate that leaves the set. Therefore, (Xm, Am) 1 and
(Xm+, Am+) - . Since Sm is an acceptable step, then we have

m m+ Aredm >_ lPredm >_ O.

Then m -> Om+. This implies that (Xm+lj, ,m+l) . This gives a contradiction.
Hence the lemma is proved.

THEOREM 6.7. Under the global and local assumptions, the algorithm will gener-
ate points that satisfy

lim Ilhkll O.
k.-c

Proof. The proof is similar to the proof of Theorem 5.12.
Under the global and local assumptions, Theorem 5.14 can be improved.
THEOREM 6.8. Under the global and the local assumptions, we have

lim Z[Vf II O.
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Proof. First we follow a proof similar to the proof of Theorem 5.14. We demon-
strate

(6.5) lim inf Z’Vfk II O.

The rest of the proof follows by contradiction. Suppose there exists a subsequence
of indices {kj} such that kj >_ , where is as in Lemma 6.6, and [[Z[Vfkl[ > al for
all k e {ki}, where al > 0.

Take an iterate k E {kj } sufficiently large such that for all k >_ k, we have

(6.6) Ilhll min
2bbo’ 16b min 1,

4bA,

For some > o and any x , we have

IlZ(x)V(x)ll IZV,II- IIZ()Vf(x)-
T

This implies that IIZ(x)TVf(x)ll >_ 1/211zkT, vfk, > holds for every x e f that
satisfies

2Z
Therefore, take

(T2
IIzT,vf, II
2

and consider the ball U. {z. IIx- z,ll <_ }. For all k >_ k’ such that xk e U2,

we hve IIzfll > . As in Lemma 5.13 (because of (6.6)), we have, for all k >_ k’

T n O’1IIZ[Vf / z Bs II >
and

Z BsPredk > -gllZ2Vfk + ZBks’l min A,
2b

This implies that for any iterate k >_ k that lies inside the ball, we have

Predk > min

Because of (6.5), the iterates, for all k >_ k, cannot stay in this ball. Let + 1 be the
first integer greater than k such that the point xl+l does not lie inside the ball
Hence,
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Therefore,

(6.7) (k,-(+l>
32

Since (I)k is bounded below and is a decreasing sequence, {(I)k } converges to some limit
(I),. Taking the limit as goes to infiaity in inequality (6.7), we obtain

(I)k,- (I), > ,!rl min [a22 ab]32

If we now take the limit as k’ goes to infinity, we obtain

0> rlal min[ a2

which contradicts the fact that al > 0 and a2 > 0. Hence there is no such sequence
and the lemma is proved.

6.3. The local rate of convergence. In this section we prove Lemma 6.9 which
is needed in our analysis. Then we prove Lemma 6.10 which proves that under the
global and the local assumptions, for k sufficiently large, all the trial steps will be
accepted and the trust region will not be decreased. In Theorems 6.11 and 6.12, we
study the local rate of convergence of our algorithm. We show that asymptotically
the trust region will be inactive and hence the fast local rate of convergence will be
maintained.

LEMMA 6.9. Under the global and local assumptions, there exists a positive con-
stant e4 independent of k such that

Predk

Proof. If IIh ll < esllsll, where e3 is as in (6.2), then using Lemmas 6.3 and 5.3

Pred >_ -Tpredl >_ glllz[vfk + Z[Bks’llmin [ Ilskllx/ IIZVfk /2bZ[Bksll]
But, since ]]Z[Vfk + Z[Bks] >_ liski], then

Predk >_ -mm -, - I111.
On the other hand, when IIhll > eallll, from (.3) and the fact that r _> --Po
have

r [TAkPredk >_ - Ilhk [Imin [
If we take

e4 min 64/-b
we obtain the desired result.

IIhll > -min bo
e3 118k112"

mini4b’ v/e] 2x/be3min [T,X/boe3]}
We add to our local assumptions the following set of assumptions.

1, we
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LOCAL ASSUMPTION B. V2l is Lipschitz continuous in a neighborhood of the
solution x,.

LOCAL ASSUMPTION C. If an approximation to the exact Hessian is used, then
for all k, Bk satisfies

lim
IIZk(Bk V2l*)skll O.(6.8)

The bove assumption is the Boggs-Tolle-Wang characterization of q-superliner
convergence of {x} to x,. It is proved by Boggs, Tolle, and Wang (1982)[1] and
Powell (1983)[17] that under the local assumptions, Algorithm 1.1 converges to x, q-
superlinerly. On the other hand, if the exact Hessian is used, the local convergence
rate is q-quadratic. (See Goodman (1985)[10].)

The following lemma shows that, for 11 k large enough, the trust-region radius

A will not be decreased, i.e., the sequence {A}, for k large enough, will form a

nondeereasing sequence.
LEMMA 6.10. Under the 91obal and local assumptions, there exists an inte9er k5

sufficiently large, such that for all k > kh, we have

Aredk > 72.Predk

Proof. We have, using (2.1),
ffP(xk + 8k, .k+l, r) ffP(Xk, )k+l, r) + 7xO(Xk, k+l, r)Tsk

1 2+ vv(x,+,) + o(llsll)
1 _T2 ,r)Tsk(Xk, k, r) + Vx(xk, k, r)TSk + sk vx(Xk k

1
+ ()h +()Vh +fi()V+ 0(]).

om the above equation, using the definition of Aredk, we obtain

1 T 21(Xk,k)SkAredk --Vxl(Xk, Ak)Tsk Sk Vx

--(AAk)T(hk + Vh[sk)- r[]]hk + Vhs]2 -]]hk]] 2]

IsV2hAAs rsV2hhs2
If we use the definition of Predk and the above inequality, we obtain

1
Ad Pd o(,,1) ]V,- [[Vt. ]Z

We show first that the lt two terms are o(l]s]] 2) + o([se ]] ][he ]]). By dif-
ferentiating the normal equation Y(x)T[Vxl(x,A(x))] 0 at x x,, we obtain
YT[2l**t--x + Vh,VA] 0, or equivalently R,VA --YTu21,.,_ Therefore,

()v VR+o(l])

R. + o(][])-V.R.] -2
k
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Hence,

Ok

-Vz,[Y. Y]u / o(1111)
/ o(llllllhll),
o(1111) / o(llllllhll).

Using Lemma 6.4, for k large enough, we have

rl T 2sAredk > 1
1 [oO!sk.!l 2) o(llskllllhll) +Predk- e4 k 118kll 2 -+ I[v. BlZvl + I[V V.]l]

21111 21111 J
Using the locM sumptions, Theorem 6.7, Theorem 6.8, Lemma 6.1, nd inequality
(4.2), we conclude that there exists an integer k5 sufficiently large such that, for all
k k, we have

Aredk
2.Predk

Hence, the theorem is proved.
TsBkZkvk instead of skBks and usedIn our definition of Predk we used

hk Vhsk instead of hk Vhsk. This way of defining Predk allows us, when
comparing with the second order approximation of the terms of Aredk, to have two

sBkYuk and Textra terms, namely, Vh sk. These two terms are very important
in our local analysis because they allow us, using local Assumption C, to prove that
Pd pproit Ard to wthits that r of odr o(1111

Now k 0, IIhll 0 nd IIZ/AII 0 d hnce I111 0. Thi ipi
that Ad 1 which means that for k sufficiently large all the steps produced by ourPred
algorithm are acceptable. This also means that for k sufficiently large the sequence
of trust region radii {h} is a nondecreing sequence.

The following two theorems show that the ft local rate of convergence will be
maintained.

ThEOrEM 6.11. Under the global and local assumptions, i the exact Hessian is
used, then for k suciently large, xk x, q-quadratically.

Proof. om Lemma 6.10, the trust region radius Ak for k k is updated
according to the rue + min{,,ma[,allsll]}. Hence, A A for all
k k5. However, for all k, Ak A,.

First, we show that the trust region will be inactive for sufficiently large k. Sup-
pose there exists an integer k6 k5 such that the full normal and tangential com-
ponents of the step are not taken for M1 k k6. This implies that for all k k6,
IIRTII I111 > d
h h. But, using (4.2) and Lemma 6.1, this contradicts the fact that IIhl 0
nd il TZ VAil 0. Therefore, there exists a subsequence of indices (k } such that

d I1% where all of k k6.
Let m E (kj} be the smallest integer greater than k6 such that IIsll ,

Ii11 , and such that the local method, i.e., Algorithm 1.1, generates steps that
re q-quadratic, i.e., satisfies
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where 1 is a constant. But since the local method converges r-quadratic in the
components s and s, this implies the existence of an integer k7 >_ m, such that for
all k _> kT, we have

and

II(Z[BZ)-(Z[Vt + Z[Bks’)l[ <_ 3()k’,

where 2,3,/1, and "2 are constants and /,’2 E (0, 1). This means that if we
choose k7 sufficiently large such that max{2(-y)k,3(-22)k7 } <_ Ak7 then we have,
]lR-Thkll <_ Ak, II(ZBZ7)-(zkTVlk + zkTBks’)ll _< A, and for all k _> k7,
we have

IIR-Thk <-

But since, for k >_ kh, we have Ak

_
Ak+l, and all the steps are acceptable, then

T n(ZkT+lBk+lZkv+l)-l(ZkT+ VlkT+l -}" ZkT+ Bkv+ 8kT+l)ll _< _<

The above two inequalities and the fact that for all k >_ k5 all the steps are
acceptable imply that the full step will be taken at iteration k7 + 1. By induction, for
all k >_ kT, the trust region will be inactive and the full step will be accepted.

This means that the sequence x, k >_ k7 generated by the algorithm is the se-
quence of iterates generated by Algorithm 1.1 and consequently the local rate of
convergence is q-quadratic.

THEOREM 6.12. Under the global, and local assumptions, if an approximation to
the Hessian of the Lagrangian that satisfies (6.8) is used, then for k sujficiently large,
xk --* x, q-superlinearly.

Proof. From the above theorem, we have for all k _> kT, that the trust region
will be inactive and the full step will be accepted, where k7 is some sufficiently large
integer. This means that the sequence {xk},k >_ k7 generated by the algorithm is
purely the sequence of iterates that is generated by Algorithm 1.1.

Second, it is proved by Boggs, Tolle, and Wang (1982)[1] that if we use a scheme
for approximating Bk in Algorithm 1.1, then x -. x, q-superlinear if and only if
assumption (6.1) is satisfied.

Now as a consequence of the local assumptions and the above two parts of the
proof, if ks is taken sufficiently large such that the local method, i.e., Algorithm 1.1,
generates steps that are q-superlinear, we conclude that the local rate of convergence
is q-superlinear, n
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7. Concluding remarks. We have presented an algorithm for solving the equal-
ity constrained optimization problem. This algorithm has many desirable features. In
this algorithm, we use Fletcher’s differentiable penalty function as a merit function.

In computing the trial step, after factorizing Vhk using QR factorization, two
inexpensive subproblems must be solved. One of them is an upper triangular linear
system. The second one is a subproblem of smaller dimension m m similar to the
one we obtain when solving unconstrained optimization problems using a trust-region
method.

In our algorithm, to obtain the matrix Bk, the exact Hessian of the Lagrangian
can be used. On the other hand, an approximation to the Hessian matrix can also
be used. For example, setting Bk to a fixed matrix for all k is valid. However, if
Bk is obtained by quasi-Newton updates, the uniform boundedness assumption on
Bk, condition (4.1), causes some difficulties. For an analysis of this problem for
trust-region algorithms for unconstrained problems see, e.g., Powell (1984)[18], and
for minimization problems with convex constraints, see, e.g., Toint (1988)[22]. The
question of how to use a secant approximation to the Hessian of the Lagrangian is a
research topic. We believe that Wapia (1988)[20] will be of considerable value here.

One of the main advantages of this algorithm is the way that the penalty param-
eter is updated. It is updated in such way as to ensure that the merit function is
decreased at each iteration by at least a fraction of Cauchy decrease in the quadratic
model of the linearized constraints and at the same time it can be decreased whenever
it is warranted.

We have presented a convergence theory for this algorithm. We showed that the
algorithm is well defined and is globally convergent. To the best of our knowledge this
is the first time a global convergence theory has been proved for an algorithm with
a nonmonotonic penalty parameter updating scheme. This updating scheme should
avoid the numerical difficulties that may occur if the penalty parameter is increased
at each iteration. We have also proved that the algorithm will terminate at a point
that is not bounded away from a stationary point.

We also presented a local analysis for this algorithm. In our local analysis we
proved that our globalization strategy will not disrupt the fast local rate of conver-
gence.
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A CLASS OF TRUST REGION METHODS FOR NONLINEAR
NETWORK OPTIMIZATION PROBLEMS*

A. SARTENAERt

Abstract. We describe the results of a series of tests upon a class of new methods of trust region
type for solving the nonlinear network optimization problem. The trust region technique considered
is characterized by the use of the infinity norm and of inexact projections on the network constraints.
The results are encouraging and show that this approach is particularly useful in solving large-scale
nonlinear network optimization problems, especially when many bound constraints are expected to
be active at the solution.
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truncated Newton methods, numerical results
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1. Introduction. We consider the problem

minxel
(1.1) subject to

f(x)
Ax b
<_x<_u,

where f :Rn -- P is a twice continuously differentiable partially separable function,
A is an rn n node-arc incidence matrix, b E Rn and satisfies mi=1 bi 0, and and
uERn.

Many algorithms for solving the nonlinear network problem (1.1) have been pro-
posed (see [1], [3], [10], [11], [13], [21], and [22], for instance), most of them being
of the active set variety. In particular, a sequence of problems is solved for which a
subset of the variables (the active set) is fixed at bounds and the objective function
is minimized with respect to the remaining variables. Such algorithms typically use
linesearches to enforce convergence. A significant drawback of these methods, espe-
cially for large-scale problems, is that the active sets are allowed to change slowly and
many iterations are necessary to correct a bad initial choice.

In this paper, we propose a new algorithm of trust region type that allows rapid
changes in the active set. This algorithm is an adaptation of the one proposed by
Conn et al. in [4] for which we have already produced a general convergence theory.
At iteration k of the algorithm, we define a local model of the objective function at the
current iterate, xk say, and a region surrounding xk where we trust this model. The
algorithm then finds, in this region, a candidate for the next iterate that sufficiently
reduces the value of the model. If the function value calculated at this point matches
its predicted value closely enough, then the new point is accepted as the next iterate
and the trust region is possibly enlarged. Otherwise, the point is rejected and the
trust region size is decreased.

The determination of a candidate for the next iterate requires the computation
of a Generalized Cauchy Point (GCP) that expands the notion of a Cauchy Point
to problems with general convex constraints (see [4]). This h the double advan-
tage of allowing significant changes in the active set at each iteration and permitting

Received by the editors July 12, 1993; accepted for publication (in revised form) January 12,
1994.

Department of Mathematics, Facults Universitaires N.D. de la Paix, 61 rue de Bruxelles, B-
5000, Namur, Belgium (as0math. ftmdp, ac. be).
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the extension of well-known convergence results for trust region methods applied to
unconstrained problems (see [18]) and to simple bound constrained problems (see [7]).

The calculation of a suitable GCP, which makes use of the first order information,
is performed by solving a sequence of linear network problems. The GCP is thereafter
refined to calculate a candidate for the next iterate using the second order information
through a truncated conjugate gradient technique. This technique, as well as the linear
solver used for the GCP, takes advantage of the network structure in the constraints
of problem (1.1) by combining a data structure of the type proposed by Bradley,
Brown, and Graves [2] with a partition of the variables similar to that proposed
by Murtagh and Saunders [19] implemented in MINOS, also making use of variable
reduction matrices. Moreover, we use the concept of maximal basis that is especially
well suited in our context to allow adequate adaptation of the theory developed in
[4] for the active set identification strategy. Note that most of the aforementioned
techniques are equally exploited in successful existing large-scale nonlinear network
solvers, such as GENOS [1] and NLPNET [10].

Section 2 of this paper gives a general introduction to the framework of our
algorithm, together with a detailed description of the computation of a GCP and of a
candidate for the next iterate. The optimality conditions and the specific algorithm
are also presented in this section. Section 3 reports and comments on some numerical
experiments, and includes a comparison with an existing available specialized software
for the same problem. Finally some conclusions and perspectives are outlined in 4.

2. Description of the algorithm.

2.1. The basic algorithm. As already mentioned, our algorithm is of trust
region type and the description given here is a special case of the general framework
presented in [4], adapted to the solution of problem (1.1). We first introduce the
following concepts. The feasible region for problem (1.1) is the polyhedral set

X=(xERnlAx--b and l_<x_<u},

and any point x in the feasible region is called feasible. We define the active set with
respect to the vectors and u at the feasible point x as the index set

4(x,l,u) {i e {1,...,n}l [x]i [/]i or [x]i [u]i},

where [vii denotes the ith component of the vector v.
At the kth stage of the algorithm, we suppose that we have a feasible point

the exact gradient Vf(xk) (denoted gk) and the exact Hessian V2f(xk) (denoted Hk)
of the objective function at x. We also require a scalar Ak > 0 for the trust region
radius, and choose the quadratic model of the form

1
+ f(z ) + +

to approximate the. objective function around xk. A trial feasible step sk is then
computed by approximately solving the trust region problem

minsep mk(xk + s)
subject to As 0

<_x+s<_u
and [[s[I <_ A,
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where I1" II is a suitable chosen norm. The updates of the iterate xk and of Ak are done
using the same criteria of acceptance as in trust region methods for unconstrained or
bound constrained minimization (see [18] and [7]). That is,

xk + sk if Pk > r/l,
xk+

Xk if Pk <_ 71,

and

2Ak if Dk

_
?/2,

A+ Ak if ?’/1 < Pk < ]2,

1/2 min(llskl], Ak) if Pk <_ ,
where

f f +
mk(xk) m(x +

represents the ratio of the achieved to the predicted reduction of the objective function
and 0 < ? < 72 < 1 are appropriate numbers. It now remains to describe our
approximate solution of (2.1).

The choice of the infinity norm for the trust region constraint in problem (2.1)
allows us to replace the bound constraints and the trust region constraint in this
problem by the bound constraints

(2.3) max([/]i, /k) dej ilk]

_
[Xk + 8]i

_
de:f min([uli, Ix/eli + Ate)

for i 1,..., n. Problem (2.1) then becomes

minseR=
(2.4) subject to

mk(xk + S)
As 0

l <_ x + s <_ u.

In order to satisfy the global convergence theory developed in [4], we need to find
a feasible point xk+sk within the trust region at which the value of the model function
is no larger than its value at the GCP. This GCP, denoted xC, is found through a
projected search on the model along an approximation of the projected gradient path
(i.e., the projection of the gradient on the feasible set). Note that the determination
of the active set (the set of variables that are to be fixed at one of their bounds during
the current iteration) takes place when finding the GCP. Since no restriction on the
number of variables moving into or out of the active set is imposed from one iteration
to the other, rapid changes may occur in the active set. This is extremely useful
in large-scale optimization problems since the number of iterations required to find
the correct active set may hence be considerably smaller than the number of active
bounds at the solution. Subsequently we use second order information to refine the
GCP and provide a fast ultimate rate of convergence. Therefore, following Murtagh
and Saunders [19], we first partition the matrix A as

A=(B S N),
where the m m submatrix B is nonsingular, and define

(2.5) {1,...,n} B u,., uAF,
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the induced partition of the variable indices. For a node-arc incidence matrix, Dantzig
[9, p. 356] has shown that the arcs whose indices are in B form a spanning tree of
the network. (These arcs are called basic arcs while the arcs whose indices are in S
and Af are called superbasic arcs and nonbasic arcs, respectively.) In that case, it
is worth using a specialized data structure of the type proposed by Bradley, Brown,
and Graves [2] that allows us to store and update the basis of the network (i.e., the
spanning tree) in a very efficient manner.

According to assumption (AS.8)in [4],

(2.6)

c that are at a bound must remain fixed when finding a betterthe variables of xk
approximation of a minimizer of (2.4). We then set, at each iteration k,

(2.7) A/" A(xCk, lk, Uk) \ B and s \ u

Since j 4(x, lk, Uk) ==* j q .4(xC, l, U), this choice for A/" produces a correct set
for S according to assumption (2.6), namely, an index set of arcs /3 strictly between
the bounds and u. Note that this choice imposes more than the assumption requires,
since it further fixes the components of the GCP that are on the trust region boundary
(even if they are not at a bound or u), which seems quite natural.

Using a variable reduction matrix Z as proposed by Murtagh and Saunders [19]
(that is, a matrix formed by column vectors that belong to the nullspace of A, yielding
the relation AZ 0) and choosing

(2.s) z
-B-S )I

0

we then solve approximately problem (2.4) by applying a conjugate gradient algo-
rithm, starting from the GCP, to the equation

ZTHkZ Isis --ZTgk.

Let [sk]s be the approximation found. We define the full trial step sk by sk

([ski/3, [Skis, [sk]), where [sk]B and [skiff satisfy

(2.9) B[s]B -S [sk]s

and

[s]: o.

We defer to 2.3 the management of the constraints lk < xk + s < uk during the
conjugate gradient schemes solving problem (2.4). Note that the matrix Z in (2.8)
exhibits a useful structure [16]. Indeed, the jth column of Z corresponds to the cycle
formed by adding the jth superbasic arc to the spanning tree associated with the
basis. This cycle can be decomposed in the jth superbasic arc, joining nodes e and f,
say, and its associated flow augmenting path (also called basic equivalent path), which
is the (unique) path between nodes e and f belonging to the tree. Let j be the set
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of indices of the arcs of this path. The element (i, j) of -B-1S is then given by

(2.10) I-B-iS] ij

/1

-1

if i E j and the ith basic arc has an orienta-
tion identical to that of the jth superbasic arc
in the cycle,
if i E j and the ith basic arc has an orienta-
tion opposite to that of the jth superbasic arc
in the cycle,

This special structure allows for a compact storage of the matrix Z, as well as for very
efficient techniques for computing products that involve this matrix or its transpose
(see [22] for more details). Moreover, this last structure is analogous to that of the
matrix -B-IN that arises in the computation of the Lagrange multiplier estimates,

[gk] NTB-T [gk],

with the only difference being that the Iiow augmenting path is now associated with
a nonbasic variable instead of a superbasic one.

In order to be sure that assumption (2.6) holds, we further need to impose that the
basic arcs whose indices are in A(xCk, l, u) remain fixed when finding the candidate
step sk. But this can be automatically induced by using the concept of maximal
spanning tree, as introduced by Dembo and Klincewicz in [12], that is a spanning tree
which has a maximal number of arcs whose flows are strictly between the bounds
and u (see also [23]). With such a spanning tree, a basic arc whose flow is at a bound
is not allowed to belong to the flow augmenting path of a free arc (that is an arc
whose flow is strictly between its bounds), since otherwise, the replacement of this
basic arc with the free one would increase the number of free arcs in the spanning
tree, in contradiction with its property of maximality. Given the way the index sets
Af and $ are defined in (2.7), every superbasic arc is ensured to be strictly between
the bounds and u, and the use of maximal spanning trees therefore prevents any
basic arc that belongs to the flow augmenting path of a superbasic arc to be at one
of its bounds. Consequently, since a basic component of sk computed from (2.9) may
be nonzero only if its corresponding arc belongs to the flow augmenting path of at
least one superbasic arc (see (2.10)), we are sure that the only basic arcs allowed to
change during the process are those that are strictly between the bounds and u.
Moreover, using the same argument, we force the basic arcs that are on the trust
region boundary to remain fixed by imposing that the spanning tree be maximal also
with respect to the bounds Ik and uk (that is to have a maximal number of arcs whose
flows are strictly between the bounds lk and uk).

Under condition (2.6) and a nondegeneracy condition, the strategy described
above is sufficient to ensure that the correct active set is identified after a finite
number of iterations (see [4]). We now give, in the next two sections, more details on

c and the trial step skthe computations of the GCP xk

2.2. The Generalized Cauchy Point. Following [4], in order to find a GCP,
we first need to determine an approximation of a suitable point on the projected

c c inside the trust regiongradient path. By this, we mean afeasible point x x /s
that satisfies the inequality

(2.11) g[s <_--#3ak(tk)
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for some fixed #3 E (0, 1] and tk > 0. Here k(tk) > 0 represents the magnitude of
the maximum decrease of the linearized model achievable on the intersection of the
feasible domain with a box of radius t centered at xk:

-ak(t) de._f mindeR g[d
(2.12) subject to Ad 0

lt <_ d <_ ut,

where

and

a-2

[utklj de__f min([u]j, [xklj + tk) [Xk]j
for j 1,..., n. Furthermore, this point must satisfy the two Goldstein-like conditions

(2.13)

and

TsC(2.14) either tk >_ min[ulAk, u2] or mk(xk + SCk >_ mk(xk) + #2gk k,

where 0 < #1 < #2 < 1, 1 e (0, 1) and Y2 e (0, 1] are appropriate constants.
The GCP Algorithm given in [4] is a model algorithm for computing a GCP that

verifies conditions (2.11), (2.13) and (2.14). It is iterative and uses bisection. At each
iteration i, given a bisection parameter value ti > 0, it computes first a candidate step

c
si that satisfies condition (2.11) (with t t and sk s), checking then conditions

c si), until either an acceptable GCP is found(2.13) and (2.14) (with tk t and sk
uor two candidates xk + s and xk + sk are known that violate condition (2.13) and

condition (2.14). Thus, if an acceptable GCP is not yet found, the algorithm carries
out a simple bisection linesearch on the model along a particular path between these
two points, yielding a suitable GCP in a finite number of iterations. This particu-
lar path, called the restricted path, is obtained by applying the so-called restriction
operator,

Rx [y] de_____f arg min z -YlI2,
z=[x,y]nX

where [xk, y] is the segment between xk and y, on the piecewise linear path consisting
of the segment [xk T s, xk -t- s] followed by [Xk + sPk, Xk T s], where

s max I1 [lS.ll]s
This restricted path is an approximation of the unknown projected gradient path
between the points xa + s and xk + s in the sense that each point on this path
satisfies condition (2.11) for some t > 0. It also closely follows the boundary of the
feasible domain, as does the projected gradient path. We refer the reader to [4] for a
detailed discussion of these concepts.

In order to perform the simple bisection linesearch along the restricted path, a call
to the RS Algorithm given below is made in the GCP Algorithm. The inner iterations
of Algorithm RS are denoted by the index j.
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RS ALGORITHM.
Step 0. Initialization. Set 6p IlsPk Skll2, 6u 6p --118 8Pkkll2, lo O, uo 6u

and j 0. Then define 5o 1/2 (10 -t- u0).
Step 1. Compute the point on the restricted path corresponding to

Step 1.0. Compute the step from xk to the piecewise linear path. Set

Set

s --I--(1
def

tp

and

Step 1.1. Calculate the smallest value of a such that x / as hits a bound.

I
min | min

L{e{1 n}l[sj]<o} [sj]i
min

{e{1 n}l[sj]>o}

Step 1.2. Compute the point on the restricted path. Set

aj min[1, a*]

xj xk + ajsj.

Step 2. Check the stopping conditions. If

(2.15) mk(Xj) > mk(Xk) ’ lg(xj Xk),

lj+l lj and Uj+l (j,

then set

and go to Step 3. Else, if

(2.16) mk(xj) < mk(xk) + #2g[(xj Xk),

lj+l 5j and Uj+l Uj,

then set

c
xj and STOP.and go to Step 3; else (that is if both (2.15) and (2.16) fail), set xk

Step 3. Choose the next parameter value by bisection. Increment j by one, set

1
( + u)=

and go to Step 1.

Note that the point x calculated at Step 1 satisfies the constraint Ax b and
minimizes the distance from xc+si in the direction -si while satisfying the constraints

_< xj _< u, as expected.
As mentioned before, at a given iteration i of the GCP Algorithm we first compute

a candidate step s that satisfies condition

(2.17) g[si <_-#3k(ti),
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where ti is the current bisection parameter value. We obtain si by applying a simplex-
like algorithm to problem (2.12) (where tk is replaced by ti) and by stopping this
Mgorithm as soon as an admissible iterate dt has been found that verifies

(2.18) [gkTde[ >_ #3 min [lATrr + (ut -lt)T#r gkTl]
r--1,...,

where

(2.19) rr [gk], B and [#]j max(0,rrAej [gk]j) (j 1,...,n),

where Br is the admissible basis associated with some previous candidate d, [gk]B,
is the basic part of gk and ej is the jth vector of the canonical basis of Rn. Indeed,
the right-hand side of condition (2.18) is an upper bound on the value of #3a}(ti) and
(2.18) thus implies condition (2.17) for si dt (see [4] for more details).

Now we give the GCP Algorithm itself. Its inner iterations are denoted by the
index i.

GCP ALGORITHM.
Step 0. Initialization. Choose A E (0, 1). Set l0 0, u0 Ak, st0 0 and i 0.

Also choose s an arbitrary vector such that IIsll > Ak and an initial parameter
to e (0, A].

Step 1. Compute a candidate step. Compute a vector s such that

As 0 and lt <_ s <_ ut,

and

g[s < -ga(t).

Step 2. Check the stopping rules on the model and step. If

T(2.20) mk(xk - 8i) > mk(Xk) - ptlgk 8i,

then set

and

u
lti+ ti 8i+ 8i

and go to Step 3. Else, if

(2.21)

li+ li 8i+ 8i

Tm(x + s) < m(x) +gs

and

(2.22) t < min[u Ak, u2],

then set

and

u u
Ui+l It 8i+ 8i

li+ ti 8i+ 8i,
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and go to Step 3. Else (that is if (2.20) and either (2.21) or (2.22) fail), then set

xCk Xk "- 8i

and STOP.
Step 3. Define a new trial step by bisection. We distinguish two mutually exclusive

cases.
Case 1. u

si+l s0 or si+l s. Set

ti+l )(/i+1 + Ui+l),

increment i by one and go to Step 1.
Case2. us+ s and s+ # s. Set

s and s8i+ 8i+1

define

c and STOP.apply the RS Algorithm to find a GCP xk

For the computation of si in Step 1, we have implemented a self-contained routine
that uses the same data structure as that representing problem (1.1) and is a partic-
ular implementation of the simplex algorithm specialized to network problems, along
the lines described in [2], [16], and [17]. This routine includes at each iteration the
computation of the vectors rr and #r from (2.19) as well as the update of the upper
bound on the value of #3ak(t) given in (2.18), and stops as soon as an appropriate in-
exact solution is computed. This implementation, provides in particular a total pricing
routine (see [17]) for seeking a nonbasic candidate to enter the basis, since the vector
# must be totally evaluated at each iteration. In order to compare the performances
of this last algorithm with one that completely solves problem (2.12) (as required if
3 is set to 1), we have also implemented a routine that finds the exact solution of
(2.12), without adding the extra burden of computing the quantities required for an
approximate solution (namely #r and the upper bound on #3ck(ti)), but rather using
a partial pricing routine to select a nonbasic arc to be moved. More precisely, we
select sets of thirty variables taken at regular intervals among the nonbasic variables
and test each variable in the successive sets until a candidate to enter the basis is
found.

We have left unspecified the parameter A E (0, 1) in the GCP Algorithm (see
Case 1 of Step 3) in order to test the effect of varying its value. Indeed, in order to
avoid an excessive number of computations of a candidate step s in Step 1 the
most costly calculation of the algorithm it could be worthwhile to accelerate the
branching to the second case of Step 3 by choosing a smaller value for A than the
classical 0.5.

The above algorithm for the calculation of a GCP has the advantage of avoiding
the repeated computation of the projection on the feasible domain, which is a quadratic
program. Instead we repeatedly compute an approximate solution of linear programs.
This can be related to the convex combination algorithm originally suggested by
Frank and Wolfe (see [20]) for solving quadratic programming problems with linear
constraints. The Frank and Wolfe algorithm is based on finding a descent direction by
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minimizing a linear approximation to the function subject to the linear constraints.
A linesearch on the quadratic objective function along the descent direction found is
then performed to determine the next iterate.

2.3. The candidate step sk. In this section, we develop an algorithm for solv-
ing problem (2.4), or more precisely, for finding an approximate solution to the reduced
equation

_ZT(2.23) ZTHkZ[s]s 9.

The strategy considered uses a truncated conjugate gradient technique, starting from
the GCP, which handles the bound constraints

(2.24) lk <_ Xk + s <_ Uk

during the conjugate gradient iteration.
The conjugate gradient method is well suited to solving (2.23) without forming

the reduced Hessian ZTHkZ (which may be considerably denser than both Z and Hk),
since it only requires matrix-vector products of the form ZTHkZv. These products
can be computed relatively cheaply by forming, in turn, vl Zv, v2 Hkvl and v3
ZTv2. This is all the cheaper here as a sparse Hessian Hk and a sparse representation
of Z can be stored, due to the partially separable structure of the objective f and the
structure of the matrix Z (see (2.8) and (2.10)).

The TCG Algorithm terminates the conjugate gradient iteration in the solution
of (2.23) at the point x xk + s whenever:

The reduced residual norm at x (i.e., the norm of the reduced gradient of the
model at the point x) is small enough, that is

where

(2.25) max evQ-, min[O.O1, IIZTgkll2]] IIZTgkll2

and M is the relative machine precision. This stopping rule allows for better and
better approximations to the solution of the Newton equation (2.23) when close to a
local minimizer of problem (1.1) and is the essence of a truncated Newton scheme.

q), i.e., there is no way to better refine the current solution x.
A direction f negative curvatu{e has been encountered.
An excessive number of iterations has been taken.

The main characteristics of the TCG Algorithm are the following. At each recur-
rence of a conjugate gradient iteration, the TCG Algorithm will verify if feasibility
with respect to the bound constraints (2.24) is still respected. In the case where a
bound is reached, the conjugate gradient iteration is temporarily stopped and the
current maximal spanning tree is possibly updated, depending on the type of bound
encountered. Thereafter, the active set is updated according to the decomposition
(2.5), where the index set , corresponds to the arcs whose current flow is strictly
between the bounds l and u. The conjugate gradient iteration is then possibly
restarted.

Now we specify the TCG Algorithm in more detail. In the description given
below, we denote by r the residual vector -(gk + Hks). For a given vector v and
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a given partition B U S U iV" of the set {1,... ,n}, we also define the corresponding
reduced vector vr as the vector of Rn defined componentwise by

0 ifiEBuAf,
(2.26) [vr]i de=f [ZTv]j if i is the jth element of 8 (that is the jth

superbasic arc).

TCG ALGORITHM.
CStep 0. Initialization. The GCP, xk xk + sCk, and an initial maximal spanning

c and r (gk + Hk c8k )otree whose indices define the set B are given. Set x xk
Step 1. The conjugate gradient iteration. As long as there exist arcs B that are

strictly between the bounds lk and uk, we continue the conjugate gradient iteration
to further minimize the reduced model of the objective function at the point xk. Each
time a restarting is considered, we redefine the index set S and (2.23) accordingly, and
solve this last equation starting from the current point x, until one of the stopping
rules mentioned above is satisfied or a bound is encountered.

Step 1.0. Define the active set. Set

J A(x, , u) \

and deduce S from the partition (2.5). If S q}, go to Step 2. Otherwise, compute
the matrices B, S, N, and Z from the partition (2.5) and (2.8).

Step 1.1. Restart the conjugate gradient iteration. Now that the subspace
where the minimization can take place is fixed (namely, the space spanned by the
superbasic variables indexed by $), we can proceed with the conjugate gradient iter-
ation.

Step 1.1.0. Initialization before restarting. Compute the reduced residual rr

from (2.26) and the relative accuracy level k from (2.25). Set d 0, 0 and

2"

Step 1.1.1. Test for the required accuracy. If P2 <_ 7, go to Step 2.
Step 1.1.2. Conjugate gradient recurrences. Compute

[d]B from

[dls [rr]s + [dls,

B [dl -S [dls

and set d ([d]B, [dis, 0). Compute the vectors y Hkd, yr from (2.26), and the
curvature 7 dTy. Find al, the largest value of a for which lk <_ x zt-ad <_ uk. If
7 <_ 0, then set

x=x+ald

and go to Step 1.2. Otherwise, calculate 0/2 P2/’Y. If 0/2 >_ 0/1, then set

x=x+ald,

and go to Step 1.2. Otherwise, set

r r 0/lY,

x X -t- 0/2d,
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r r o2y,

rr rr (
r

2Y

and go to Step 1.1.1.
Step 1.2. Update the maximal spanning tree. Update the index set B in order

to keep a maximal spanning tree (see further on). If -y _< 0, go to Step 2. Otherwise,
go to Step 1.

Step 2. Termination of the conjugate gradient iteration. Set

8k X Xk.

In order to maintain a maximal spanning tree when a pivoting step is required, we
need to take into account the bound constraints of both problem (1.1) and problem
(2.4) (the latter vrying from one iteration to the other, depending on the trust
region size), since the spanning tree must remain maximal with respect to the bounds
and u and 1 and uk. As illustrated by the following example, it is not sufficient

to only consider the maximality of the spanning tree with respect to the bounds lk
and uk. Suppose indeed, when moving to a point x, that the basic arc of index
hits a bound such that not only i E A(x, lk, uk), but also e 4(x, l, u), and that
no arc j B satisfying [lk]j < [x]j < [uk]j may be found to pivot with. In that
case, if the current maximal spanning tree remains unmodified and if there exists
an arc of index j, say, such that j 4(x, lk, Uk), i (i.e., arc i belongs to the
flow augmenting path of arc j), but j .A(x, 1, u), this spanning tree will not be
maximal any more with respect to the bounds and u as soon as the trust region
constraint vanishes from (2.4) or is modified. Therefore, based on the observation
that i E A(x, l, u) == E .A(x, lk, uk) and j

_
A(x, lk, u) = j

_
A(x, l, u), we

consider the following algorithm for maintaining a maximal spanning tree.
If, for some E B,

e A(x, l, u)

or

A(x, l, u) and i E A(x, lk, u),

then determine (if possible) j B such that i e , min ]1 [x]j
is maximum and either

j .



TRUST REGION METHODS FOR NONLINEAR NETWORK OPTIMIZATION 391

or

respectively. Then redefine the set B by

B B \ {i} U {j}

and update the submatrix B accordingly, performing a pivoting step as described in

Note that the choice of j in the above description is intended to allow larger steps
in the next search, which may result in a more useful decrease of the cost function

2.4. Optimality test. We consider that optimality for problem (1.1) is reached
whenever the objective function cannot be further reduced at the current iterate xk.
This may be checked in the following manner.

Select the arcs that allow for a possible improvement. This amounts to finding
the arcs B which are either strictly between the bounds and u or at one of these
bounds, but whose release may induce a decrease in the objective function. (These last
arcs are found through an examination of the corresponding Lagrange multipliers.)

Remove the so-called blocked arcs [11], that is the arcs at a bound or u whose
release causes the immediate violation of another bound or u for one of the arcs of
their flow augmenting path. This may be easily verified using the following test.

If arc j is such that, either

[Xk]j [U]j and 2i e j such that

or

([-B-1N]ij 1 and [xk]i [/]i) or ([-B-1N]ij -1 and [xk]i- [u]i),

[xk]y --[/]i and 3i e /j such that

([-B-N]ij 1 and [x]i [u]i) or ([-B-N]iy -1 and [xk]i [/]i),

then it is blocked.
(Note that this situation cannot occur for the arcs that are strictly between the

bounds and u, because of the properties of the maximal spanning tree.)
Denoting by $ the set of indices obtained from the above selection, deduce the

set Af from the partition (2.5) and define an active set accordingly.
Check if the current iterate xk is optimal on this active set, that is, if the

corresponding reduced gradient at xk is null.
This framework may be summarized by the following algorithm.

OT ALGORITHM.
Step 0. B is given. Set S q} and Af (1,..., n} \ B.
Step 1. For each j E (1,..., n} \ B, redefine S and Af in the following way. If

j . A(xk, l, u),
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then redefine S and Af by

$ q t3 {j } and Af Af \ {j }.

Otherwise, compute the Lagrange multiplier estimate associated with the jth variable,
namely,

[alj [gtc]j + Z [-B-1N]ij [gkli.

If [xk]j is not potentially blocked (see above), and if either

[a]j < 0 and

or

[alj >0 and [xk]/=
then redefine S and Af by

S S t2 {j} and Af Af \ {j}.

Step 2. Compute the matrices B, S, N, and Z from the partition (2.5) and (2.8).
If S q) or

z IIo <
STOP (xk is a local optimum within the required accuracy).

The constant a whose choice controls the final accuracy requirement will be
specified later.

2.5. The specific algorithm. We are now in position to specify our trust region
algorithm for nonlinear network optimization in its entirety.

TRNNO ALGORITHM.
Step 0. The bounds and u, the vector b and the network associated with the

matrix A are given. Compute a feasible starting point x0 (if not given) and an initial
trust region radius A0. Compute f(Xo), go and H0. Find an initial maximal spanning
tree of the network, defining a set of basic indices B. Set k 0.

Step 1. Given z/3, test the optimality of the current iterate xk using the OT
Algorithm of 2.4 and STOP if xk is optimal.

CStep 2. Calculate the bounds lk and u from (2.3). Given #3, find a GCP xk
using the GCP Algorithm detailed in 2.2. (Also include an updating phase for the
maximal spanning tree.)

Step 3. Compute the active set Jt(x,lk,uk) and apply the TCG Algorithm
proposed in 2.3, using a truncated conjugate gradient scheme, to find an approxima-
tion Xk + sk to the minimizer of the trust region problem (2.4), with the additional
restriction that the variables whose indices are in jt(xCk, lk, uk) remain fixed at the cor-

e (Also include an updating phase for the maximal spanningresponding values of xk
tree.)

Step 4. Compute f(xk + sk) and

+
+
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Step 5. If Pk > 1, then set

Xk+l Xk 8k

and update gk+l and Hk+ accordingly. Otherwise, set

Xk+l Xk

and update the maximal spanning tree (with respect to the bounds and u only). Set
Ak+ according to (2.2), increment k by one and go to Step 1.

3. Numerical experiments. In this section, we analyse and compare the var-
ious versions of our algorithm and we also briefly interpret our results when varying
the storage scheme,’the conditioning, the dimension, and the nonlinearity of the prob-
lem, the final accuracy level (73), and the type of bounds imposed on the variables,
as in [21] and [22]. We then consider our algorithm in comparison with the LSNNO
routine, developed by Woint and Tuyttens in [21], [22], that uses a linesearch approach
rather than a trust region approach to solve problem (1.1). Although it might have
been instructive to compare the present algorithm with another such as GENOS [1]
and an interior point method like [3], the amount of additional work would have been
prohibitive and we preferred to use a competitive algorithm for which we had direct
access to both the authors and the software.

We have experimented on all the test problems of [21] for which the first and
second derivatives were available. Indeed, though the framework presented here is well
suited to large dimensional problems and can be used in conjunction with partitioned
secant updating techniques on the general class of partially separable problems (see
[14] and [15]), the purpose of this paper is to show the viability of the framework
proposed and studied in [4], as well as its efficiency on large-scale nonlinear problems.
Consequently, the results are presented for problems with easily computable first and
second derivatives. For the same reason, we did not consider any preconditioning in
our present implementation.

We have mainly tested problems obtained by varying the five parameters of the
so-called model test problem P(t, a, c, i, r) constructed by Toint and Tuyttens [21],
where

defines the number of arcs n 2(2t + 1)(2t + 2) and the number of nodes
nn (2t + 2)2 of the problem;

a defines the nonlinearity of the function (for a 0 the function is a simple
quadratic);

c is an estimate of the condition number of the objective’s Hessian matrix pro-
jected in the subspace of variables that satisfy the network constraints;

and r determine a specific set of bounds on the flows (for i 0 no bounds are
imposed, for i 1 a lower bound equal to r is imposed on the flows whose index is a
multiple of three, for i -1 some flows are fixed while others are bounded, principally
those on the border of the grid with lower bound equal to r).

A brief description of this model test problem follows, the reader being refered to
[21] for more details. The network is constructed as a square planar grid. An example
with g 2 is shown in Fig. 1. The supply/demand vector is

b--+lO, bj-’O(j--2,...,nn-1), bn -10.

LSNNO is available from NETLIB.
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FIG. 1. The network of the model test problem for 2.

Furthermore, sets of/ horizontal cycles and vertical cycles are distinguished in the
grid (see the dashed lines in the example of Fig. 1). We define, for 1,..., n,

j(i)
def { S if the ith arc belongs to cycle s (horizontal or vertical),

0 if the ith arc does not belong to any cycle.

The objective function is then given by

f(x) -Eai[x]2i + 1 + [x] + ([xli- Ix]i/1)2
i=l \i=l

(3.1)

where

[ ]4)+ i50 0 + (-)’[x]
i--1

def 10 log10 c

ai
1

if j(i) >_ 1,
if j(i) O.

We have also tested the so-called Dembo’s test problems given by Dembo in [11].
These problems are summarized in Table 1 (where n denotes the number of arcs and
nn denotes the number of nodes). All of them are totally separable, convex, and
rather ill conditioned (the condition number of the reduced Hessian at the solution
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TABLE 1
Dembo ’s test problems.

Name I] n n Description

46 30 Small Dallas water distribution model
196 150 Medium Dallas water distribution model
906 666 Large Dallas water distribution model
117 64 Small Thai matrix balancing problem

2230 1116 Large Thai matrix balancing problem

W30
W150
W666
MB64
MBl116

varying between 104 and 10s), and the number of bounds active at the solution is
small, compared to n.

All the computations have been performed in double precision on a DEC VAX
3500, under VMS, using the standard Fortran Compiler (eu -- 1.39 10-17).

The tests reported below all use the following values for the algorithm’s constants
(suggested in [4]):

0.25 and ?2 0.75, #1 0.1 and p2 0.9, /]1 10-5 and /]2 0.01.

In order to allow the initial parameter to in the GCP Algorithm to be more refined
than Ak itself (since this last value represents a trust region radius for the quadratic
model much more than for the linear model used in Step 1), we have selected the
following value,

(3.2) to min
g[Hkgk

where the first quantity in brackets is the distance from xk to the minimum of the
quadratic model in the steepest descent direction, computed in the infinity norm. The
value of #3 in the GCP Algorithm (that can be interpreted as the level of solution of
the linear network problem (2.12)) is specified for each table of results given below.
We have chosen the value 0.1 (rather than the classical value 0.5) for the scalar A
in the GCP Algorithm. This is intended to speed up the branching to the second
case of Step 3 in this algorithm, therefore possibly reducing the number of times a
candidate step si is computed in Step 1, since this last calculation is expected to be
expensive compared with the rest of the algorithm. The final accuracy level 73 in the
OT Algorithm is specified for each model problem and is set to 10-2 for the Dembo’s
test problems, as recommended in [11]. In all cases, the (possibly infeasible) starting
point is the origin. A feasible starting point x0 as required in the statement of the
TRNNO Algorithm is then computed via an "all artificial start Phase 1" (see [21]).
This allows comparison with the LSNNO routine that starts with the same point.
(Note that since the cpu time for the computation of this point, when required, is
always negligible compared with the overall cpu time, it will be ignored in the cpu
times given in the tables.) Finally, the initial trust region radius is fixed to the
following value in our tests:

(3.3) A0 min[lloll., 100].

3.1. Comparison between the different versions. In this section we com-
ment on the five Dembo’s test problems and on twenty others selected from particular
choices in [21], [22] of the model test problem’s parameters. Table 2 reports the char-
acteristics of these twenty test problems which are divided into six subsets, according
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Storage scheme

Conditioning

Dimension

Nonlinearity

Final accuracy

Type of bounds

TABLE 2
The model test problems.

Name a c r 73
MP1 8 1 103 -1 10-5

MP2 8 1 103 -I - 10-5

8 1 103 -1 5-6 10-5MP3
10-5MP4 8 1 1 1 -6MP5 8 1 10 1 10-5

MP6 8 1 102 1 -6 10-5
MP7 8 1 103 1 6 10-5
MP8 8 1 104 1 -6 10-5
MP9 8 1 105 1 V6 10-5

10-5MP10 4 1 102 1 -6 5MPII 8 1 102 1 lO-
MP12 12 1 102 1 10-5

MP13 8 0 102 1 6 10-5
MP14 12 0 102 -1 ]-5 10-5
MP15 8 1 102 1 -6 10"3
MP16 8 1 102 1 -6 10-5
MP17 8 1 .102 1 ]-6 10-7
MP18 8 1 10z 0 0 10"
MP19 8 1 102 1 -6 10-5
MP20 8 1 102 1 g 10-5

Storage
I
E
O
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I

to the different features tested in [21], [22] and mentioned above. Note that the sym-
bols I, E, and O in the last column of this table are used to denote storage using
internal dimensions (I), elemental dimensions (E), or using one element (O) for the
Hessian matrix (see" [21], [22] for more details). When required for comparisons in the
next section, we report the relevant numerical results of all the twenty tests, even if
some of these are identical (namely, MP6, MP11, MP16, and MP19).

We introduce the notation used in the tables presenting the results.
it: the number of major iterations (in the TRNNO Algorithm of 2.5);
gcp: the total number of iterations in the GCP calculations;
avn: the average number of GCP calculations per major iteration;
cg: the total number of conjugate gradient recurrences;
nf: the number of function evaluations (i.e., the number of element function

evaluations divided by the number of elements);
ng: the number of gradient evaluations (i.e., the number of element gradient

evaluations divided by the number of elements);
nil: the number of Hessian evaluations (i.e., the number of element Hessian eval-

uations divided by the number of elements);
np: the number of maximal spanning tree updates where a pivoting step occurs;
gcpcpu: the cpu time in seconds for the GCP calculations;
cgcpu: the cpu time in seconds for the conjugate gradient recurrences;
totcpu: the total cpu time in seconds (Phase 1 excluded).

Note that fractional numbers of function, gradient, or Hessian evaluations are ex-
pected, since the partial separability of the objective allows skipping the reevaluation
of the elements whose variables have not been modified since the last evaluation. On
the other hand, for the sake of clarity, we round off the cpu times to the nearest
integer number.

We first turn our attention to the computation of a candidate step si at Step 1
of the GCP Algorithm. As already mentioned in 2.2, we have implemented a total
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TABLE 3
Total pricing, #3 1, 0.9, and 0.6.

Problem ]1 #3 [[ it ,I gcp avn cg gcpcpu cgcpu totcpu I]
MP4

MP8

MP12

MP14

MP16

MP18

W150

W666

MBl116

1 II 31 2.8 587 118 110 241
0.9 11 31 2.8 564 103 106 223
0.6 11 31 2.8 530 78 99 190
.1 7 30 4.3’ 2433 60 441 510
0.9 9 43 4.8 3315 63 607 681
0.6 11 47 4.3 3475 31 619 663
1 7 28 4.0 1078 333 479 833

0.9 8 34 4.2 1254 280 554 857
0.6 9 31 3.4 1125 88 489 602
1 5 16 312 291 30 29 68

0.9 6 .24 4.0 357 20 35 66
0.6 13 39 3.0 603 12 58 88
1 8 30 3.7 815 83 152 244

0.9 8 29 3.6 871 70 164 243
0.6 8 27 3.4 726 49 134 193
1 12 45 3.7 823 11’3 166 295

0.9 12 45 3.7 810 109 164 288
0.6 12 45 3.7 827 78 166 260

15 61 4.1 362 6 5 16
0 9 15 61 4.1 405 5 6 14
0.6 18 73 4.1 442 3 6 14
1 19 97 5.1 1314 247 110 385

0.9 21 108 5.1 1890 146 159 334
0.6 26 130 5.0 .2076 64 162 260
1 39 60 1’.6 15039 2834 4632 7541

0.9 40 57 1.4 13806 1886 3643 5599
0.6 40 57 1.4 14587 1481 4739 6302

pricing routine that approximately solves problem (2.12). We have tested this routine
for different values of #3. The results are presented in Table 3 for a representative
sample of the twenty-five problems.

We first observe that the number of major iterations usually increases when the
value of #3 decreases (especially for #3 0.6). The reason is that for smaller and
smaller values of it3, the GCP is allowed to be chosen further and further from the
projected gradient path. This exhibits the importance of the part played by the GCP
in our class of trust region methods and the need of computing a sufficiently good
approximation of this point on the projected gradient path. The total number of
GCP iterations increases accordingly. However, we observe that the average number
of GCP calculations per major iteration decreases with the value of #3, while the cpu
times for the GCP calculations considerably decrease, particularly for larger problems
(such as MP12, MP14, W666, and MBl116). This is due to the fact.that the solution
of the linear network problem (2.12) may be stopped prematurely when finding an
approximate solution. Nevertheless, comparing the total cpu times, we conclude that
it is worthwhile solving (2.12) approximately whenever the GCP found does not depart
too much from the projected gradient path and the total number of iterations is largely
unaffected (see MP4, MP16, and MP18). This means that the value of #a must be
reduced with care.

We have also tested the partial pricing routine that completely solves problem
(2.12) (hence setting #3 1). These results are reported in Table 4. The total cpu
times are better than those given in Table 3. This is due to much better cpu times
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TABLE 4
Partial pricing, tt3 1.

Problem

MP1
MP2
MP3
MP4
MP5
MP6 8
MP7 8
MP8 7
MP9 10
MP10 5
MPll 8
MP12 7
MP13 5
MP14 5
MP15 7
MP16 8
MP17 9
MP18 12
MP19 8
MP20 7
W30 II 15 1
W150 ]] 15 15
W666 II all
MB64 II 5515
MBX II 3612

6 5.9 5.9 5.0 0 27 393 8 63 79
6 5.9 5.9 5.0 0 27 402 53 628 709
6 7.0 7.0 6.0 0 27 400 50 571 649

11 11:3 11.3 10.4 6 31 583 22 111 147
9 9.5 9.5 8.5 4 29 683 18 133 163

8.5 8.5 7.5 5 30 816 17 154 182
8.5 8.5 7.5 5 36 1610 19 306 334
7.5 7.5 6.6 5 31 2450 15 453 477

10.3 10.3 9.3 3 50 6649 24 1260 1297
5.6 5.6 4:7 3 17 190 2 10 14
8.5 8.5 7.5 5 30 816 17 154 182
7.5 7.5 6.6 54 28 1116 39 492 551
5.4 5. 4.5 7 19 521 7 37 49
3.7 3.7 3.1 3 16 295 6 29 44
7.5 7.5 6.5 5 23 713 14 134 157
8.5 8.5 7.5 5 30 816 17 155 182
9.5 9.5 8.5 5 39 1024 21 196 227
13.0 13.0 12.0 0 45 809 24 166 206
8.5 8.5 7.5 5 30 816 17 155 182
7.1 7.1 6.2 7 3O 631 12 112 133

’9l 39 113"l "1 1 113 II 1 11 2 II
.4] 12.4l 11.6 4 61 351 II 4 5 13 II
.1 15.11 14.2 6 79] 1087 II 37 91 151 II
,.61 50.al49.1 42 56 255x II s 30 43 II
"..4123.al22.1 421 551.282nll 255 4o4 439111

TABLE 5
The effect of varying the initial trust region radius for MBl116.

A0 t gcp cg gcpcpu cgcpu totcpu

II 105 II 35l 55 066 II 243 3033 "3343’11
9II 10 II 34l 56l 10805 II 241 3331 3678 II
14II o II 34l 571 10645 II 24ol 3238 3542 II
18I1 1134! 510645. II 2391.32441 s5411

for the GCP calculations. Indeed, problems MP4 and MP18, for instance, present
similar numbers of GCP calculations and yet, the exact solution’s calculation using
partial pricing is less expensive than the approximate solution’s calculation, even
when #3 0.6. This can be explained by the additional amount of work required for
maintaining the upper bound on the value of #3ak(t) in (2.18) when approximately
solving (2.12). This additional work is not sufficiently balanced by the use of the upper
bound and leads to the conclusion that it is not worth solving approximately the linear
problem (2.12) in the GCP calculation, at least in the presence of network constraints,
since a fast solver can then be implemented to solve problem (2.12) exactly. We
therefore abandon, from now on, the approximate solution of (2.12) in favour of the
exact one using partial pricing.

We now further analyse the results reported in Table 4 for the twenty-five test
problems. The number of iterations used in the GCP calculations are generally quite
reasonable when compared with the number of major iterations or with the total num-
ber of conjugate gradient recurrences. The same conclusion applies when comparing
the respective cpu times. This is partly due to the choice of a small value for A in
the GCP Algorithm. Indeed, we have tested the same code with k 0.1 replaced
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by A 0.5, and we have clearly detected a substantial increase in the number of
iterations and the cpu times for the GCP calculations. This thus justifies a choice for
A that allows a rapid branching to the RS Algorithm (Case 2 of Step 3 in the GCP
Algorithm), therefore avoiding an unnecessarily high number of solutions of the linear
network problem (2.12). Moreover, we also observe that the amount of work in the
GCP calculations grows more slowly with the size of the problem than in the conju-
gate gradient scheme (compare MP10, MPll, and MP12, or the Dembo’s problems,
for instance). This is true for the number of iterations as well as for the cpu times.

We have also tested the impact of the choice of the initial trust region radius
A0 on the performances of the method. Indeed, the initial value given in (3.3) is
rather heuristic, and we actually observed that eighteen of the twenty-five test prob-
lems selected A0 100. Table 5 reports the results obtained when solving problem
MBlll6 for different initial trust region radii, with the GCP Algorithm with P3 1
(economical version). These results, compared with those of Table 4, show a possible
saving of up to 25% in the total cpu times, depending only on the value of A0. This
saving occurs essentially in the conjugate gradient iteration counts. This emphasizes
the importance of e good choice for this last value.

3.2. Variation of the test problems features. We briefly interpret here our
results on the twenty model test problems of 3.1 when varying the six items mentioned
at the beginning of 3. The reader is invited to consult Table 4 to confirm the
comments given below.

We first observe essentially identical behaviour for the method of this manuscript
and that of [22] when using the three different storage schemes for the Hessian matrix

(see MP1-MP3). Our cpu times are clearly in favour of the internal storage technique,
although, for example, the additional subroutine calls necessary in this context can be
quite significant. We also observe a small increase in function, gradient, and Hessian
counts when going from the elementM dimension storage to that of one element, the
number of conjugate gradient steps and the iteration counts being approximately
unchanged. This effect is due to the loss of the partially separable character of the
objective in the latter case, which prevents partial evaluations of the function or of
its derivatives. The gains in cpu time for the storage using one element as opposed
to the elemental dimension storage is caused by the fact that the products involving
the Hessian matrices are cheaper to compute (see [21]).

We also see, as in [21], [22], that the method is sensitive to variations of condi-
tioning (see MPd-MP9). This is due to the use of the conjugate gradient method,
which is a conditioning sensitive method and leads to an increase in the number of
conjugate gradient recurrences (while the GCP calculations remain comparable).

The problem becomes slightly more difficult when its size increases, mostly be-
cause of the added complexity of the bound constraints (see for example MP10-
MP12). Nevertheless, the difficulty seems to increase faster in [21] than for our code.
This will be confirmed in the next section.

Moreover, when the objective function is quadratic (i.e., when a 0 in Table 2 or
in (3.1)), we can say, unlike [21], that the problem is easier in terms of major iterations,
function, gradient, and Hessian evaluations, as well as in terms of conjugate gradient
steps and cpu times (see MP13, to compare with MP6, and MP14).

As observed in [21], [22], a tighter requested acctracy on the solution does not
cause a large increase in the number of major iterations (see MP15-MP17). This is
explained by the rapid rate of convergence achieved by both methods. The number
of conjugate gradient recurrences may however be significantly increased by a tighter



400 A. SARTENAER

TABLE 6
Number of arcs and nodes for a given

nn 576 676 784 900 1024 1156 1600 2116

TABLE 7
Comparison with LSNNO for Case 1.

0.15 19
22
16

0.35 19
22
16

0.55 19
22
i6

0.75 19
22

it
TRNNO LSNNO

13
9
17
15
9
10

5

19 9.6
28 11.4
34 13.4
18 23.3
32 24.6
66 25.1
25 26.2
41 26.6
42 27.0
24 27.4
63 27.6
41 28.0

accuracy requirement, because a large part of this computational effort occurs in
the last iterations of the algorithm, where the linear system (2.23) must be solved
accurately.

Finally, unlike [21], [22], we note that the introduction of bounds does not increase
the number of major iterations, but even decreases it (see MP18-MP20). This is
discussed in the next section. On the other hand, as in [21], [22], the number of
pivoting steps increases with the tightness of the bounds. This is due to the fact that
the basic variables are increasingly constrained.

3.3. Comparison with the LSNNO routine. In this section, we compare
the TRNNO routine (partial pricing, A0 given by (3.3)) with the LSNNO code of
Tuyttens, both tested on the same machine.

We first consider the results of Table 4 in comparison with those produced by
LSNNO in [21], [22] when using Newton’s method without preconditioning. We ob-
serve, in most cases, a decrease in the number of major iterations for TRNNO (es-
pecially for problems MP9 and MP12). This implies fewer function, gradient, and
Hessian evaluations. On the other hand, the number of conjugate gradient recur-
rences generally increases, mainly because the TCG Algorithm allows the restarting
of the conjugate gradient scheme. So we may conclude that the TRNNO code requires
fewer iterations than the LSNNO code, but that one iteration is more expensive for
TRNNO, due to the GCP calculations and the restarting steps in the conjugate gradi-
ent iterations. For this first set of problems (whose characteristics are summarized in
Table 2), we may observe that LSNNO generally outperforms TRNNO in cpu times,
except, in particular, for the large model test problems (MP12 and MP14) and when
the bounds on the variables become tighter (MP18-MP20), that is, when the number
of bounds potentially active at the solution increases. In order to investigate this issue
further, we have extended our original set of problems and tested both codes on the
model test problem for different sizes and types of bounds, with the fixed parameters
a 1, c 102, r3 10-5 for the final accuracy, and using a storage with internal
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Lower bound 0.15
15O6O
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4000-
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Lower bound 0.35

16 19 22

Lower bound 0.55 Lower bound 0.75

16 19 22 16 19 22
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FIG. 2. Comparison with LSNNO on cpu times for fixed bounds (Case 1).

l= 19

0.15 0.35 0.55 0.75
Lower bouml

I TRNNO LSNNO

l= 22
15060

0.15 0.35 0.55 0.75
Lower bound

I TRNNO LSNNO

Fla. 3. Comparison with LSNNO on cpu times for fixed sizes (Case 1).

dimension (I). This last choice is indeed the most common choice made in the original
set of problems (see Table 2). We report the results in Tables 7-10 and in Figs. 2-8.
The various sizes specified by the parameter g are given in Table 6. We have selected
three types of bounds.

Case i 1. We impose that r _< Ix]# <_ cx for all index j such that mod(j,3)
0, all other variables being unconstrained, r is successively equal to 0.15, 0.35, 0.55,
and 0.75.

Case 2. We impose that r <_ [x]j <_ x for all index j such that mod(j,3) 1,
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TABLE 8
Comparison with LSNNO for Case 2.

0.0 19
22
16

0.5 19
22
16

1.0 19
22
16

2.5 19
22

TRNNO
16
12
21
8

8
9
10

LSNNO
11
19
29
29
28

53
63

0.6
0.7
0.7

26.1
26.8
27.2
28.9
28.9
29.3
30.9
31.1
31.3

42
103

l= 22

05 25
Lower bound

TRNNO L,.qNNO

FIG. 4. Comparison with LSNNO on iterations for fixed size (Case 2).

TABLE 9
Comparison with LSNNO for Case 3.

ii 13
12 13

0.0 13 12
14 13
15 13
16 14
11 10
12 12

0.1 13 9
14 12
1.5 9
16 11
1.1 9
12 23

0.2 13 9
14 11
15 9

1_._6 8

it %act’
LSNNO

54
58
68
53
150
76
54
52
48
101
85
132
83
142
159
237

1.1
1.1
1.1
3.4
1.3

i3.f--
14.0
14.7
14.7
17.9
17.1
28.6
30.8
35.2
40.1

.k_____.
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FIG. 5. Comparison with LSNNO on cpu times and iterations for fixed bounds (Case 2).
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Lower bound 0 Lower bound r 0

11 12 13 14 15 16

I TRNNOI LSNNO

11 12 13 14 15 16

Lower bound r 0.1 Lower bound 0.1

11 12 13 14 15 16

TRNNO LSNNO

11 12 13 14 15 16

II TRNNO LSNNO

Lower bound 0.2

11 12 13 14 15 16

TRNNOI LSNNO

60-
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Lower bound 0.2
237
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ii TRNNO LSNNO

FIG. 6. Comparison with LSNNO on cpu times and iterations for fixed bounds (Case 3).

all other variables being unconstrained, r is successively equal to 0, 0.5, 1, and 2.5.
Case i 3. We impose that r <_ [x]j <_ c for all index j whose corresponding arc

is on horizontal lines or alternate vertical lines (beginning at the first) of the grid, all
other variables being unconstrained, r is successively equal to 0, 0.1, and 0.2.

For the two first cases, one-third of the variables are constrained while this ratio
increases to three-quarters for Case i 3.

First, we comment on the results given in Table 7 and Figs. 2 and 3 for Case
1. In Table 7 and the following ones, "%act" denotes the percentage of active

bounds at the solution (computed by LSNNO).
The results of Table 7 show that on the whole the number of major iterations
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TABLE 10
Comparison with LSNNO for Case 3 (higher dimensions).

Lower bound 0 Lower bound 0

TRNNO LSNNO TRNNO LSNNO

FIC. 7. Comparison with LSNNO for 19 (Case 3).

decreases when bounds become tighter for TRNNO, as mentioned in the previous
section. On the other hand, these numbers increase for LSNNO. Now comparing
the cpu times given in Fig. 2, we may observe that this behaviour has the effect of
improving the performances of TRNNO while those of LSNNO deteriorate. Moreover,
we observe that TRNNO outperforms LSNNO for the largest problem first, then for
the medium one and finally for the smallest one. Figure 3 once again confirms the
above observation. For tighter and tighter bounds, TRNNO produces better and
better cpu times (except for 19 when going from r 0.55 to r 0.75), while
those for LSNNO behave erraticMly but are consistently worse. Finally, from Fig. 2
and the last column of Table 7, we can see that the cpu times are overwhelmingly in
favour of TRNNO when about a quarter of the bounds are active at optimality.

The second case is reported in Table 8 and Figs. 4 and 5. These results corroborate
the conclusions made for the previous case. It further shows (see Fig. 5) how constant
the number of iterations for TRNNO remains when the bounds and the size vary,
while these numbers grow for LSNNO. Figure 4 displays this characteristic for 22.

Finally, Table 9 and Fig. 6 show the results for the third case of bounds. The
absence of results for LSNNO means that it stopped with a flag error before having
solved the problem. The results also confirm the above comments, except that this
time TRNNO outperforms LSNNO immediately, even when about 1% of the bounds
are active at optimality. In particular, Fig. 6 clearly shows the uniform behaviour
of TRNNO. Indeed, for the three different bounds, the iterations numbers stay alike
while the cpu times grow slowly with the dimension of the problem. The tightness of
the bounds does not seem to affect the performances of the code. On the other hand, it
is not possible to attribute the same stability to LSNNO. Moreover, although optimal
function values usually agree for both codes in Cases i 1 and 2, we have observed
here a significant difference, always in the favor of TRNNO, for three-quarters of the
test problems. We also observed that the strict complementarity slackness condition
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Lower bound 0.1 Lower bound 0.1

TRNNO LSNNO TRNNO LSNNO

FIG. 8. Comparison with LSNNO for 22 (Case 3).

did usually not hold at the solution for these problems.
Furthermore, for Case i 3, Table 10 and Figs. 7 and 8 report the results for

higher dimensions. They confirm the efficiency of TRNNO on large-scale problems.
We also tested other cases of bounds that are not reported in this paper. They all
corroborate the conclusions made in this section.

4. Conclusions and perspectives. In this paper, we propose a new algorithm
of trust region type to solve the nonlinear network problem (1.1). We consider practi-
cal implementation issues, including an explicit procedure for computing an approx-
imate GCP and a truncated conjugate gradient strategy for calculating a candidate
step at each iteration. Numerical tests are reported and discussed, showing the effi-
ciency of the trust region approach, especially for large-scale problems with potentially
many active bound constraints at the solution. We believe that part of the success
may be attributed to the ability of the GCP calculation to swiftly determine the set
of (nondegenerate) active bounds at the solution.

The encouraging results show that the framework presented is worth considering
for the solution of problem (1.1), especially in view of the good theoretical properties
of the framework given in [4] and the numerical results for large problems. It also
suggests some directions for future research and continued development. The method
given here could be adapted for solving general large-scale linearly constrained prob-
lems. We could then envisage to produce effective methods for solving general large-
scale nonlinear programming problems by combining the nonlinear constraints in a
suitable fashion with the objective function (for instance in an augmented Lagrangian
function [8], [5], [6]), and solving the resulting sequence of linearly constrained prob-
lems using the method described in this paper.
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gestions. Daniel Tuyttens also kindly gave access to his code, his test problems, and
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LADDERS FOR TRAVELLING SALESMEN
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Abstract. We introduce a new class of valid inequalities for the symmetric travelling salesman
polytope. The family is not of the common handle-tooth variety. We show that these inequalities
are all facet-inducing and have Chvtal rank 2.

Key words, polyhedra, facets, travelling salesman problem
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1. Introduction. The symmetric travelling salesman polytope STSP(V) is the
convex hull of incidence vectors of edge-sets of Hamiltonian cycles of the complete
graph on node set V. A description of this polytope by linear inequalities would
essentially reduce the travelling salesman problem to a linear program. While there
are reasons to believe that we cannot hope to obtain such a complete description,
known partial descriptions of the polytope have proved to be remarkably useful in
cutting plane approaches to the problem. (See [4], [9], for example.) A good deal of
progress has been made in extending these partial descriptions by finding new classes
of facet-inducing inequalities and in incorporating this additional knowledge into the
computational approaches.

In this paper we introduce a new class of valid inequalities for STSP(V) called
ladder inequalities. These inequalities differ from most of the inequalities discovered
so far in that they are not of the usual handle-tooth variety. On the other hand,
they arise from a strengthening of certain inequalities of this type. A computational
study in [4] demonstrates the use of ladder inequalities to improve the bounds of
linear programming (LP) relaxations. We prove that all ladder inequalities are facet-
inducing. We also show that they all have Chvtal rank exactly 2.

2. Preliminaries. Let V be any node set with n IVI >_ 3. We deal with the
undirected complete graph Kn (V, E), and we write elements of E as (i, j) or ij.
Note that ij ji. For S C V, let E(S) denote {ij E E’i, j e S}. For S, T c V with
S N T q), let E(S’T) denote {ij e E" i e S,j e T}. For any v e V, define
to be E({v} V \ {v}). For B C_ E and x E RE, let x(B) denote -(xij "ij e B).
Given c e RE, the (symmetric) travelling salesman problem (TSP) can be stated as

(1) minimize (cijxij ij e E)
subject to

(a) Z(xj’l<_j<_n,ji)--2, ieV;
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(lb) x(E(S)) <_ ISl- 1, s c v, 2 _< Is[ <_ n- 2;

(lc) xij >_0, ij E E;

(ld) xij integer, ij E.

Any feasible solution x of (1) is the incidence vector of (the edge-set of) a Hamiltonian
circuit or tour of Kn. We identify a tour (or more generally a path) of Kn with its
edge-set or its node-sequence. The convex hull of feasible solutions to (1) is called
an STS polytope and is denoted STSP(V). The symmetric TSP is equivalent to the
linear program

min((cx ij E) x STSP(V))
and in order to apply the methods of linear programming, we would like to describe
it as an optimization subject to linear constraints. It is known ([6], for example) that
the affine hull of STSP(V) is just the set of solutions of the degree constraints (la),
and hence its dimension is () -n. Therefore, an inequality ax <_ ao that is valid for
STSP(V) is facet-inducing if and only if {x STSP(V) ax a0} has dimension

() -n- 1. Moreover, two such inequalities ax <_ ao and bx <_ be are equivalent (that
is, induce the same face) if and only if there exist A a Ry and a positive scalar A0
such that (b, b0) A(A, )+ A0(a, a0), where A is the node-edge incidence matrix of
Kn, and 2 is a vector of 2’s. One such class of inequalities consists of the nonnegativity
constraints (lc). Another consists of the subtour elimination (SE) constraints (lb).

Many of the known classes of valid inequalities arose from generalizations of the
comb inequalities, which we now describe. They were first defined by Chvtal [3] and
later generalized by Grbtschel and Padberg [5]. Given a handle H C V and mutually
disjoint teeth T1,T2,... ,T2k+ C V (k integer, k >_ 1) such that

1 <_j <_ 2k+ 1,

the associated comb inequality is

2k+1 2k+l

x(E(H)) + x(E(Tj)) < IHI + k + (ITj[- 2).
j=l j=l

It is proved in [5] that every comb inequality is facet-inducing for STSP(V).
3. Ladder inequalities. Let H and H2 be mutually disjoint subsets of V called

handles. Let T, T2,..., T+, be pairwise disjoint proper subsets of V called teeth,
where t > 2, m > 0, and t+m is even and at least 4. A tooth Tj is degenerate
if Tj \ (H H2) ; otherwise it is nondegenerate. Assume that T, T2,..., Tt
are nondegenerate teeth and (if m >_ 1) that Tt+, Tt+m are degenerate teeth.
Assume also that T intersects only H, T2 intersects only H2, and Tk, k 3,..., t +
m, intersects both H and H2. T and T2 are called pendent teeth; the others are
nonpendent. The ladder inequality associated with H, H2, T, T+m is defined as
follows:

(2)
2 tA-m

x(E(Hi)) +

_
x(E(Ty)) + 2x(E(Ty)) + x(E(T1 N Hi" T2 H2))

i=l j=l j=t+l

2 tTm

< Z IHil + t + m 2 + (ITyl- d 11 + 2(ITy[- 2/,
i= j= j=t+l
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where dj denotes the number of handles intersected by tooth Tj.
Many of the kaown classes of valid inequalities for STSP(V) are generalizations

of the comb inequalities, and are determined by two families of node subsets, called
handles and teeth. These include clique tree inequalities [7], bipartition inequali-
ties [1], and binested inequalities [8]. However, in all of these classes the left-hand
side is of the form

Z ax(E(Hi)) +Z jx(E(Ty)).

The last term of the left-hand side of the ladder inequalities does not fit this model.
In fact, if that term is dropped, (2) becomes a special kind of bipartition inequality.
The smallest ladder inequality (on eight nodes) was introduced in [1] to illustrate
way in which a bipartition inequality can fail to be facet-inducing.

A general ladder inequality ax <_ ao is presented in Fig. l(a). Nodes are numbered
in such a way that the handles are H1 {2k k 1,2, t + m- 1} and H2
{2k + 1: k 1, 2,..., t + m- 1}, and the pendent teeth T1 {1, 2} and T2 {h, 3}.
The hollow nodes w, u, g, and g are optional; any of them may be present or absent.
Any node may appear any number of times, at least once for each node 1,... ,7 and h.
Additional copies of a node are called clones and are discussed in 5. In the dashed
box, we allow any even number (possibly zero) of additional nonpendent teeth to be
present. Every nonpendent tooth may be either nondegenerate (if a node like g or
g is present) or degenerate (if there is no such node). In the latter case, the tooth
is contained in the union of the handles. Every coefficient ai in the corresponding
ladder inequality ax <_ ao is determined by the total weight of all sets containing both
nodes i and j. The weights for the degenerate teeth are 2. (For instance, if node g in
Fig. l(a) does not exist, then tooth {6, 7} is degenerate and thus has weight 2.) All
other weights are 1. The weights are not shown on the figure, to avoid overcrowding
it. The fourth term on the left-hand side of inequality (2) is represented by a bipartite
graph, reduced to a single edge in Fig. 1 (a). Finally, the right-hand side a0 is as given
in inequality (2). Part (b) of Fig. 1 is explained in 4.

We now prove the validity of the ladder inequalities. For 1, 2, let
and Ii Hi \ t+m(Uy= T).

THEOREM 3.1. The ladder inequality (2) is valid for STSP(V).
Proof. Add the following valid inequalities for STSP(V), and divide the resulting

inequality by 3:

(i) the comb inequality obtained by deleting/:/2 and T2,
(ii) the comb inequality obtained by deleting/:/2, T2, and H2 N Tj for j 3,..., t,
(iii) the sum of the degree constraints for each v E H2,
(iv) the sum of the degree constraints for each v E (T1 N H1) U (T2 N H2),
(v) the SE inequality for

(vi) the sum of the SE inequalities for T n
(vii) the sum of the SE inequalities for 1, T2, and T2 N H2,
(viii) twice the sum of the SE inequalities for Ty H2, j 3,..., t + m,

(ix) twice the sum of the SE inequalities for Tj, j t + 1 t + m,
(x) twice the sum of the SE inequalities for Tj G H1, j t + 1, t + m,

(xi) twice the SE inequality for 2.
It is straightforward to check that for all edges e, the integer part of the coefficient
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of xe in the resulting inequality is its coefficient in (2). The right-hand side RHS is

1 t+m-2RHS= [H1[+[Tl[-2+ ([Tj[-2)+
2

j--3

$-t-m

+ 1 [gl[ + [T[- 2 + ([TJ=3 \ H2[- 2)+
=t+

([Tj[- 2)+ t+m-2

+2 IH21 + 2 iT
1 ( ITI + I1 + I1- )nHl+ g
\j=3

1 1 1
Hi[- 1) + 5(ll 1) + ([T2[- 1) + 5(IT2 A H21- 1)

t+m t-t-m
2 2 22(ITN/_/I_l)+5 (ITjl-1)+5 (ITjNHI-1)+5(12I-1)+5

j--3 j----t-t-1 j--tW1

2 "t+m

X Igl +t+ m -2 + X(ITI- d .)+ X 2(ITI- 2)+ -.
i=l j=l j=t+l

Rounding down each coefficient and the right-hand side to the nearest integer, we
obtain the desired result.

4. Primitive ladder inequalities. For any inequality ax <_ a0, we define its
support graph to be Ga (V, Ea), where Ea (e E E" ae 0}. In this section,
we consider a subclass of ladder inequalities ax <_ ao that have a spanning support
graph (that is, Ga contains no isolated nodes) and satisfy the following properties:

IUi N Tjl

_
1 for any pair Hi and Tj,

[Tj \ (HI U H2)[ 1 for j 1,...,t, and

IH \ (’ "+T) < i for i= 1 2\’j=
The inequalities in this class are called primitive ladder inequalities. Thus, Fig. l(a)
shows a general primitive ladder inequality if no node has any clone. (Hollow nodes
may be present or absent, and there may be any even number of teeth in the dashed
box).

Note that any ax <_ ao can be written in the form

Zwix(E(Li)) + bx <_ a0,
i=1

where the Li’s are subsets of V. By complementing Li with respect to ax <_ ao, we
mean adding to the inequality the multiples of degree constraints --x(5(v))
for all v E L. and x(5(v)) wi for all v V \ Li. The resulting inequality is2
clearly equivalent to ax <_ ao but has different coefficients. To facilitate the polyhe-
dral proof, we need a unique representation of valid inequalities for STSP(V). This
representation is given by the following lemma.

LEMMA 4.1. Let ax <_ ao be any valid inequality for STSP(V), and let h, u, and
v be any three distinct nodes in V. Define B _=_ 5(h)U {(u, v)}. Then there is a unique
(up to positive multiples) inequality cx <_ co that is equivalent to ax <_ ao and satisfies
c 0 for all e B.

The lemma follows directly from Remark 4.2 in GrStschel and Padberg [5] by
observing that B corresponds to a basis of the column vectors in the node-edge inci-
dence matrix. We call such a representation, cx <_ co, an (h, uv)-canonical form, or
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an (h, uv)-canonical inequality. An example of a ladder inequality in (h, 13)-canonical
form cx <_ co is presented in Fig. l(b). This can be obtained by complementing tooth
T2. Note that c31 cai 0 for all i >_ 4 and even, c21 c24 c26 2, c52 c5 1,
etc. Note also that if g is absent, then c67 3.

For any valid inequality bx <_ bo for STSP(V), a Hamiltonian cycle C on V is
said to be b-tight if b(C) bo, where b(C) =- eec be.

() (b)

FIG. 1. Ladder inequalities. (a) A ladder inequality. (b) The ladder in (h, 13)-canonical
form.

FIG. 2. Four c-tight paths.

We now outline the polyhedral proof. In this proof, we make reference to the gen-
eral primitive ladder inequality shown in Fig. 1. In particular, we use the node labels
(numbers 1,... ,6, and letters u, w, g, g) as shown in that figure. The hollow nodes
g, g’ may be assigned to nondegenerate teeth, {6, g, 7} and {4, g’, 5}, respectively, as
needed in the proof. The other hollow nodes w and u represent the cases that some
node in a handle may not be contained in any tooth. Unless otherwise specified, the
statements of the proof are true with and without any subset of hollow nodes.

Let cx <_ co be the (h, 13)-canonical ladder inequality shown in Fig. l(b), and let
fx <_ fo be a facet-inducing (h, 13)-canonical inequality that dominates cx <_ co, that
is, such that, for all x E STSP(V), cx co implies fx fo. Since f ce 0 for
all edges e in 5(h), the star of h, any c-tight Hamiltonian path P, that is, c(P) co,
on Y \ {h}, is also f-tight, that is, f(P) fo. (Indeed, path P can be converted, in
a unique way, into a c-tight cycle C by connecting its endnodes to node h, and thus
fo f(C) f(P).) Therefore, it suffices to compare pairs of c-tight paths on V\ {h}"
P and P’, that is, compute f(P)- f(P’) 0 to derive the coefficients of fx <_ fo.
Each comparison and its implication are denoted by

P P == "some expression."
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g g

P

0g’

@ @

P Po

FIG. 3. Eight other c-tight paths.

Note that the above implication may involve some obvious node (or tooth) permu-
tations and use earlier results on the f coefficients. Such steps are iterated until

fx <_ fo is shown to be some multiple c of cx <_ co. It then follows that cx <_ co,
hence ax <_ ao, is facet-inducing.

Figures 2 and 3 present 12 types of c-tight paths on V \ {h} used in the proof.
Each path may be represented by either the corresponding edge set or the sequence
of nodes.

We are now in a position to prove the following result.
PROPOSITION 4.2. All primitive ladder inequalities are facet-inducing.
Proof. For simplicity, let + stand for set union and for set difference. Let

C f23 and fI2-
CLAIM 1. fe 0 for all e such that c 0.

Proof. Since by definition f3 0, P1 P1 (1, 3) + (3, 6) f3 f13 0 for
all i > 4 and even.

Next, for any nondegenerate tooth, say, {6, g, 7}, let P{ P1 (7, g) + (7, 6)
(312wag’5... 76g).

Then P P-(1, 3)+(3, g) ==* f3g 0 for all g. Ifnode w does not exist, we are
done; else consider edge (3, w). Let P’ P1 -(2, w)+ (2, 6)= (3126g7-.. u5g’4w).
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Then P’ P’ (1, 3) + (3, w) == f3w O. !::]

CLAIM 2. fe a for all e such that ce 1.

Proof. P2 P2 (2, 3) + (1, 5) fli a for all i >_ 5 and odd.
Pll PI (2, 3) + (3, 5) f3 a for all 5 and odd.
P2 P2 (2, 3) + (2, 5) f2i a for all 5 and odd.
P3 P3 (1, 6) + (3, 5) fi a for all 4 and even.

P3 P3 (1, 6) + (5, 6) j a for all i, j 4 such that and j belong to
both different teeth and different handles.

If there is a nondegenerate tooth, {6, g, 7}, use three types of c-tight paths Ph,
P6, and PT.

P5 P5 (1, g) + (2, 3) g a.

P5 P5 (1,g) + (2,g) f2g a.

P6 P6 (5, g) + (1, g) fig a for all 5, 7 and odd.
P7 P7 (4, g) + (1, 4) fig a for all 4, 6 and even.
If there are at let two nonpendent, nondegenerate teeth, say, {6, g, 7} and

{4, g’, 5}, we define P P6 (4, g’) + (4, 5) (5, g) + (g, g’) (12w45g’g67... u3).
Then we have

+ ..
If all nodes in the handles are contained in the union of teeth, we are done.

Otherwise, do the following.
(i) If node w exists, the values of f for all edges e 6(w) such that c 1 are

derived as follows.
P4 P4 (1, w) + (1,a) f a.
Let P P3-(2,w)-(4,w)+(2,4)-(1,6)+(1,w)+(6,w) (5g’421w6g7...u3)

and, if g’ exists, P’ P -(4, g’)+ (4, 5) (g’5421w6gT... u3).
P P (1, w) + (5, w) f a. So f a for ll k > 5 and odd.

P’ P’- (1, w) + (g’,w) === fg’w fo a.

When both w and u exist, construct PP =- (u5gP421w697 3).
+

(ii) If node u exists, the values of fe for all edges e E 6(u) such that cc
derived as follows.

f3u

fku

are

(3, + (3, 5)
P2 P2 (3, u) + (1, u) == f f3 a.

Ps Ps (1, u) + (2, u) == f2u flu 0.

For any nondegenerate tooth, (354g’u7g6... 21) (g’453u7g6... 21) fg,

Let P (12w4g’5u3...7g6). P P-(3, u)+(6,u) f6 f3 a. So
a for all k > 4 and even.

This completes the proof for Claim 2.
CLAIM 3. fe /for all e such that Ce 2.

Proof. P4 P4 (1, 2) + (2, 4) f2i " for all i > 4 and even.
To derive the remaining fc in the handles with c 2, we distinguish, for node

w and for node u, the cases with or without that node.
(i) If node w does not exist, then P8 Ps (4, 6)+ (2, 4) =: f "), for all

distinct i, j >_ 4 and even. Otherwise, Ps includes w and we have
Ps Ps (4, w) + (2, 4) fkw / for all k _> 4 and even.
Defining P Ps (6, w) + (2, w) (35g’4w21u... 7g6), we also have

P P (4, w) + (4, 6) == fj -y for all distinct i, j >_ 4 and even, and

Ps P = f2w f6w 7.
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(ii) If node u does not exist, then P9 P9- (5, 7)-(2, 3)+(2, 4)+(3, 5) ==v fij "Y
for all distinct i, j >_ 5 and odd. Otherwise, P9 includes u and we have

P9 P9 (2, 3) (5, u) + (2, 4) + (3, 5) fku " for all k _> 5 and odd, and
P3 P3 (u, v) (1, 6) + (5, v) + (1, u) == fhv fv /, where (u, v) E P3,

v >_ 7 and odd. This shows that fij " for all distinct i, j >_ 5 and odd.
For any nondegenerate tooth {4, g, 5}, we have
P10 P10 (v, 5) + (5, g’) fDg’ ", where v u if u exists and v 7

otherwise.
P0 P0 (2, a) + (a, g’) ===v fag, 7.
P Pl (a, g’) + (a, 5) = fa5 fag, /.
This completes the proof for Claim 3. []

CLAIM 4. "- 2o.

Proof. By Claims 1, 2, and 3, P P4 === ")’ 2. []

CLAIM 5. For every degenerate tooth T, say T {4, 5} (without g’), we have
fa 3a.

Proof. P8 P2 == f45 2/- 4a 3a. []

From Claims 1.-5, it follows that fe ace for all e E E(V). The proof of
Proposition 4.2 is complete. []

5. Lifting ladder inequalities. We have shown that all primitive ladder in-
equalities are facet-inducing for STS polytopes. In this section, we show by node
lifting and cloning that all ladder inequalities are facet-inducing. We begin with the
following simple lemma on (h, uv)-canonical forms, which is used in our proofs.

LEMMA 5.1. Let cx

_
co be an (h, uv)-canonical facet-inducing inequality for

STSP(V). If an (h, uv)-canonical inequality fx <_ fo satisfies f(P) fo for all
c-tight paths P on V \ {h}, then f c and fo co, up to a positive multiple.

Proof. Assume that cx <_ co and fx <_ fo satisfy the assumptions of the lemma.
Consider any c-tight cycle C and let P C \ 5(h). Since P is a Hamiltonian path
on Y \ {h} and c(P) c(C) co, we have f(P) fo, implying f(C) fo. Since
cx <_ co is facet-inducing and both cx <_ co and fx <_ fo are in (h, uv)-canonical form,
this implies f c and f0 co, up to a positive multiple. []

We say that a valid inequality induces a nontrivial facet if it is not equivalent to
either a nonnegativity constraint xe >_ 0 or a bound constraint x <_ 1. The following
two results show how large classes of nontrivial facets can be obtained by node-lifting.

The first theorem allows us to add isolated nodes, that is, nodes that are not
in the union of all handles and teeth, and therefore whose incident edges have zero
coefficients in the ladder inequality (1). Actually, this node-lifting theorem applies to
a broad class of STSP facet-inducing inequalities, such as the well-known clique tree
class. An inequality ax <_ ao for STSP(V) is a 2-tooth inequality if it satisfies:

(i) it is a nontrivial valid inequality for STSP(V);
(ii) a >_ 0;
(iii) there exist (at least) two disjoint teeth T {tl, h} and T2 {t2, h2} such

that for each i 1, 2, we have ath > 0, and atv 0 for all v : hi;
(iv) either ahlv

_
ahlt or ahoy --0 for all v V.

Many of the known valid inequalities have this property, including all primitive clique
tree, ladder, and chain inequalities as well as many bipartition inequalities.

THEOREM 5.2. (Adding an isolated node). Suppose that the 2-tooth inequality
ax

_
ao defines a nontrivial facet of STSP(V), and q Y. Let a’x*

_
a be a lifted

inequality for STSP(V*), where V* Y U {q}, obtained by letting a) co, a ae
for all e E(V) and zero otherwise. Then a*x <_ a is facet-inducing for STSP(V*).
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Proof. Consider a facet-inducing 2-tooth inequality ax <_ co. Without loss of
generality, we may assume that ath 1. Define Y =- {v
0} and Z V \ T. Note that (i) implies that both Y and Z are nonempty. Since

h Y and t2 Z\Y, both Y nd Z\Y are nonempty subsets of V\{t }. Let cx <_ Co
be the (t, t2h)-canonical inequality obtained from ax <_ ao by complementing T. It
is easily verified that this inequality stisfies the following properties.

(P1) c >_ 0 and the support graph Gc (V,E) of cx <_ co consists of the
isolated node t and a bi-clique structure induced by subsets Z and Y of V; that is,
Ec E(Z) E(Y), where Z Y V \ {t}, and Y \ Z {h}.

(P2) ce >_ 1 for all e e E(Z).
(P3) Chlv >_ 1 for all v E Y and Chlv 0 for all v E Z \ Y, and
(P4) Ct2h, 0; Ct.h2 > 1 and ctv 1 for all v Z \ {h2}.
Let a*x <_ a be as defined in the theorem. Conditions (i) and (ii) imply that

a*x <_ a is valid for STSP(V*). Let c*x <_ c be the (tl,t2hl)-canonical inequality
obtained from a*x <_ a by complementing the tooth {tl, h}. Comparing this in-
equality with the (tl,t2h)-canonical inequality cx <_ co, we observe that ce ce for

--lforallvZ, andthatc-co+l.0 and Cqvall e E(V), that Cqh
Let fx <_ fo be any (t,t2h)-canonical facet-inducing inequality for STSP(V*)

that dominates c*x

_
c. Let c _= fqt.

CLAIM 1. fqh 0 and fqz a for all z e Z \
Proof. We have assumed that ax <_ co, and thus cx <_ co as well, is not equivalent

to a trivial inequality xe >_ O. Therefore, for every z E Z \ Y, there exists a c-tight
path P on Y \ {t} containing edge (z, h). By (P3), Czh, 0, and thus the edge e

connecting the endnodes of P satisfies Ce 0, for otherwise c(PU{e} \ {(z, hi)}) > co.
This implies by (P1) that path P has the form P (u... zh) with Cuh 0 and
u Z \ Y. Let P’ -_- P U (q, u), P" (hqu... z) and note that both P’ and P" are
c*-tight paths on V* \ {t}.

(i) First, let z t2. Comparing P’ with the c*-tight path (hqu...t2) implies

f , 0.
(ii) Next, comparing P" with (hlqz...u) yields
(iii) Now, consider ny other z e Z\Y, z te. Ifu t2, then compar-

ing P and the c*-tight path (u... zqh) yields fqz a nd Claim 1 is proved for
node z. Else, u - t2 and we may write P (u...vt2s... zhl). By (P4), we

have cvt. 1 or ct.s 1 (or both). If cvt 1, then comparing c*-tight paths
(hlu...vqt2s...z) and (hu...vqz...st2) yields fqz fqt. -c. If ct.8 1, then
comparing (u... vt2qs.., zh) and (t2v...uqs... zhl) yields fqu c, and therefore
by (ii), fq fq a. We have shown that fq a for all z e Z \ Y and the proof
of Claim 1 is complete. []

CLAIM 2. fqw C for all w Z N Y.
Proof. Since cx <_ co is a nontrivial inequality, for any w E Z N Y, there exists

a c-tight cycle C on V containing edge (t, w). Thus, there exists a c-tight path
P (w..-s) on V \ {t}, obtained by deleting from C the edges incident with t.
Note that, by (P2) and (P3), cs >_ 1. By property (P4), path P must contain an
edge (u, v) incident with t2 and with cuv 1. (Otherwise, P would contain (h2, t2)
and (t2, h) with Ct2hl 0, implying that c(P {(w,s)} \ {(t2, h)}) >_ co + 1, a

contradiction.) Let P =- (w...uv... s) and P’ P t2 {(w, s)} \ {(u, v)}. Comparing
P and P yields c8 <_ 1 and therefore cw 1. Thus P is also a c-tight path
on V \ {tl). Now comparing P’2 {(q, u)} and P’ {(q, v)} yields fq
since t2 {u,v}. Finally, comparing the two c*-tight pths (w...uqv...s) and
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(u...wqv... s), we obtain fqw fqu . The proof of Claim 2 is complete.
Consider the following inequality for STSP(V),

(3)

Denote this inequality by ]x <_ ]o and observe that it is in (tl, t2hl)-canonical form.
Consider any Hamiltonian path P on V\ {t}, say P (u... v). By property (P1), P
must have at least one endnode v in Z. Letting P* =_ (u... vq), we have fo >_ f(P*)
](P) + a. This shows that inequality (3) is satisfied by any Hamiltonian path on
Y \ {t }. Furthermore, if P is c-tight on V \ {t }, then P* is c*-tight, and therefore
also f-tight, on V* \ {tl}. That is, f0 f(P*)= ](P)+ a. Thus, every c-tight path
on Y \ {t} satisfies (3) with equality. Since cx <_ co is facet-inducing for STSP(V),
Lemma 5.1^implies that, with the appropriate positive multiple, co ]0 f0- c and
c ce fe f for all e e E(V \ {tl}).

Finally, from the c-tight path P (w... uv... s) in the proof of Claim 2, we
obtain two c*-tight paths (w...uqv... s) and (qw... uv... s). Since c,v 1, we have
f,,, 1. Therefore comparing these paths yields a + 1 2a. So a 1.

* for all e E E(V*) implying thatThis shows that f0 co + 1 c and fe ce
c*x <_ c), or equivalently a*x <_ a), is facet-inducing for STSP(V*). The proof of
Theorem 5.2 is complete. D

We remark that the above theorem is not only of theoretical interest but also of
practical importance in polyhedral computations for the TSP. Since all facet-inducing
2-tooth inequalities for small STS polytopes also induce facets for large STS polytopes
by adding isolated nodes, they can be effectively used as cutting planes for solving
the large TSPs. Moreover, they have small support graphs, and thus require far less
computer memory to store. As a consequence, we may expect facet-inducing 2-tooth
inequalities derived from the study of small STS polytopes to play a role in the efficient
solution of large STS problems. Denis Naddef pointed out to us that an example arose
in computation for which ladder inequalities improved the LP bound. This example
is discussed in detail in [4].

To show that any ladder inequality is facet-inducing, we use the following node-
cloning result, which is an extension of Theorem 4.1 in Queyranne and Wang [10].

THEOREM 5.3. (A sufficient condition for node cloning). Let u and q be any two
nodes such that u V and q t V. Let V* -= Vt_J{q}. Assume that cx <_ co is a
nontrivial facet-inducing (u, pw)-canonical inequality for STSP(V) satisfying ce >_ 1
for all e with ce ? O, and moreover the following condition.

CONDITION B(u,D;w). There exists a scalarw k 1 and a partition ({u}, D, U, U’)
of V such that:

B1. c 0 for all e e E(D U’);
B2. 1 <_ c <_ w for all e E(D U); and
B3. ce k w for all e e E(U).
Then the inequality cUx <_ c, defined by c co, c ce for all e E(V) and

c{ 0 for all e 5(q), is facet-inducing for STSP(V*).
Proof. Let d D, and let fx <_ fo be a (u, qd)-canonical inequality that dominates

cUx <_ c and defines a facet of STSP(V*).
CLAIM 1. fqv --0 for all v U’U D.
Proof. Consider any nodes v D and v U/. Note Cv, 0 by (B1). Since

cx <_ co is not equivalent to any xe k 0, there is a c-tight cycle C on V, thus
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a c-tight path P C \ 5(u) (s...vv’...t) on V \ {u} containing (v,v’). Let
pP’ P tA {(s,t)} \ {(v, v’)} Since 0 <_ c(P) c(P’) Cvv, cst, is also c-tight.

Comparing P’ tA { (q, v)} and P’ U { (q, v’)} yields fay fqv,. Since fad 0, the claim
follows.

CLAIM 2. fqv 0 for all v E U.
Proof. Consider any node v E U. Let C be a c-tight cycle on V containing uv.

Then P’ C’\ i(u) (v... v’) is the c-tight path on V \ i(u). If v’ e U’ U D then
construct two c-tight paths as in (i) to show that fq 0. Otherwise v e U. In this
case P has the form (v... rs... v) where r U and s D. (Note that P contains no
edge e0 e E(D" U’), since otherwise c(P’J {(vv’)} \ {e0}) > co, a contradiction.) By
(B2) and (B3), P" "_= P’ U { (r, v’)} \ { (r, s) } is a c-tight path on Y \ ti(u). Comparing
P"t2 { (q, v)} and P"U { (q, s)} yields fqv fs 0. So Claim 2 also holds.

Finally, consider any c-tight cycle C on Y. Clearly C* C tA {(q, u), (q, v)} \
{(u, v)}, where (u, v) e CNh(u), is a Hamiltonian cycle on V* satisfying cu(C*) c,
and hence is f-tight. Furthermore using the above claim, we have f(C) f(C*) fo.
Since cx <_ co defines a facet, by Lemma 5.1, we have f c for all e E(V) and
f0 --co.

THEOREM 5.4. All ladder inequalities are facet-inducing.
Proof. Let bx <_ bo be any ladder inequality. Clearly, there exists a corresponding

facet-inducing primitive ladder inequality ax <_ ao obtained by discarding all isolated
nodes in Gb and shrinking each nonempty set Hi NTj, Tj \ (H1 H2) and Hi \ (j=it+m
into a singleton set. If Gb contains s isolated nodes, we apply Theorem 5.2 s times
to atx <_ ao to obtain a facet-inducing ladder inequality ax <_ ao with Ga containing
s isolated nodes. To clone any other node u, we consider ax <_ ao as being a general
facet-inducing ladder inequality for STSP(V). Recall that V* V t {q}. We need
to show that the inequality aUx <_ a, obtained by replacing {u} with {u, q}, is
also facet-inducing for STSP(V*). Let cx <_ co and cx <_ c be their respective
(u, vw)-canonical inequalities. Then cx <_ c is exactly the inequality obtained in
Theorem 5.3 from cx <_ co. Thus, to show that a"x <_ a is facet-inducing, it is
enough to check that cx <_ co satisfies the conditions of Theorem 5.3 for each of the
following cases. (Note that by symmetry, the following also applies to the cases with
respect to H.)

Case 1. u T2 \ H2. Construct cx <_ co by complementing T2, as in Fig. l(b).
Then, cx <_ co satisfies the required conditions and 13(u, T2 f H2; 1).

Case 2. u e Tj \ (H tJ H2), 3 <_ j <_ t. Construct cx <_ co by complementing Tj.
Then, cx <_ co satisfies the required conditions and 13(u, T H2; 1).

Case 3. u H2 \ t+m(j= Tj). Construct cx <_ co by complementing H2. Then,
cx <_ co satisfies the required conditions and 13(u, T2 C H2; 1).

Case 4. u H2 Tj. j >_ 3. Construct cx <_ co by complementing H2 and
Then, cx <_ Co satisfies the required conditions and B(u, Ty \ (H1 tJ H2); 1) if 3 _< j _< t;
or B(u, Ty H1;2) if t + 1 _< j _< t + m.

Case 5. u H2T2. Construct cx <_ co by complementing H2, T2 and then adding
the degree constraints -x(5(s)) -2 for all s S T C H1. Then, cx <_ co satisfies
the required conditions and B(u, T2\H2; 1). (Note that U V\(T2 H2 tA (T1 H1))
in the partition ({u}, D, U, U’).)

The proof is complete.

6. The Chvital rank of ladder inequalities. Let P be a rational polyhedron
in RE, that is, P {x" Ax _< b}, where A and b are rational, and let Px denote the
convex hull of the integral points in P. Define p0 to be P and for i >_ 1, pi to be
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the set of points satisfying all integral inequalities ax <_ ao derived from pi-1 by the
following rounding procedure: For any finite set of m (say) inequalities Cx <_ d valid
for pi-1 and A E R such that AC is integral, take a AC and a0 [Adj. So each Pi
contains PI and p0

_
p1

_ _
pi. These definitions were introduced by Chvital

[3], and the rounding procedure is closely related to the cutting plane methods of
Gomory. It can be proved that each Pi is itself a polyhedron, and that there is an
integer k, depending on P, such that pk PI. (See Chvital [3] for details.)

The (Chvtal) rank of an inequality ax <_ ao valid for PI is the least i such that
ax <_ ao is valid for Pi. It is a measure of the complexity of the derivation of the
inequality by the above procedure. Suppose that we take P to be a subtour polytope,
that is, the solution set of (la), (lb), and (lc). Then PI is STSP(V), and it is
of interest to classify facet-inducing inequalities by their rank. Of course, the non-
negativity and SE inequalities have rank 0. It is well known that comb inequalities
have rank 1. See [2]. From this and our proof for the validity of the ladder inequalities,
it follows that each ladder inequality has rank at most 2.

In the remainder of this section, we prove that each ladder inequality has rank
at least 2, hence exactly 2. There is an apparently "obvious" technique for proving
that an integral inequality ax <_ co, which is valid for PI, cannot be obtained from
inequalities of rank 0 by the rounding procedure. Namely, we show that there is no
solution to

AA=a, >_0, Ab<a0+l.

By the duality theorem of LP, this is equivalent to showing that there is 2 E P with
a2 >_ a0 + 1. However, there is a difficulty with this argument. It may be that there
are inequalities of which ax <_ ao is a nonnegative combination, that are obtainable
by rounding, although ax <_ ao itself is not. This difficulty does not disappear even
if we know that ax <_ ao is facet-inducing for PI, since it still may have an equivalent
form that is obtainable by rounding.

An instructive example that arises from the 6-node TSP is the following inequal-
ity:

ax x12 + x13 -}- x23 -- 2x14 + 2x25 -t- 2x36 + x45 + x46 - x56

_
8 a0.

This inequality is facet-inducing for STSP(V) with IVI 6. In fact, it is equivalent
to a comb inequality with handle {1, 2, 3} and teeth {1, 4}, {2, 5}, {3, 6}. Hence it has
rank 1. However, the point 2 1/2a satisfies (la), (lb), and (lc) with a2 9 a0 + 1.

Actually, this difficulty was overlooked in some previous papers [1], [2], where it
was claimed using the above argument that certain inequalities have rank at least
2. These results are correct, but their proofs contain gaps that can be filled by the
following result from [11]. Let Gx g be the equality system for PI, that is, the
linearly independent equations whose solution set is the affine hull of PI.

If G is written (GB, GN) such that GB is a nonsingular square matrix, we say
that a valid inequality ax <_ ao for PI is an integral B-canonical form if a (aB, aN)
with aB 0 and all components of aN being relatively prime integers. Notice that for
every rational valid inequality, there is a unique integral B-canonical form to which
it is equivalent.

PROPOSITION 6.1. Let ax <_ ao be an integral B-canonical form that is facet-
inducing for PI, and suppose that GIG is integral. Then ax <_ ao has Chvdtal rank
at most 1 if and only if z(a) =_ max{ax x e P} < ao + 1.
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For the STSP case, the equality system Gx g consists of the degree constraints

(la). Consider the integral B-canonical form of Lemma 4.1. It is easy to see that,
for any column gpq of GN, the vector Glgpq, that is, the vector d that satisfies

GBd gpq has components 0, -1, +1. Namely, the +1 and -1 components alternate
on the edges of the unique odd-length edge-simple path in B joining p to q. Hence
Proposition 6.1 can be applied.

We are now in a position to prove the main result of this section.
THEOREM 6.2. The ladder inequality (2) has Chvdtal rank 2.

Proof. From the proof of Theorem 3.1, it follows that every ladder inequality
cx <_ co has Chvgtal rank at most 2. We now show that it has Chvgtal rank at least
2. To do so, we first construct its (h, 13)-canonical form ax < ao where, as in 4 and
Fig. l(a), nodes h E T2 \ H2, 1 e T1 \ HI and 3 H2 gl T2. Hence by Proposition 6.1,
we just need to construct a feasible solution to the subtour polytope satisfying
a2 >_ ao + 1.

For j 3,..., t + m, let Pi be a Hamiltonian path on T that saturates both
2Tj n H1 and Tjn H2 with the endpoints v T N H1 and vi T N H2. Let P2 be

a Hamiltonian path on V \ t+,(=3 T) that saturates T \ H, H T,/:/ for i 1, 2
with endpoints vl Hi and v2 E Hg.. Define the edge set

, ,t+mpj) t3 {(vj+i-1, vj+i) E E(Hi)" 1 2; j is even and 4 < j < t + m- 2},P, ,j=2

and node sets S1 =- {vl, v, V+m}, $2 {v2, v, v}. Then P1 is a path system with

all nodes in S1 U $2 of degree 1 and all other nodes of degree 2. Now define RE

by e 1 for all e P1, e 1/2 for all e e E(S1) t2 E(S2) and 0 otherwise. It is

easily verified, using the (h, 13)-canonical form ax <_ ao of the ladder inequality, that
we have a a0 + 1. [3
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ON THE CONVERGENCE OF FENCHEL CUTTING PLANES IN
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Abstract. Fenchel cutting planes are based on the dual relationship between separation and
optimization and can be applied in many instances where alternative cutting planes cannot. They
are deep in the sense of providing the maximum separation between a point & and a polyhedron P
as measured by an arbitrary norm which is specified in the process of generating a Fenchel cut. This
paper demonstrates a number of fundamental convergence properties of Fenchel cuts and addresses
the question of which norms lead to the most desirable Fenchel cuts. The strengths and weaknesses
of the related class of 1-polar cuts are also examined.
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1. Introduction. In the last decade cutting plane methods have come to dom-
inate the research in integer programming. Beyond providing some of the most the-
oretically attractive results found in discrete optimization, cutting plane methods
have proven to be remarkably successful in solving large integer programs in practice.
Grbtschel and Holland [11], Padberg and ainaldi [18], [19], and others, have solved
larger traveling salesman problems to optimality than would have been conceivable
only a decade ago. Crowder, Johnson, and Padberg [9] won the Lanchester prize for
solving some integer programs that were at one time considered forever unsolvable.

Recent successful cutting planes commonly arise from theoretical studies of facets
of polyhedra P defined by the convex hull of feasible integer points for well-known
integer programs. For example, the facial structure of the polyhedron P found in
knapsack problems has been studied in great detail in [1], [3], [4], [13], [17], [23], and
elsewhere, and these results were used by Crowder, Johnson, and Padberg in [9] to
generate cutting planes for the integer programs they studied based on relaxations
provided by the individual constraints of the problems. Furthermore, once a class of
cutting planes has been identified, for the class to prove useful in practice it must
be possible to quickly solve the separation problem: find an inequality that is valid
for the underlying integer program but violated by the optimal solution of the linear
programming relaxation. These two factors the theoretical study of classes of
cutting planes and algorithms for solving the associated separation problem are
the key determining factors in developing useful classes of cutting planes.

An alternative method of generating cutting planes was proposed by the author in
[5]. The proposed Fenchel cutting planes are based on the dual relationship between
separation and optimization and are generated using assumptions different from those
used in generating most cutting planes. Rather than assuming any a priori knowledge
of the facial structure of a polyhedron P, Fenchel cuts assume only the existence of an
oracle for optimizing a linear function on P. This assumption is not new, having been
used extensively in another popular technique for solving integer programs, namely,
Lagrangian relaxation. The computational value of Fenchel cuts was demonstrated in
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[5]-[7]. One of the more interesting uses of Fenchel cuts is in the solution of mixed-
integer programs, where alternative cutting plane techniques often cannot be applied.

Fenchel cuts are deep in the sense of providing the maximum separation between
a point 2 and a polyhedron P as measured by an arbitrary norm which is specified
in the process of generating a Fenchel cut. In a sense, Fenchel cuts can be seen
as bypassing the issue of understanding the facial structure of P and attacking the
separation problem directly. As will be discussed, the process of generating a Fenchel
cut either finds a cutting plane strictly separating 2 from P or provides a proof that
no such cutting plane exists.

The purpose of the present paper is to address the convergence properties of an
algorithm based on Fenchel cuts for strengthening the linear programming relaxation
of an integer program, and to discuss how the polyhedral properties of the problem
and the norm associated with the Fenchel cuts affect the speed of convergence of this
algorithm. Somewhat surprisingly, it is shown that finite convergence is guaranteed
under the most general possible conditions, although the provable speed of the al-
gorithm can vary dramatically. The convergence properties of the algorithm using a
class of cutting planes different from Fenchel cuts, but very closely related, are also
discussed.

In order to be more specific regarding the results to be presented, consider the
following arbitrary mixed-integer program.

max cx
(MIP) s.t. Ax <_ b

some x integer.

Let P, i 1,... ,m be a collection of polyhedra containing the feasible region of
(MIP). In practice, such a collection of polyhedra might be defined by the convex hull
of feasible solutions for mixed-integer relaxations of (MIP) obtained by eliminating
some subset of complicating constraints. The cutting plane algorithm to be considered
is the following.

ALGORITHM CUT
Given: A mixed-integer program (MIP) and a collection of m polyhedra P
containing the feasible region of (MIP).

O. Initialize. Let A A, b b, and set t 0.
1. Let x be the optimal solution obtained by maximizing cx subject to the

constraints Atx < b.
2. For i 1, m generate a cutting plane separating x from P or prove that

no such cutting plane exists.
3. If no cutting planes were generated in step 2, stop. Otherwise, append all

cutting planes generated in step 2 to the system Atx <_ b, set t t + 1, and
return to step 1.

mIt is clear that upon termination of the algorithm the point x E =1 P" What
is not clear is that the algorithm will necessarily terminate or, if not, if the sequence
of iterates x will converge to a point in m__l p.

Algorithm Cut is an idealized version of an approach that has been used in solving
many integer programs. Some algorithms explicitly employ Algorithm Cut, such as
the award winning work of Crowder, Johnson, and Padberg for solving general 0/1 in-
teger programs [9]. Other algorithms employ Algorithm Cut implicitly. For example,
cutting plane algorithms for the well-known traveling salesman problem (TSP) com-
monly generate facet-inducing cuts for various polyhedra that are relaxations of the
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TSP polyhedron, e.g., the subtour elimination polyhedron and the 2-matching poly-
hedron [19]. Such cutting plane algorithms are implicitly employing Algorithm Cut,
although it is not common to view the algorithms in this way due to the context in
which the cutting planes are generated. When facet-inducing cuts of the polyhedra Pi
are used, then finite termination of Algorithm Cut is guaranteed by virtue of the fact
that a polyhedron has a finite number of facets. On the other hand, it is possible to
construct very simple examples of sequences of cuts even face-inducing cuts for
which Algorithm Cut does not terminate and the sequence of iterates x generated by

mthe algorithm do not converge to a point in i=1 Pi" While Fenchel cuts are deep in a
well-defined sense and are guaranteed to be face inducing, their convergence proper-
ties are not known, and this is the primary question motivating the results presented
in the remaining sections.

It is important to recognize that the results presented in this paper are motivated
by practical questions that were encountered when Algorithm Cut was used in a code
for solving integer programs. When using Fenchel cuts, will the algorithm terminate
finitely or must an ad hoc criterion be invoked for termination? Even if Fenchel cuts
do lead to finite termination, will they take a long time to converge or do they have
properties suggesting good convergence in practice? How do Fenchel cuts compare to
other dual-based procedures for generating cutting planes? Finally, what parameters
can be beneficially controlled in the procedure for generating Fenchel cuts? Empirical
observations provided some insight into these questions, but these observations actu-
ally raised more questions than they answered, and this served to inspire a theoretical
study of the convergence properties of Fenchel cuts.

2. Background and notation. In order to provide an unambiguous foundation
for the work that follows, we present notation and a number of basic results that are
used throughout the paper.

Given a polyhedron P (x E Rn Ax <_ b) a face of P is any nonempty set F
that can be expressed as F (x E P Ax A0} where the constraint Ax <_ A0 is
valid for P; that is, all x P satisfy Ax _< 0. The hyperplane defined by any valid
inequality whose intersection with P is F is said to define F, and if F : P then F is
a proper face. Given any description Ax <_ b of P and any face F of P let A=x <_ b
be the subset of constraints whose equality sets contain F and let A<x <_ b< be the
remaining constraints. A standard proposition relating the constraints A=x <_ b to
F is the following.

PROPOSITION 2.1. The smallest aJfine space containing F is a translation of the
nullspace of A=. In particular, rank A + dim F n.

Given two vectors , Rn, we denote the angle between these vectors by / (A, -).
A subgradient of a convex function f(x) at a point is a vector defining a supporting
hyperplane of f(x) at ; that is, a vector satisfying f(x) >_ f() + (x- )).

Throughout this paper we let IlXlla denote an arbitrary norm on Rn. For nota-
tional convenience, if a p is some positive real number we use Ilxllp to denote the
Lp norm, (-in__l ixilp)/p. The following proposition states a number of properties of
norms which will be explicitly referenced in the course of this paper.

PROPOSITION 2.2. The following statements are true for any norms IlXlla and

(a) There exist positive scalars m and M such that mllXlla <_ IlXllb <_ MIIXlla.
(b) The vector is a subgradient of IlXlla at if and only if is a subgradient of

Ilxlla at , where > 0 is any scalar.
(c) There exists a constant Cab > 0 such that for any subgradient ) of IlXlla at
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x o, II llb C b.
Proposition 2.2(a) is the well-known equivalence of norms in finite dimensions,

while Proposition 2.2(b) can be verified from the defining properties of norms and
Proposition 2.2(c) can be verified from Proposition 2.2(b) and the defining properties
of norms.

Given an arbitrary norm [[xll a Rn -- R, the dual norm IIA[[ Rn R is defined
by

max Ax
s.t. llxllo < 1,

It can be shown here that Ilxll* Ilxll, and it is useful to note that I1 11 11112,
IIAII IIAIIoo, and by the observation just made IIAIlo IIAII1. For a polyhedron
P c_ Rn and a point E Rn the problem of finding a point 2 E P closest to 2 as
measured by the norm IlXlla can be stated succinctly as

(M) s.t. x e P.

Similarly, the problem of finding a hyperplane separating 2 and P can be formulated
as

max A- f(/)(D) s.t. A e A,

where A is a full-dimensional set containing the origin in its strict interior and

f(A) max/x

s.t.xP.

As a notational matter, when the domain of (M) is denoted by Pi rather than P we

will refer to (M) as (Mi) and to (D) as (D). The fact that (D) solves the separation
problem can be seen by observing that if 2 P then (D) must have a nonpositive
optimal value, while if there exists a separating hyperplane Ax <_ A0 with A > A0
and Ax <_ A0 for all x E P, then aA is feasible for (D) for some sufficiently small c > 0
and ()-f() (c)- f() _> (c)- c0 a(- 0) > 0. If is feasible
for (D) and has a positive objective function value then the associated Fenchel cut is

A domain of very special interest is A {A IIAII <_ 1), which in effect is the unit

sphere in an arbitrary norm. The importance of this domain is that it establishes a
dual relationship between the problems (M) and (D).

PPOPOSITION 2.3. When A { I[)[[ _< 1} the following statements are true
o/the problems (M) and (D).

(a) If 2 is feasible for (M) and is feasible for (D) then 112 2lla >- f()"
(b) If 2 is optimal for (M) and is optimal for (D) then 112 2lla f().
(c) /f 2 is optimal for (M) and is optimal for (D) then f(A) 2 and - is a

subgradient of IIx 11 a at 2.
A proof of Proposition 2.3 can be found in [15]. It is easily verified using Proposi-
tion 2.3 that when h- {A IIAII _< 1} the Fenchel cut x _< f() is as far as possible
from 2 as measured by the norm IlXlla; that is, the cut generated by solving (D) pro-
vides the maximum IIX]la-norm separation between and P. This property provides
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motivation for studying deepest norm Fenchel cuts Fenchel cuts associated with
optimal solutions to (D) when A is defined by the unit sphere in an arbitrary norm.

While procedures for actually solving (D) are not of direct relevance to the present
paper, it is worth mentioning that (D) can be solved to optimality using generalized
programming if an oracle for optimizing a linear function on P is known, and simplex
procedures can be used to solve (D) if an oracle for parametrically optimizing a linear
function on P is known. Other techniques can be employed to find an approximate
solution to (D), and this is often sufficient in practice since cutting planes are defined
by values of A for which the objective function in (D) is positive. For further details
regarding the use of Fenchel cuts in practice, the reader is directed to [5] and [6].

If a polyhedron P is full-dimensional, bounded, and contains the origin in its
strict interior then the 1-polar of P is the polyhedron

Q-{" xk_<l, xkEE(P)},
where E(P) is the set of extreme points of P. A well-known relation between P and
Q that is not difficult to verify directly is the following.

PROPOSITION 2.4. The constraint Ax <_ 1 is a facet of P if and only if
E(Q), and the constraint x <_ 1 is a facet of Q if and only if xk E(P).

A proof of Proposition 2.4 can be found in [16].
3. The convergence of Algorithm Cut. The main result presented in this

section is that when deepest norm Fenchel cuts are used in Algorithm Cut the sequence
of x generated by the algorithm not only converge to a point in im__l Pi but that the
algorithm terminates finitely. The fundamental idea underlying the desired finiteness
proof is that deepest norm Fenchel cuts cannot define a given face F of a polyhedron
Pi more than a finite number of times. The specific finite number is a property of the
face F and the norm under consideration. The following lemma proves the existence
of a fundamental angle associated with any norm that in turn is used to demonstrate
the existence of a uniform bound on the minimum angular separation between the
gradients of any two constraints defining a face F of P.

LEMMA 3.1. For any norm I1" Ila there exists an angle Oa < /2 such that for
any point 2 2c and any subgradieut of the function IIx- &lla at 2,

Proof. By the definition of a subgradient,

II x lla >- 11o + (- ),

and since 2 and 11112 > 0 by Proposition 2.2(c) we can write

x__lIIx- llo > I1 - +

At x & this reduces to

or, alternatively stated,

cos L > : lla i

I1 11: 
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With IIg.-11/11-11 uniformly bounded away from zero by Proposition 2.2(a) and
[JAIl2 uniformly bounded away from zero by Proposition 2.2(c), the result follows. In
particular, if we define

?a min
[12- &[[a 1

then

0a

_
COS-- ?a.

For future reference we let Oa < r/2 be defined as

a max{/(, )" &, a subgradient of IIx lla at 2}.
With the aid of Lemma 3.1 we are now in a position to complete the following theorem.

THEOREM 3.2. Suppose that at iteration t of Algorithm Cut, the Fenchel cut
Ax <_ f(A) is generated for Pi by the optimal solution to (Di) with h {A IIAIl _< 1}.
Let F be the face of Pi defined by this cut and let aJx

_
bj, j 1,..., K be the set of

inequalities in the system Atx
_

b of Algorithm Cut that define F. Finally, let Oa be
as defined in Lemma 3.1. Then

Z (, aj) >_ - 0 for all j l g.

Proof. Let 2 be optimal for (Mi), let k E {1,...,K} be some fixed index, and
for notational convenience let = Z(,ak) and (,xt- 2). We note that since- is a subgradient of the function IIx xtlla at 2 by Proposition 2.3(c) it follows
by Lemma 3.1 that (-,2- xt) <_ Oa. Also, 2 E F by Proposition 2.3(c) so
that ak bk, and since x satisfies akx

_
bk by the operation of Algorithm Cut it

follows that ak (x 2) <_ O. We proceed to show that assuming < /2 0a leads to
the contradiction ak(x 2) > O.

Decomposing ak into two components, one residing in the space spanned by
and the other in the orthogonal complement of this space, we have

where

ak

We can thus write

a (x
liakll2

+ (sin O) 3’(cos O)ilXII2

ak
(cosO)

X (x )(cos O)IIXlI IIx 11
(x- )+ (sin O)IIllu IIx llu- (x’ s:)(cos O)(cos O) + (sin )11112 IIx’ 112

Similarly, decomposing xt- into two components, one residing in the space spanned
by and the other in the orthogonal complement of this space, we have

zt-’ =(cos) o

IIx s:l12 IIJ, II2 +
(sin O)I1o11--
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where

x
(co t) X

Thus,

so that (1) reduces to

(2)

(cos)(cos) + (sin)(sin) 7 w

llll2 11112
(cos O)(cos ) (sin )(sin ), 1111211112
(cos )(cos ) (sin )(sin)
cos( + ),

where the final equality follows from a standard trigonometric identity.
If < r/2-Oa then since _< Oa it follows that+ < r/2, implying cos(+) > 0.

Together with (2) this would imply

ak(xt ) > Ilall211x 112 cos( + ) > O,

which is the desired contradiction.
Theorem 3.2 guarantees that when deepest norm Fenchel cuts are used in Al-

gorithm Cut then any two cuts defining the same face of Pi are separated by some
minimum angle. The finite number of faces of a polyhedron leads immediately to the
desired finiteness result.

COROLLARY 3.3. When Fenchel cuts are used in Algorithm Cut with the domain
A of (Di) defined by the unit sphere of an arbitrary norm then the algorithm terminates

after a finite number of iterations.

4. The speed of convergence of Algorithm Cut. The proof of Theorem 3.2
provides considerable insight into deepest norm Fenchel cuts beyond finiteness. In
this section we elaborate upon the measure of finiteness and how it is affected by the
polyhedra Pi and the choice of norm.

We first elaborate upon the effect of the shape of the polyhedra Pi on the speed
of convergence of Algorithm Cut, showing in the process that a measure of finiteness,
implicit in Theorem 3.2, is tight. Let C(F) denote the set of gradients of constraints
that define the face F of P; that is,

C(F) {) E Rn" )x

_
)o defines F for some 0}.

Theorem 3.2 demonstrates that F can be generated at most Ta(F) times, where
Ta(F) is the maximum number of vectors that can be chosen from C(F) such that
these vectors all have angular separation of at least /2- 0a. For example, when F
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is a facet of a full dimensional polyhedron P then C(F) is a ray and Ta(F) 1, and
as a result F will be defined by at most one deepest norm Fenchel cut in the course
of Algorithm Cut.

In general, the bound Ta(F) is not tight in the sense that it is possible to construct
examples of polyhedra Pi with faces F for which Ta(F) cannot be achieved. Consider,
for example, the integer program defined by the following data.

-1 1
1 -1
1 0
0 1

-1 0
0 -1

9/10

b
5/4
0
0

Let P1 conv{(0, 0), (1, 1)}, which in this case coincides with the convex hull of all
feasible integer points, let F-- ((1, 1)}, and consider the norm I1" Ila -I1" I1" It is
easily verified that r/4, and with C(F) {A A1 + A2 > 0} it follows that
T(F) 4. On the other hand, the deepest L cut (generated by solving (D) with
h-- {A IIAII1 <_ 1})is Xl _< 1. Appending this constraint to the constraints Ax <_ b it
is easily verified that any point & E {x P1 Ax <_ b} for which the deepest L cut
defines F has gradient A satisfying/(A, (1, 0)) _> r/2 > r/4. It is left to the reader to
verify that this implies it is not possible for Algorithm Cut to generate F more than
twice.

The inability to generate the face F more than twice in the previous example
follows from the fact that there does not always exist an satisfying A& _< b such
that the gradient of the deepest L cut achieves an angle sufficiently close to r/2
0 relative to constraint gradients already defining F. In general, this small angle
condition is necessary if F is to be defined Ta (F) times. However, while a sufficiently
small angle cannot always be achieved in a fixed coordinate system, if coordinate
system rotation is allowed after each cutting plane is appended to the system Ax <_ b
then it can be shown that the bound Ta(F) is tight. In the above example it is not
difficult to construct four deepest L cuts if sequential coordinate rotations of /4
are performed and & is restricted to satisfy Ax <_ b but not required to maximize c.
The bound Ta (F) is not arbitrary but tight in a well-defined sense.

It should be stressed, however, that in real settings coordinate rotations will
never occur so that a face F should rarely if ever be generated T(F) times. General
quantitative statements in this regard are difficult to make, but examples are very
easily constructed that emphasize the difference between Ta(F) and the actual number
of times a face F of Pi can actually be defined in the course of Algorithm Cut.

While the size of C(F) provides an important measure of how many times a face
F may be generated in the course of Algorithm Cut, the angle 0 associated with the
norm I1" Ila is also an extremely important measure. In particular, the smaller a is
the larger the minimum separation angle r/2- 0a must be between gradients defining
a face F of Pi, and thus the fewer times F can be generated by Algorithm Cut.
Practically, 0a is perhaps a more important measure since it can be dictated by the
choice of domain A in (D), whereas C(F) is a property of the face F of P.

For any given norm I1" II the value 0a can be calculated on an ad hoc basis. One
norm that proves to be of particular interest is the L2 norm. Using the bound for 0a
provided at the end of Lemma 3.1, we have

O <_ cos- :,
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where

As 11ll2 1 for every subgradient of the L2 norm at points 2 - , it follows that
02 0 and thus the minimum separation angle guaranteed by the L2 norm is 7/2,
which is the best achievable. This bound makes it possible to state some very strong
results regarding deepest L2 cutting planes.

THEOREM 4.1. Let F be a proper face of P C_ Rn of dimension d. Suppose that
at iteration t of Algorithm Cut the Fenchel cut generated for P by the optimal solution
to (D) defines F and that A { 11112

_
1} (deepest L2 cuts are generated). Then

F can be defined by at most n- d- 1 constraints ajx <_ bj in the set of constraints
Atx <_ b (F will be defined by at most n d cuts in the course of Algorithm Cut).

Proof. Since F is a proper face of P there exists a point 2 E P such that
By the definition of C(F), for every ak e C(F) and its corresponding F-defining
constraint akx

_
bk it follows that akc < bk. Letting 2 be a point in F so that

ak2 bk, it follows that C(F) is contained in the open half-space {x- (2- 2)x > 0}.
With F a face of dimension d, it is easily argued, using Proposition 2.1, that dim
C(F) n-d. As the maximum number of vectors with angular separation of at least
r/2 in an open half-space of dimension n d is n d, the proof is complete.

Theorem 4.1 makes a very strong case for the use of deepest L2 Fenchel cuts
since they provide a remarkably strong measure of finiteness for Algorithm Cut, in-
dependent of the properties of the underlying polyhedra P. In some instances, the
underlying polyhedra Pi have properties that allow even stronger results to be demon-
strated for the L2 norm.

DEFINITION 4.2. Let F be a face of a polyhedron P {x Ax

_
b} and let

i- 1, K be the indices of the constraints whose equality sets contain F. We say
P is cone acute if aaj >_ 0 for any i, j {1,..., K} and any face F.

Cone acuteness arises naturally in the study of the extremely important class
of polyhedra associated with independence systems that include many fundamental
combinatorial optimization problems. The following result was proved in Boyd [5],
and demonstrates that deepest L2 cuts together with well-shaped polyhedra can lead
to very strong convergence for Algorithm Cut.

THEOREM 4.3. Suppose that P is cone acute and let F be a face of Pi. Fur-
thermore, suppose that at iteration t of Algorithm Cut the Fenchel cut generated for
Pi by the optimal solution to (Di) defines F and that A {, 11/112

_
1} (deepest

L2 cuts are generated). Then there exists no constraint akx

_
bk defining F in the

set of constraints Atx
_

b (a face can be defined at most once in the course of Al-
gorithm Cut). Furthermore, if a face F’ of Pi is contained in F then there exists no
constraint akx

_
bk defining F in the set of constraints Atx

_
bt.

One final note on deepest norm Fenchel cuts regards how the choice of a coordinate
system for the space in which Pi resides can affect the cut that is generated by (Di).
While it can be shown that translations of the coordinate system do not change the
generated cut, it is not difficult to construct examples for which the generated cut
is affected by rotations of the coordinate system. While it is difficult to provide a
useful quantitative measure of the extent to which coordinate rotation can change
the cut, the potential effect is both limited and highly dependent upon the particular
norm I1" Ila under consideration. Coordinate rotation would have an unlimited effect on
cutting plane generation if any cut in the set " of all supporting hyperplanes of Pi that
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strictly separate 2 and Pi could be generated by an appropriate coordinate rotation.
This would be a highly undesirable property since it would make cut generation
completely dependent upon the choice of coordinate system. In general, coordinate
rotation has only a limited effect on deepest norm Fenchel cuts (we return to discuss
the potentiality of an unlimited effect for a different class of cutting planes in 6). In
fact, since the L2 norm is invariant under coordinate rotations and translations we
have the following result.

PROPOSITION 4.4. If h {A IIAII2 <_ 1} (deepest L2 cuts are generated) then
the set of Fenchel cuts corresponding to optimal solutions of (D) remains invariant
(relative to P and &) under coordinate rotations and translations of the space in which
P resides.

This proposition again emphasizes the important role of the L2 norm.

5. The dimension of faces defined by Fenchel cuts. The previous sections
focused on the worst-case performance of deepest norm Fenchel cutting planes. In
particular, it was demonstrated that the number of times a face F of a polyhedron
Pi could be generated in the course of Algorithm Cut was related to the size of the
set C(F) of gradients of constraints defining F. One implication of this result is
that there is a greater opportunity for deepest norm Fenchel cuts to generate faces
of P of low dimension since higher dimensional faces of a polyhedron tend to have
correspondingly smaller sets C(F). However, while the size of C(F) is a fundamental
factor in determining the number of times an F-defining constraint can be generated,
the dimension of F strongly affects the likelihood that it will be generated. As Algo-
rithm Cut progresses, deepest norm Fenchel cuts have a natural tendency to define
faces of the polyhedra Pi of higher and higher dimension, ultimately generating facets.
The reason for this behavior comes from the fact that as the point x to be separated
gets closer to these polyhedra as more cuts are added it becomes more probable for a

high dimensional face to be generated. Formally, we have the following proposition.
PROPOSITION 5.1. Let P be a full dimensional polytope in Rn and let r

{x r minllx- YlI2 s.t. y e P}; that is, the set of points that are a distance
r > 0 from Pi. Furthermore, let Sj denote the event that the Fenchel cut generated
by solving (Di) with A {A IIAII2 <_ 1} defines a face of Pi of dimension j and
let Pr(Sj) denote the probability of this event assuming & is chosen from a uniform
distribution on gt. Then

lim
Pr(Sj)

0 j < k
-0 P(:)

and, in particular, the probability that the Fenchel cut is a facet tends to 1 as r tends
to O.

Letting X(F) be the set of points 2 E t that gives rise to Fenchel cuts defining
the face F, the proof of Proposition 5.1 follows from elementary results showing that
the surface area of X(F) is a function of r(n-1)-j, where j is the dimension of F.
Care should be taken in interpreting the practical implications of this proposition.
While it is all but impossible to quantify, the iterates x generated in the course of
Algorithm Cut tend to lie near the region of i1 Pi where cx is optimized on this set,
and this reflects upon the uniformity assumption of Proposition 5.1. In point of fact,
the uniformity assumption is not so essential as certain relatively weak boundedness
conditions on the sequence of probability measures Pr as r tends to zero. However,
we do not dwell upon a more lengthy analysis than that provided here since it would
not provide any further insight than that provided by Proposition 5.1.
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6. 1-polar cuts. When a full-dimensional, bounded polyhedron P contains the
origin in its strict interior, an alternative method for solving the separation problem
for a point is to solve the problem

max A&- 1(N) s.t. xk _< 1 for a11 xk E(P),

where E(P) denotes the set of extreme points of P. Clearly, if is feasible for (N)
and has a positive objective function value, then the constraint Ax <_ 1 is valid for
P and strictly separates and P. With the assumption that the origin is in the
strict interior of P, it is equally easy to see that if there exists a constraint strictly
separating 2 and P then it can be written as Ax _< 1, implying is feasible for (N)
and has a positive objective function value. We call a cutting plane Ax _< 1 generated
by an optimal solution A to (N) a 1-polar cut. One particular advantage of 1-polar
cuts is that optimal extreme point solutions of (N) define facets of P so that finiteness
of Algorithm Cut is not an issue when 1-polar cuts are used. Furthermore, although
(N) is defined implicitly by a potentially exponential number of constraints, solution
techniques for (N) and the Fenchel cutting plane problem (D) are very similar.

While 1-polar cuts have the advantage of defining facets of P, they also have
inherent weaknesses that can best be elaborated upon by interpreting 1-polar cuts
in the framework of Fenchel cuts. To see this relationship let Q be the polyhedron
defined by the feasible region of (N). Clearly, the origin is contained in the strict
interior of Q so that the domain A Q can be used in (D) to generate a cutting plane
if it exists. Furthermore, if is on the surface of Q, that is, satisfies xk 1 for some
xk E E(P), then f()- 1, where

f(A)= max Ax
s.t. xEP.

Since v(A) A&- f(A) satisfies v(cA) cv(A) for any scalar c >_ 0, it follows that
when A is convex all optimal solutions to (D) reside on the boundary of A or at the
origin, and we have argued that solving (D) with A Q reduces to solving

which is exactly the problem (N). Fenchel cuts and 1-polar cuts are equivalent in the
sense that the set of cuts corresponding to optimal solutions to (D) with the domain
A Q and the set of cuts corresponding to optimal solutions to (N) are identical.

The immediate observation with respect to the strength of 1-polar cuts is that
since the domain Q is a polyhedron defined by the extreme points of P it does not gen-
erally define a norm and, as such, the "depth" of 1-polar cuts is quite unpredictable.
This point is underlined by the fact that 1-polar cuts are extremely sensitive to the
relative location of the origin within the polyhedron P. This sensitivity to coordinate
translations is as bad as can be conceived and is formalized in the following theorem.

THEOREM 6.1. Let P be a full-dimensional polyhedron and 2c a point not contained
in P. Furthermore, let denote the set of all facets of P such that the inequality
defining F . strictly separates P from 5. Then by an appropriate translation of
the coordinate system any F F can be made the optimal solution to (N).

Proof. Assume .for simplicity of exposition that P is initially situated so that the
origin is contained in its strict interior. We begin by observing that if x is contained
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in the strict interior of P then solving

max (:+x)-1(N(x)) s.t. ,(xk + x) <_ 1 for all xk E E(P)

is equivalent to solving (N) with the coordinate system of the space in which P resides
translated by x. For notational convenience we denote the translation of P by P(x)
and the feasible region of N(x) by Q(x). Furthermore, if )ax <_ 1 defines a facet
of P in the original coordinate system then this same constraint in the translated
coordinate system i’s

1-ax x<_l,

where we recognize that 1 ,kax > 0 follows from the fact that x is contained in
the strict interior of P.

Let F be a facet of P and let xF be a point in the relative interior of F so that
the only facet defining inequality ,x <_ 1 satisfied at equality by xF is the inequality
AFx _< 1 defining F. The point xF is not an acceptable choice for the virtual origin
x in Q(x) since it is not contained in the strict interior of P. However, for a > 0
sufficiently small the point xF -,F is in the strict interior of P. We proceed to
show that by choosing a > 0 small enough

,f
1 ,f(xf O,f)

is the unique optimal solution to N(xF oz,kF); that is, when the origin of the space
in which P resides is translated by xF- a,F the generated 1-polar cut defines the
facet Fo As the only property we assume about F is that ,F > 1, the proof follows.

The problem we wish to consider, then, is

(N(z + (x 1
s.t. A(xk + (xF aAF)) 1 for all xk E(P),

where we restrict attention to the case where c > 0 is sufficiently small so that
XF ,,F is in the strict interior of P. We observe that the extreme points of
Q(xF- oz)F) are in one-to-one correspondence with the facets of P(xF -c.XF) by
Proposition 2.4. Also, we observe that the facets of P(xF -oz)F) are in one-to-one
correspondence with the facets of P, with 3Cx <_ 1 defining a facet G of P if and only
if

1 )a(zF --c)F)
z _< 1

defines the translated facet G. It follows that in order to determine a maximizing
value of , for N(x c,F) it is sucient to consider only the finite set of points

1 ,Xa (xF c,XF)

corresponding to facets G of P.
Thus, consider an arbitrary extreme point ,a/(1-)a(x-c))) of Q(zF-,)

corresponding to a facet defining inequality of 3ax <_ 1 of P. Prom the definition of
the cosine we have that the objective function value of 3a/(1-3a (xF--c,)) satisfies
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(3)

where

(a)

It remains only to consider the right-hand side of (3) in the limit 0+. We
immediately note that independent of G

lira - (xF -.F)2 - xF]]2 > 0
0+

since xf P and & P.
When G F we have AVxF < 1 since xF P w chosen so that it is not

contained in any facet G F. It follows that

lim
o+ 1 G(XF F) 2

is finite and thus the right-hand side of (3) approaches a finite value in the limit
aO+.

When G F he value FF 1 by he choice of

lim +.
0+ 1-(x-)

rthermore, the limiting value of the angle 0() reduces

lim Z( ) (0+ 1 (z )’ (z )

z

Since > 1 by the choice of F and z 1 by the choice of z it follows that
(- z) > 0 or, equivalently, Z (, - z) < /2, and thus lim0+ cos 0() >

0. It follows that the right-hand side of (a) approaches + in the limit 0+,
completing the proof.

While a i-polar cut is sometimes considered the "deepest facet" separating and
P since it maximizes - 1, Theorem 6.1 makes it clear that this characterization
of "deepest" is completely dependent upon where P resides in space. The proof of
Theorem 6.1 demonstrates that facets close to the origin are favored. Alternatively,
enchel cuts are biased toward cuts close to , where "close" is clearly defined by the
dual of the norm used in generation of the enchel cut.. Conclusions. he purpose of this paperh been to examine the convergence
properties of deepest norm Penchel cutting planes in an effort to better understand
the effectiveness of these cutting planes in solving mixed-integer programs. The main
resultw that finite convergence of Algorithm Cu could be guaranteed using enchel
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cuts generated from solving (Di) with the domain A defined by the unit sphere of an
arbitrary norm, and more specific results were given for special norms. In 5 a case
was made that deepest norm Fenchel cuts tend to define faces of increasingly higher
dimension as Algorithm (ut progresses, and in 6 the strengths and weaknesses of
1-polar cuts were discussed.

The results of 3 and 4 make a strong case for the use of deepest L2 Fenchel
cuts. Theorem 4.1 demonstrates that deepest L2 Fenchel cuts provide an excellent
bound on the number of times a particular face can be generated, and Theorem 4.3
shows that this bound is even stronger when the polyhedra Pi are nicely shaped. If a
single class of Fenchel cutting planes had to be chosen based solely upon theoretical
attributes it would be difficult to argue with the use of Fenchel cuts generated by
solving (Di) with domain A {A IIAII2 <_ 1}.

However, theoretical attributes alone are not sufficient to determine the choice of
domain A since the difficulty of actually solving (Di) is profoundly influenced by A.
In particular, it is generally easier to solve (Di) when A is defined by a collection of
linear constraints rather than the nonlinear constraint required to generate a deepest
L cut. The need to solve (Di) quickly is fundamental since many cutting planes will
usually have to be generated in the course of Algorithm Cut.

The obvious choice for a linearly constrained domain is the L unit sphere, A
{A 1 _< A _< 1}, which generates deepest L cutting planes. Generating deepest L
cuts by defining A as the L unit sphere cannot be accomplished directly since the L
unit sphere has a number of facets exponential in the dimension n of the space in which
it resides. However, the L unit sphere can be expressed as a convex combination
of its 2n extreme points after introducing 2n auxiliary variables so that generating
deepest L cuts can be accomplished without too much difficulty. While the L and
L norms do not have the properties of the L norm, they both provide reasonable
approximations to the L norm and thus represent a good practical alternative to the
use of the L unit sphere for A. Another advantage to using both the L and L unit
spheres for A comes from the fact that the convergence of Algorithm Cut is influenced
by the specific shape of the polyhedra Pi and, while one domain A may lead to good
convergence, in practice another may not. The L and L norms complement each
other nicely from a geometric perspective. Of course, one of the main results of this
paper is that finite convergence is guaranteed under any norm.

While 1-polar cuts have the intuitively appealing property that they are facets of
the underlying polyhedron from which they are generated, the results of 6 strongly
call into question the ability to generate good 1-polar cuts. The results of 6 emphasize
the fact that 1-polar cuts are not guaranteed to be deep in the sense of any norm and
thus are prone to unpredicatable behavior. While the use of 1-polar cuts in certain
applications should-not be ruled out, care must be taken when they are used, and as
a rule it appears unwise to use such cutting planes without adequate atteution to the
specific characteristics of the problem t hand.

Acknowledgments. The author wishes to thank Steve Cox for many helpful
discussions in the course of preparing this paper, and to gratefully acknowledge the
support of IMSL.

REFERENCES

[1] E. BhLAS, Facets of the knapsack polytope, Math. Frogramming, 8 (1975), pp. 146-164.



ON THE COVERGENCE OF FENCHEL CUTTING PLANES 435

[2] E. BALAS, S. CERIA, AND G. CORNUEJOLS, A lift-and-project cutting plane algorithm for mixed
0- 1 programs, Management Science Research Report 576, Graduate School of Industrial
Administration, Carnegie Mellon University, Pittsburgh, PA, 1991.

[3] E. BALAS AND E. ZEMEL, Facets of the knapsack problem from minimal covers, SIAM J. Appl.
Math., 34 (1978), pp. 119-148.

[4] , Lifting and complementing yields all the facets of positive zero-one programming poly-
topes, U. Derigs, ed., Math. Programming, Rio de Janiero, 1981, North-Holland, Amster-
dam, New York, 1984, pp. 13-24.

[5] n. i. BOYD, Fenchel cutting planes for integer programs, Oper. Res., 42 (1994), pp. 53-64.
[6] , Generating Fenchel cutting planes for knapsack polyhedra, SIAM J. Optim., 3 (1993),

pp. 734-750.
[7] , Solving integer programs with enumeration cutting planes, Working paper, Department

of Industrial Engineering, Texas AM University, College Station; Ann. Oper. Res., to
appear.

[8] E. W. CHENEY AND A. A. GOLDSTEIN, Newton’s method for convex programming and Tcheby-
chef approximation, Numer. Math., 1 (1959), pp. 253-268.

[9] H. CROWDER, E. L. JOHNSON, AND M. W. PADBERG, Solving large-scale zero-one linear pro-
gramming problems, Oper. Res, 31 (1983), pp. 803-834.

[10] R. E. GOMORY, Outline of an algorithm for integer solutions to linear programs, Bull. Amer.
Math. Soc., 64 (1958), pp. 275-278.

[11] M. GRTSCHEL AND O. HOLLAND, Solution of large-scale symmetric travelling salesman prob-
lems, Math. Programming, 51 (199}), pp. 141-202.

[12] M. GRLTSCHEL, L. LOV,SZ, AND A. SCHRIJVER, Geometric Algorithms and Combinatorial
Optimization, Springer-Verlag, New York, 1988.

[13] P. L. HAMMER, E. L. JOHNSON, AND V. N. PELED, Facets of Regular 0- 1 Polytopes, Math.
Programming 8 (1975), pp. 179-206.

[14] J. E. KELLEY, The cutting-plane method for solving convex programs, J. Soc. Industo Appl.
Math., 8 (1960), pp. 703-712.

[15] D. (. LUENBERGER, Optimization by Vector Space Methods, Wiley and Sons, New York, 1969.
[16] G. L. NEMHAUSER AND L. A. WOLSEY, Integer and Combinatorial Optimization, Wiley and

Sons, New York, 1988.
[17] M. PADBERG, Covering, packing, and knapsack polytopes, Ann. Discrete Math., 4 (1979), pp.

265-287.
[18] M. PADBERG AND G. RINALDI, Optimization of a 532-city travelling salesman problem by

branch-and-cut, Oper. Res. Lett., 6 (1986), pp. 1-7.
[19] , A branch-and-cut algorithm for the resolution of large-scale symmetric traveling sales-

man problems, SIAM Rev., 33 (1991), pp. 60-100.
[20] R. T. ROCKAFELLAR, Convex Analysis, Princeton University Press, Princeton, NJ, 1970.
[21] J. F. SHAPIRO, Mathematical Programming: Structures and Algorithms, Wiley and Sons, New

York, 1979.
[22] A. F. VEINOTT, The supporting hyperplane method for unimodal programming, Oper. Res., 15

(1967), pp. 147-152.
[23] L. A. WOLSEY, Faces for a linear inequality in 0- 1 variables, Math. Programming, 8 (1975),

pp. 165-178.



SIAM J. OPTIMIZATION
Vol. 5, No. 2, pp. 436-453, May 1995

() 1995 Society for Industrial and Applied Mathematics
011

SUBDIFFERENTIAL CONVERGENCE IN STOCHASTIC
PROGRAMS*

JOHN R. BIRGE AND LIQUN QI$

Abstract. In this paper, we discuss convergence behavior of subdifferentials in approxima-
tion schemes for stochastic programs. This information is useful for solving stochastic programs by
nonlinear programming techniques. Wets [Variational Inequalities and Complementarity Problems,
John Wiley, New York, 1980, pp. 375-404] showed that epiconvergence of closed convex functions
implies the set convergence of the graph of the subdifferentials of these functions. This conclusion
is not true in general by a counterexample of Higle and Sen [Math. Oper. Res., 17 (1992), pp.
112-311]. We show that epiconvergence of closed convex functions implies set convergence of subdif-
ferentials of these functions at points where the limit function is differentiable and apply this result
to convex stochastic programs. We also show that similar results can be achieved in three other
cases of expectational functionals: piecewise smooth integrands, continuous probability distributions,
and loss functions. In the case of loss functions, we extend the existing results of Marti [Zeitschrift
fiir Wahrscheinlichkeitstheorie und Verwandte Gebiete, 31 (1975), pp. 203-233] to more general
situations. Some basic methods using the approximate derivative information are also discussed.

Key words, approximation, subdifferential, stochastic programming
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1. Introduction. In general, a stochastic programming problem can be formu-
lated as [37]

minimize E{f0 (x, )}

(1.1)
subjecttoE{fi(x,)} <_ 0, i= 1,...,s,

E{fi(x,)} 0, s + 1,...,m,
xeX

_
,

where
(i) is a random vector with support .. C_ g, and a probability distribution

function P on N,
(ii) f0" n E - t2

(iii) f n E-* , i-- 1,...,m,
(iv) X is closed,
(v) for all x 6 X, and 0, 1,..., m, the expectational functional

(Ef)(x) :- E(f(x,)} =_ f(x,)dP()
is finite. The stochastic program with recourse and the stochastic program with chance
constraints are two special cases of this model [37]. The numerical solution for (1.1)
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is not an easy task [11], [27]. One popular method is to use a discrete distribution to
approximate P. In the case of the stochastic program with recourse, some approxi-
mations for the recourse function have also been proposed [5], [6], [16]. This results
in approximation of fo(x,). The resulting problem is a large-scale program, which
can be solved by either decomposition methods [35] or perhaps variants of the inte-
rior point algorithm [2]. One may also propose methods to approximate f(x, ), for
i 1, m, and solve the resulting relatively tractable problem.

In the stochastic programming literature, most of the literature focuses on the
convergence of the solution vector as a by-product of the epiconvergence of the approx-
imating expectational functionals. Some recent papers on this topic include [5], [9],
[12], [14], [15], [17], [18], and [31]. Can we also get some approximation information on
the subdifferentials of the objective function and the constraints of (1.1)? This infor-
mation will be useful for solving stochastic programming by nonlinear programming
techniques that use subgradients [11], [20], [21], [24], [25]. In [32], Wang suggested to
solve stochastic programs by an approximate nonlinear programming method, which
uses the kth approximation function value and its derivative or subgradients at the
kth step to solve the original problem by a nonlinear programming method. For this
approach, the approximation information of subdifferentials is especially useful. Wang
used the term differential stability to describe this information.

It seems that Marti [20] first addressed this problem. He considered a special class
of expectational functionals: convex loss functions. This class is the most common ex-
pectational functional in the recourse problem. Wets [34] proved that epiconvergence
of closed convex functions implies the set convergence of the graph of the subdifferen-
tials of these functions. In 2, we show that epiconvergence of closed convex functions
implies set convergence of subdifferentials of these functions at points where the limit
function is differentiable and apply this result to convex stochastic programs. In par-
ticular, combining with recent epiconsistency result for convex stochastic programs of
King and Wets [17], we establish general conditions for subdifferential convergence of
approximation schemes for those problems in the sense of probability one. According
to this result, a stochastic quasigradient-type method (see [10]) is suggested at the
end of that section.

Recently, Higle and Sen [14] gave examples that epiconvergence does not imply
subdifferential convergence in the nonconvex case. Their notion of subdifferential
convergence is weaker than the one used here. Therefore, we cannot expect that nice
subdifferential approximation behavior can be achieved as a bonus of epiconvergence
in general. Since in practice we always use some approximation functions, it is thus
important to ask in which cases nice subdifferential approximation behavior can be
achieved. This behavior may be especially critical when subdifferential information is
required by an algorithm or sensitivity analysis.

We show that nice approximation behavior of subdifferentials of expectational
functionals can be achieved in three other cases, namely, piecewise smooth integrands,
continuous distributions and loss functions. We study these three cases in 3-5,
respectively.

The significance of piecewise smooth integrands is clear. The continuous dis-
tribution approximation probably was first suggested by Wets [33]. In that paper,
he suggested a piecewise linear distribution approximation. In [8], Dexter, Yu, and
Ziemba suggested using the linear combination of lognormal univariate distribution
approximations. Wets also discussed the possibility of continuous distribution approx-
imations in [35] and [36]. Gassmann [13] discussed applications of normal distributions
in stochastic programming.
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For loss functions, we study more general cases than Marti [20] studied. We show
that everywhere strictly differentiable results can be obtained in reasonable condi-
tions. Thus, in these special cases, differentiable methods may be used instead of
nondifferentiable methods that are otherwise necessary.

The main uses for our results are in the ability to employ general optimization
techniques that do not require complete optimization for a single approximation and
that allow differentiable techniques to be used in intermediate approximation itera-
tions. We discuss possible applications in algorithms in 6. We give general methods
and show how approximations may be used without requiring optimization for each
approximation u. Certainly, this section only gives general ideas for possible uses of
subdifferential approximation results. For more sophisticated nonlinear programming
approaches in stochastic programming, the readers may refer to Marti [21], Marti and
Fuchs [22], and Nazareth and Wets [24], [25].

While we study the issue of subdifferential convergence in this paper, we do not
wish to depreciate other approaches, such as the stochastic quasigradient method [10],
[11] that depends upon sampling. Each method has its advantages in particular situ-
ations. Moreover, sometimes they can be employed together, as in the case discussed
in 2.

2. Convex stochastic programs. Consider the expectational functional Ef
E{f(.,))}, where is a random vector with support F. C_ N and f is an extended
real-valued function on n . One has

(2.1) Ef(x) I f(x, )P(d),

where P is a probability measure defined on }N. It is usually difficult to calculate Ef
and its derivative or subdifferential. A popular approach is to approximate (2.1) by

(2.2) Ey(x) f f(x,)P(d),

where {P, u 1,...} is a sequence of probability measures converging in distribution
to the probability measure P.

In the following, use E and P0 instead of EI and P for convenience. Denote
the Lebesgue measure by m. For a closed convex set C c_ n, let be the support
function of C, defined by *(h]C) sup{< x,h >: x e C}. A sequence of closed
convex sets {C 1,...} in n is said to converge to C if for any h E }n

lim r(P*(hlC *(hlC).

One may easily prove the following proposition.
PROPOSITION 2.1. Suppose that C and C, for 1,..., are closed convex sets

in n. The following two statements are equivalent:
(a) C converges to C as --. +oc;
(b) a point x . C if and only if there are x C such that x --, x.

Suppose an extended real-valued function g n j{+c} is locally Lipschitz
at x. The Clarke directional derivative of g at x with respect to h n is

go (x; h) := lim sup[g(y + th) g(y)]/t.
y--,x,tO
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The subdifferential of g at x in the sense of Clarke [7] is then

Og(x) :- {u E n. < u, h > _< g(x; h),

When g is convex, the above definition coincides with the definition in convex
analysis

Og(x) :-- {t e n g(x -- h) >_ g(x) + (u, h>, Vh e }.

The conditions of the following theorem are the same as the conditions of Theorem
2.8 of [5]. We only slightly strengthen its conclusions for our further use.

THEOREM 2.2. Suppose that
(i) {P, -- 1,...} converges in distribution to P;
(ii) f (x, .) is continuous on .=. for each x e D, where

D {x "E:(x) < +cx)} {x "f(x,) < +c, a.s.};

(iii) f(.,
(iv) for any x D and e > O, there exists a compact set Se and such that for

all

If(x,5)lP,(dS) <

and with Vx { f(x,) +cx)},P(Vx) > 0 if and only if P(V) > 0 for
0,1, Then

(a) Ey epi- and pointwise converges to E:; if x,x D for 1,2,... and
x -- x, then

(2.3) lirn Ey (x) E:(x);

(b) Ey, where O, 1,..., is locally Lipschitz on D; furthermore, for each x D,
{OEy(x) : O, 1,...} is bounded;

(c) if x e D minimizes Ey for each and x is a limiting point of {x}, then
minimizes

Proof. The epi- and point convergence were established in [5]. Let x,x
D, x x. Then

limoo [Ey(x
f(x,

iJn[x x[[V(d)

L II. xll

where Lx is the Lipschitz constant of f(., ) near x, which is independent of by (iii).
By point convergence of E at x,

Ey( ) E:(x).

Putting these two results together, we have (2.3). This proves (a).



440 JOHN R. BIRGE AND LIQUN QI

For any x E D, y and z close to x, u 0, 1,...,

IEy(y)

<- /If(Y, ) f(z, )]P(d)

<_ J Lxlly

By [7], OEy(x) is a nonempty, compact convex set, for each u; and the 2-norms of
subgradients in these subdifferentials are bounded by Lx. This proves (b).

By (b), Ey are lower semicontinuous functions. By (a), Ey epiconverges to E
By Theorem 3.7 of [37], we get the conclusion of (c). This completes the proof. [:]

For each x e D, will OEy(x) converge to OEf(x)? By the aademacher Theorem,
Ey is differentiable a.s. on D. Will VEy(x) converge to VEf(x) for each x e D \ D1,
where m(D) 0? These are the topics of this paper.

In the case of closed convexity, we may invoke Theorem 3 of Wets [34]. He proved
that if g, g ’ --. U {+c}, 1, 2,..., are closed convex functions and {g}
epiconverges to g, then the graphs of the subdifferentials of g converge to the graph
of the subdifferential of g, i.e., for any convergent sequence {(xv, u): u e Og(x)}
with (x, u) as its limit, one has u e Og(x); for any (x, u) with u Og(x), there exists
at least one such sequence {(xv, u): u e Og’(x)} converging to it.

However, in general it is not true that

(2.4) Og(x)= lim Og(x)

even if x e int(dom(g)). For example, let n 1,g(x) IxI,g(x) Ixl if Ixl >_
g(x)= if Ixl < , for u 1, 2, Then g and g are closed convex functions,

{g} epiconverges to g. For u 1, 2,..., gv is differentiable at x 0 with Vg"(0) 0.
But Og(O) [-1, 1]. However, if g is differentiable at x, (2.4) is true. We prove this
fact here.

THEOREM 2.3. Suppose that g,g n
__

U {+c}, 1,2,..., are closed
convex functions and {g} epiconverges to g. Suppose further that g is differentiable
at x. Then

(2.5) Vg(x)-- lim Og(x).

Proof. By Theorem 3 of [34], any convergent subsequence of {u e Og(x)} con-
verges to Vg(x). What we need to prove is that there exists x such that for any

>_ , Og(x) is nonempty, and {Og(x)’ >_ x} is bounded. We now prove these.
Since g is differentiable at x, x e int(dom(g)). By Corollary 5 of [34], g(x) converges
to g(x). Thus, for u big enough, x dom(g), i.e., Og(x) is nonempty since g is
closed convex. For any e > 0, since g is continuous at x, there exists a t > 0 such that

a(x < g(x) +
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for i 1,2,...,n, where ei,i 1,2,...,n, are the unit vectors in n. Since g
epiconverges to g, by the properties of epiconvergence [34], [35], [37], there exist y’ --x +tei and z - x -tei such that

limsup g(y) <_ g(x / te) <_ g(x) / e

and
im supa() _< a( ) _< () + .

Then, there exists x such that for all >_ x, x E dom(g),

(2.6) gu(y)

(.) a(z) < (x) + ,
(e.s) (x) > (x) ,

t
(2.9) IlY (x + tei)l <_ -,

n

and

t
(e.o) Ilz’ (x- t,){} <_ -,

n

where (2.8) holds because g(x) converges to g(x). By (2.9) and (2.10), for any y
satisfying IlY- xll-< ,

y E cony {Y,. Yn., z, z}.

By (2.6), (2.7), and convexity of g, for any y satisfying

(2.11) g(y) <_ g(x) + 2.

Now, for any u Og(x) where v >_ vx, if u 0, let

y=x+
tu

By convexity of g,

(2.12)
t

g(y) g(x)+ < u, y x >- g(x) + -Ilulln

By (2.12), (2.11), and (2.8),

Ilull < [gu(y)_ gu(x)]/t

_
This proves that {Og(x) _> x} is bounded.
complete.

Proof of this theorem is
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We now apply Theorem 2.3 to expectational functionals.
COIOLLAPY 2.4. In (2.1) and (2.2), suppose that f(., ) is closed convex for each
and that E epiconverges to EI. Then for D dom(EI),

(d) there is a Lebesgue zero-measure set D1 C_ D such that EI is differentiable on
DI, but not differentiable on D, and for each x D \ D

lirno OE(x) VEf(x);

(e) for each x D,

OE (z) {2i mo e

Proof. By closed convexity of f(.,), E are also closed convex for all . Now
(d) follows Theorem 2.3 and the differentiability property of convex functions, and (e)
follows Theorem 3 of [34]. [:]

One can construct other results by combining Corollary 2.4 with a particular
approximation, E, to EI. For example, combine Corollary 2.4 with Theorem 2.2.

COROLLARY 2.5. In the setting of Theorem 2.2, if f (.,
then (d) and (e) hold.

Proof. By Theorem 2.2, Ey epiconverges to EI. By convexity of f(., ), Ey are
also convex for all . By (b), Ey are lower semicontinuous, thus closed convex. Now
the conclusions follow Corollary 2.4.

One may also combine Corollary 2.4 with some recent results of epiconvergence,
such as the results of Lapp [18]. Perhaps an interesting combination is with the results
of King and Wets [17]. Let P be an empirical measure derived from an independent
series of random observations {,...,} each with common distribution P. Then
for all x,

(2.13) E(x)
1 E f(x,i).

i--1

Let (E, jr, P) be a probability space complete with respect to P. A closed-valued
multifunction G mapping E to Nn is called measurable if for all closed subsets C c_
one has

G-C) { () C } A.

In the following, "with probability one" refers to the sampling probability measure on

{,..., ,...} that is consistent with P (see [17] for details). Applying Theorem 2.3
of [17] and Corollary 2.4 of this paper, we have the following corollary.

COROLLARY 2.6. Suppose for each , f(.,) is closed convex and the epi-
graphical multifunction epi f(., ) is measurable. Let Ey be calculated by (2.13).
If there exist one point 2, dom(E,e)and a measurable selection t() Of(2, ) with

f II,()l[P(d) finite, then the conclusions of Corollary 2.4 hold with probability one.

King and Wets [17] applied their results to the stochastic program with fixed
rco11,rs

f
minimize cx + ] Q(x, P(d’)

subject to Ax b,

x>_0,
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where x E n and

Q(x,) inf{q()y" Wy T()x- (), y e }.

It is a fixed recourse problem since W is deterministic. Combining their Theorem 3.1
with our Corollary 2.4, we have the following corollary.

COROLLARY 2.7. Suppose that the stochastic program (2.14) has fixed recourse
(2.15) and that for all i,j,k, the random variables qij and qiTjk have finite first
moments. If there exists a feasible point of (2.14) with the objective function of
(.2.14) finite, then the conclusions of Corollary 2.4 hold with probability one for

f(x, ) cx + Q(x, ) + 5(x),

where 5(x) 0 if Ax b, x >_ O, 5(x) +oc otherwise.
By Theorem 3.1 of [17], one may solve the approximation problem

(2.16)
minimize cx + EQ x, i

i--1

subject to Ax b,
x_>0,

instead of solving (2.14). If the solution of (2.16) converges as u tends to infinity, then
the limiting point is a solution of (2.14). Alternatively, by Corollary 2.7, one may
directly solve (2.14) with a nonlinear programming method and use

+ Q(x,
i--1

and
V

+ O Q(x,
i----1

as approximate objective function values and subdifferentials of (2.14) with (k)
at the kth step. Notice that u OxQ(x,i) if and only if u is an optimal dual
solution of (2.15) with i. Certainly, this approach needs further investigation
for its convergence and practical performance. Section 6 gives some basic convergence
properties for methods of this type based simply on subgradient information.

3. Piecewise smooth integrands. In the nonconvex case, if f is a "piecewise
smooth" function in x, then we may obtain similar results to those in 2. We say a
mapping (x, ) H f(x, ): n .. _, U (+oc} is a piecewise smooth function in x
if n can be partitioned into countable pieces of convex polyhedra such that for
any (x,) in the interior of a piece, Vxf(x,) exists and is continuous in ,

m(K()) O,

for each e .., where K() {x" (x, ) is on the boundary of a piece of f}. We assume
that any polyhedral set in g is measurable under the product measure m P,
for 0, 1,
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THEOREM 3.1. In the setting of Theorem 2.2, we only assume (i) and (iii) hold.
If f is a piecewise smooth function in x as defined above, then the conclusion (b) holds
and

(f) there is a Lebesgue zero-measure set D1 c_ D such that E, for O, 1, 2,...
are differentiable on D \ DI and for each x E D2 D \ D

(3.1) lirno VEy(x)- VEI(x).

Proof. The conclusion (b) holds since in the proof of Theorem 2.2 (b) only (iii)
is invoked. Let J be the set of all the boundary (facet) points of polyhedron pieces of
f. Then J is measurable under the product measure m Pv, for 0, 1,....

Let J(x) { e E (x,) e J} for each x e D. Let Dv {x e D
J(x) has positive P measure}. By the Fubini Theorem, m(D’) O. Let

D1 t]=0,1 D

and D2 D \ D. Then the Lebesgue measure of D is zero. We now prove (f) is true
for the sets D and D2.

Let x D2. By the property of D2, the set J(x) has zero measure in P and
m, Vx/(x,) exists and is continuous in for E .. \ g(x). Let h n. Denote
f(x) f(x,). By the dominated convergence theorem, we have the existence of
(Ey)’(x; h) and the equality

(Ey)’(x; h) / f(x; h)Pv(d).

But
f(x; h) (Vf(x, ), h),

for e .=. \ J(x). The existence of VE(x) follows.
Let e > 0 be given. Let h n. By (b) and the property of D2, f(x;h) is

bounded by Lx and continuous in .. \ J(x), where Lx is the Lipschitz constant in the
proof of Theorem 2.2 (b). Therefore, since f(x; h) is a bounded, P-a.e. continuous
function, from the theory of convergence in distribution (see, for example, Theorem
12.1.A of Love [19]),

l!m(Ey)’(x; h) (E])’(x; h).

Since this is true for all h [n, (3.1) holds. This completes the proof.

4. Continuous distributions. A similar extension to Theorem 2.2 is possible if
we restrict the probability measures instead of the function f. We say that a function
p N

__
is piecewise continuous if N can be partitioned into countable pieces

of convex polyhedra such that p is continuous in the interior of each piece. We say a

probability measure P on [N is continuous if there is a piecewise continuous function
p: N __, + such that

P(d) p()d.

One may anticipate that many practical probability measures are continuous. Piece-
wise linear and piecewise constant probability measures may be regarded as examples
of approximating measures P. In the following, we investigate the case that P and
P are continuous.



SUBDIFFERENTIAL CONVERGENCE IN STOCHASTIC PROGRAMS 445

In the proofs of the following theorem and Theorem 5.2, we use an alternative
notion of subdifferential to establish differentiability results. We let 0 be the symbol
for the generalized subdifferential in the sense of Michel and Penot [23]. Again, suppose
an extended real-valued function g: n __. tJ {+oc} is locally Lipschitz at x. The
Michel-Penot directional derivative of g at x with respect to h E Rn is

g(x; h)"= sup {lim sup[g(x + tk + th) g(x + tk)]/t}.
kE t$O

The Michel-Penot subdifferential of g at x is then

Og(x) := {u e n (u, h} <_ g(x; h)Vh e }.

An advantages of the Michel-Penot subdifferential is that Og(x) is singleton if and
only if g is differentiable at x. Thus, g is differentiable at x if and only if

+ 0,

for 1, 2,..., n, where ei is the ith unit vector. This fact is used in the proof of the
following theorem.

THEOREM 4.1. In the setting of Theorem 2.2, we only assume (iii) holds. If
{P, 0, 1,...} are continuous probability measures with

P(d) p()d,

where p .. -- +, O, 1, 2,... are piecewise continuous functions,
(v)

lirn ] IP() p()ld 0;

(vi) the map (x, ) - f(x, ) is Lebesgue measurable in D N; then conclusions
(f) and (g)hold:

(f) the same as in Theorem 3.1;
(g) for any x e int (D),

(4.1) lim OEy(x) OEf(x).

Proof. (f) By (iii), f(., ) is locally Lipschitz for each .=.. By the Rademacher
Theorem, f(., ) is differentiable almost everywhere in D for each = Let

{ (x, ) e D S" Vxf(x, ) exists}.

We will show that J is Lebesgue measurable.
Let ei be the ith unit vector in n. Denote f(x, ) by f(x). Consider

(4.2) f(x;ei) sup {limsup[f(x +tei + tk,) f(x + tk,)]/t},
kE tO

the Michel-Penot directional derivative of f at x with respect to ei. Since f(.,)
is continuous, we may let t 0 and k only take rational values in (4.2). By (vi),
(x, ) - f(x+tei+tk, ) and (x, ) - f(x+tk, ) are Lebesgue measurable. Therefore,
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f(x; ei), as the "countable sup limsup" of Lebesgue measurable functions of (x, ), is
Lebesgue measurable. Similarly f(x;-ei) is also Lebesgue measurable. So the set

Y {(x, ) e D x (v \ V) f(x; ei) + f(x;-ei) 0}

is also Lebesgue measurable. However, by the discussion on the Michel-Penot subd-
ifferentia before this theorem, Nin=l i. Thus, is also Lebesgue measurable.

Let g(x) { E .=.’(x, )

_
J} for each x E D. Let nl {x e n’m(J(x)) > 0}.

By the Fubini Theorem, m(D) 0. Let D2 D \ D. We now prove (f) is true for
the sets D and D2.

First we show that the derivative VEy(x) exists for x D2. Let x D2. Then
Vxf(x, ) exists a.s. Let h n. Similarly, we may show that the map -, f(x; h) is
Lebesgue measurable and bounded. By the dominated convergence theorem, we have
the existence of (Ey)’(x; h) and the equality

(4.3)

But
f(x; h) (Vxf(x, ), h),

for J(z). The existence of VE(z) follows. By (4.3),

(4.4)
I(Ey)’(x; h) E}(x; h)l <_ /If(x; h)l ]p,() p()]d

<-nxllhll / IP,.,() P()ld,

where Lx is the Lipschitz constant of f(., ) near x, which is independent of by (iii).
By (4.4) and (v), (3.1) holds. This proves (f).

(g) Let x E int (D). Notice that (b) still holds since it only relies on (iii). By
(b), OEy(x) are nonempty, compact, and convex sets for 0, 1, Let h be an
arbitrary vector in n and e be a small positive number. Let U(x) be a very small
neighborhood of x. For any y in U(x) D2, by (4.4), (Ey)’(y; h) tends to E(y; h)
uniformly. Then there is a (e) such that for any _> () and y U(x) D2,

(4.5) I(Ey)’(y; h) E(y; h)l <_ e.

By 2.5.1 of [7],

(4.6) OEy(x) conv{lim VEy(y) y x, y e D2},

for 0, 1, Then there is a sequence yj ---. x, yj U(x) CI D2 such that

(4.7) *(hlOEf(x)) lim E}(yj; h).

By (4.6),

(4.8) limsup(Ey)’(yd; h) <_ @*(hlOEy(x)),
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for u-- 1, By (4.5), (4.7), and (4.8), for any u _> u(e),

(4.9) @*(hlOEi(x)) <_ @*(hlOEy(x)) + e.

Similarly, one may show that for any

(4.10)

By (4.9) and (4.10),

lim @*(hlOEy(x))=

Then (4.1) follows. This completes the proof of this theorem.
Notice that (f) does not imply (g) in general. See the example prior to Theorem

2.3.

5. Loss functions. We now discuss a special case of (2.1), in which

f(x, ) u(T()x ()),

where u: m
_

[2 {+cx} is a loss function, () e m and T() e mn. Consider

E (x) f u(T()x ())P(d),

where P is a probability measure on }N. The expectational functional (5.1) arises in
stochastic program with recourse. See [5], [6]. It also appears in other applications such
as error optimization and optimal design. See [22]. In stochastic linear programming
with recourse, u is piecewise linear and convex. In more general problems, however,
u may not even be convex. This situation occurs, for example, when u is a loss if
inventory, T()x, is less than demand, (). This penalty will generally become flat
for very low values of T()x- (), voiding convexity. Nevertheless, it is useful to
characterize the convergence to critical points as we do here.

Again, approximate (5.1) by

E(x) ] u(T()x ())P(d),

and denote E by E sometimes. In particular, we consider continuous approxima-
tions as in Theorem 4.1. In the following, we consider conditions under which the
approximating expectation functionals have Clarke subdifferentials that correspond
with the gradient when it exists. This occurs when a locally Lipschitz function f is
strictly differentiable (see [7]) at x, i.e., there exists Vf(x), such that

f(x’ + tv) f(xt) Vf(x)Tvlimx,-.z,t,0 t
for any v. In this case, we require an open domain and limit D to be an open set
within the domain of every approximating expectation functional, Eu.

THEOREM 5.1. Suppose that
(i) for any x E D, where D is an open set in n, E(x) < +cx, for v 0, 1,...;
(ii) u is locally Lipschitz in its support t, and strictly differentiable in tl C_

such that 2 \ is a zero Lebesgue measure set;
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(iii) for any e N, there is a constant L such that IIT()ll <_ L;
(iv) for any x E D, the map -. T()x- () maps a set in g to a Lebesgue

zero measure set in m only if this set has Lebesgue measure zero in N
(v) {P, p 0, 1,...} are continuous probability measures with

P(d) p()d,

where p --, +, 0, 1, 2,... are piecewise continuous functions;
(vi) there is a positive number 5 and a function r f --, , such that

r(w) >_ sup{lldll d e Ou((v), II@ wll <_ 6},

and for any x e D, r(T(.)x.- (.))p(.) is Lebesgue integrable, for O, 1,...;
(vii) assumption (iv) of Theorem 2.2 holds;
(viii) either u is convex or piecewise smooth, or Theorem 4.1 (v) holds. Then
(a) Eg are strictly differentiable in D for O, 1,...;
(b) for any x e D and x --, x,

lim E,(x) E(x);

(c) if x D minimizes Eg for each u and x is a limiting point of {x}, then x
minimizes Eu

(d) for any x D,

(5.2) lim VEg(x)= VE(x).

Proof. By (ii), (iii), (v), and (vii), the conditions of Theorem 2.2 hold. We have
conclusions (b) and (c). It suffices now to prove (a) and (d). Suppose x E D. Let

U {2 e D: II - ll < 5/L}

and g() Lrl(T()x- ())p(). Then for 2,: e U, by (ii) and 2.3.7 of [7],

u(T((), ((()) u(T((): ((()) 6 <Ou(), T(c) (if:

where @ is a point in [T()2- (), T()2- ()1. Let w T(()x- (’((). Then,

lIT(()5: ((() wll <_ IIT(()( x)ll <_ e,

Thus, II - ll <_ e. By (iii), (v), and (vi),

lu(T(). (())pu-() u(T()c (())P-()I -< g(:)ll  ll,

where g is Lebesgue integrable on ]N. However,

u(T(()x
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Hence, by 2.7.2 of [7], for x E D, u 0, 1,..., E is locally Lipschitz and

(5.3) OE(x) C_ J Ou(T()x ())T()p()d.

But the right-hand side of (5.3) is a singleton by (ii), (iii), and (iv). Thus OE(x) is
also a singleton and equality holds for (5.3). By 2.2.4 of [7], E is strictly differentiable
at x for --0, 1, This proves (a).

Now, by Corollary 2.5, Theorems 3.1, and 4.1, (5.2) follows (viii). This completes
the proof of this theorem.

We note that Marti [20] establishes similar results for u continuous, positively ho-
mogeneous, and subadditive. We extend his results to this more general loss function.
We now justify the conditions of Theorem 5.1.

If T is deterministic, then conditions (iii) and (iv) of this theorem hold natu-
rally. Condition (ii) is equivalent to saying that u is locally Lipschitz and that the
Clarke subdifferential of u is single-valued almost everywhere. Such functions are
called primal functions in [28]-[30]. Convex functions, concave functions, differences
of convex functions, regular functions, and semismooth functions are all examples of
primal functions. All prima| functions defined on an open set form a linear space, i.e.,
the class of primal functions is closed in addition and scalar multiplication.

As said before, in stochastic linear programming with recourse, u is a convex
piecewise linear function. Thus, conditions (ii) and (viii) hold. Furthermore, condition
(vi) also holds as long as the p are integrable for 0, 1,

For condition (v), as we said before, the piecewise linear distribution approxi-
mation suggested by Wets [33] and the linear combination of lognormal univariate
distribution suggested by Dexter, Yu, and Ziemba [8] are good examples of continu-
ous approximations. In [4], we discuss this topic more.

THEOREM 5.2. If we delete the almost everywhere strict differentiability require-
ment on u in Theorem 5.1, then all the conclusions still hold except conclusion (a) is
changed to

(a) E are differentiable in D for O, 1,
Proof. We use the Michel-Penot subdifferential instead of the Clarke subdifferen-

tial in the proof of Theorem 5.1. Instead of invoking 2.7.2 of [7], we invoke Theorem
5.2 of [3] now. This implies that the left-hand side of (5.3), now the Michel-Penot
subdifferential of E at x, is a singleton. By the properties of the Michel-Penot
subdifferential [3], E is differentiable at x E D. This completes the proof.

Another approach to approximate (2.1) is by using

Ef(x) J f(x,)P(d),

where (f, 1,...} is a sequence of extended real-valued functions converging
pointwise to f. The convergence of Ef to EI was also discussed in [5] in the context
of epiconvergence. See Theorem 2.7 of [5]. One may also derive results similar to
Corollary 2.5, Theorems 3.1, 4.1, 5.1, and 5.2 by considering these four cases.

6. Application in algorithms. The major motivation in the development of
continuous approximation schemes is for uses in algorithms. In this section, we demon-
strate that some basic algorithms based on gradient and subgradient information can
incorporate continuous approximations into convergent procedures. We first consider
methods based on the result in Theorem 4.1. The benefit of the continuous distribu-
tion approximation is that subgradient convergence means the algorithm need not find
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a solution for each . In this case, we only suppose that subgradients are available.
The major result is that we obtain convergence to a value below some goal or else
demonstrate that no value below the goal exists.

The algorithm is a direct modification of the subgradient method given by Polyak
[26]. It can also be strengthened to allow for other step sizes as in Allen et al. [1].
We state the algorithm as follows. We assume that f is a convex function of x. The
objective is to minimize El(x over x E D.

SUBGRADIENT ALGORITHM.
Step O. Suppose sequences e -- 0, ’k 0 such that -=0k +oc, a goal

value G, a maximum iteration count per approximation of/max, and an initial point
x. Letk--0, i=0, and=0.

Step 1. Pick E OEy(xk). If 1111 < e, let xk xk+l and go to Step 2. Otherwise,
let

(6.1)

If Ey(xk+) < G, go to Step 2. Otherwise, go to Step 3.
Step 2. Let=+l,i=0, andk=k+l. Go to Stepl.
Step 3. Let + 1. If >/max, go to Step 2. Otherwise, k k + 1, go to Step

1.

We note that alternative choices for the step length parameter (here "k/llll) are
possible but we will show convergence just for this case. The basic idea of the algorithm
is to follow the subgradient algorithm steps unless a small subgradient is found, an
approximate function value is less than the goal value, or neither has been found within
/max iterations with a single approximation. In these cases, the approximation is
refined. From Theorem 4.1, we have conditions for the subdifferential sets to converge.
We need an additional condition about the boundedness of the sequence of iterates.

(vii) The iterates xk of the subgradient algorithm all belong to D and the diameter
of D is a finite value, M supy,zeD{lly zll }.

This last condition can be guaranteed by adding a barrier or penalty function
near the boundary of D. We assume it here for simplicity. Together the conditions
lead to convergence in this algorithm as in the following theorem.

THEOREM 6.1. Suppose the conditions of Theorem 4.1 and (vii) above, then the
subgradient algorithm given above produces a sequence {x} such that Ef() <_ G for
some limit point 2 of {xk} or Ef(x) >_ G for all x D.

Proof. The proof follows the same form as in a proof of the subgradient method’s
convergence. Suppose that there exists x* such that E2(x*) < G but EI(2) > G for
any limit point 2 of {x }. Since D is bounded, there exists/ such that for all k >/,
E(xk) > G. Otherwise, there exists {xk} with E2(xk) <_ G and some 2 limi x
with El(2) _< G. By the continuity of E,, for all sufficiently small e, there exists some
5 such that for all IIx- x*ll < 5, El(x) <_ G- eM. Suppose K is such that for all
k _> K, there exists r" OEy (xk) (where is the corresponding approximation index
used by the algorithm at iteration k) with I1 -711 < eM and any e OEf(xk).
This is always possible for any e > 0 by Theorem 4.1 and noting that the algorithm
always increases if a value below G, a small subgradient, or neither condition has
been found in Inax iterations.

Next, we suppose that y x* + 5(/1111). From this for k > max{K,K}, we
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obtain

(6.2)

which implies that (,x* -xk>/]l] But, we also have that ]lxk+ -x,l] 2

IIxt x.II 2 --2"yk(/llll,xk x*> + "y. Hence,

(6.3)

but summing yields infinity on the left-hand side of (6.3) and IIxk -x* 2 on the right,
a contradiction. The result follows. [:]

This result shows that subgradient information may be sufficient to produce an
algorithm that achieves an optimal value. The method is similar to stochastic quasi-
gradient algorithms that use a sampled quasigradient, k, with an assumed error that
vanishes asymptotically, in place of the approximate subgradient, v/u, used in the proof
above. In the stochastic quasigradient case [10], a result similar to the conclusion of
(6.2) holds in expectation and leads to convergence with probability one. We could
also apply our results from Theorem 4.1 using samples to obtain similar results. Our
aim is, however, more toward approximations in which bounds can be determined.
For example, if u such that lit/ 711 < M and 6 can be determined (as we explore
in [4]), then we can use (6.3) to find stopping conditions for determining whether a
value lower than G exists. In general stochastic quasigradient methods, this inequality
only holds in expectation. Confidence intervals based on second order information are
required for stopping criteria.

If continuous distribution approximations are used, we may obtain the results
of Theorem 5.1 and convergence of derivatives. This result allows the use of general
derivative-based methods. It is contained in the following general method. Now, in
the context of Theorem 5.1, we suppose that E has a finite minimum and that the
solution set is compact.

GRADIENT METHOD.

Step O. Suppose a sequence e --. 0 and an initial point x E D.
Step 1. Follow a convergent descent algorithm for unconstrained minimization

of a differentiable convex function that uses VE(xk) to generate a new point xk+l

(i.e., an algorithm, such as steepest descent, that generates a sequence of points with
decreasing function values that either terminates with an optimal solution or has all
limit points as optimal solutions to the unconstrained minimization problem). Go to
Step 2.

Step 2. If VE(xk+l) < e, let u u + 1, k k + 1 and go to Step 1. Otherwise,
let k k + 1 and go to Step 1.

THEOREM 6.2. Suppose the conditions of Theorem 5.1, then the gradient method
given above produces a sequence x such that all limit points x* of {xk} minimize Eu.

Proof. When u is not updated, the method just follows whatever algorithm has
been employed in Step 1. By the differentiability assumption, the algorithm will
generate some x() such that IIVE(xk())[ < e. Thus, the algorithm continues
to refine the approximation. At each x(), the bound on the norm of the gra-
dient decreases so we have that there exists, some Af such that for all
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IIVE(xk())ll _< e/2. From Theorem 5.1, for any e, there exists Af2 such that for
all >_ Af2, IIVE(xk()) -VEu(xk())l

_
e/2. Hence, for any _> max{Jfl,Jf2},

IIVEu(xk())l _< e. Thus, any limit point x* of {xk()} minimizes Eu. Moreover, for
any k, k() _< k _< k( + 1), E(xk()) >_ E(xk). Thus, we also have E(xk())+ k >_
Eu(xk) for some - 0. Hence, E(x) --. min Eu(x), proving the result. [:]

These results are given to show that continuous approximation schemes have the
advantage of allowing optimization with methods that require derivatives and that
the resulting algorithms may converge under suitable assumptions. Specific forms of
the approximations and computational results with these procedures will be reported
in another paper [4]. We note that similar results are also reported in Wang [32] for
several algorithms. His procedure relies on the epiconvergence of Ey to Ef and requires
descent when using subgradients. Since this may not occur at some approximation,
refinement may be necessary before optimality at that approximation and before any
steps are possible. Our procedure Mlows progress at each approximation either through
differentiability or through the subgradient method.
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Abstract. We present an algorithm to solve: Find (x, y) E A A-L such that y Tx, where
A is a subspace and T is a maximal monotone operator. The algorithm is based on the proximal
decomposition on the graph of a monotone operator and we show how to recover Spingarn’s decom-
position method. We give a proof of convergence that does not use the concept of partial inverse and
show how to choose a scaling factor to accelerate the convergence in the strongly monotone case.
Numerical results performed on quadratic problems confirm the robust behaviour of the algorithm.

Key words, proximal point algorithm, partial inverse, convex programming

AMS subject classification. 90C25

1. Introduction. We consider in this paper the following constrained inclusion
problem: let X be a finite dimensional vector space and A a subspace of X. Let
us denote by B the orthogonal subspace of A, i.e., B A+/-. Let T be a maximal
monotone operator on X and denote its graph by Gr(T), i.e., Gr(T) ((x, y) E
XXlyE Tx}. Then, the problem is to findx Aandy Bsuchthat y Tx,
which can be written:

(P) Find (x, y) e X X such that (x, y) E A B N Gr(T).

A typical situation, which is easily shown to give the form (P), is the problem
of minimizing a convex lower semicontinuous function on a subspace. The particular
applications we have in mind are the decomposition methods for separable convex
programming. They have recently gained some new interest with the possibility of
implementing them on massively parallel architectures to solve very large problems
such as the ones that appear in network optimization or stochastic programming (see
[1]). There are many different ways to transform a separable convex program in the
form (P), but the general idea is to represent the coupling between the subsystems
by a subspace of the product space of the copies of the primal and dual variables.

We are aiming here at the application of the Proximal Point Algorithm (PPA)
(cf. [11]) to problem (P). In 1983, Spingarn [12] proposed a generalization of PPA to
solve (P) that was based on the notion of the Partial Inverse operator. If we denote
by XA the orthogonal projection of x on a subspace A, the graph of the partial inverse
operator TA is given by

Gr(TA) {(XA + YB, YA + XB) Y e Tx}.

Applying the PPA to this operator leads to the Partial Inverse Method (PIM) which
we summarize here.

ALGORITHM 1 (PIM). At iteration k, (xk,yk) e A B. Then, find (xk,yk)
(ytk) Bsuch that xk + y x + y and -(Yk)A + T((Xk)A + ’(Xk)B)
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Then, (xk+l,Yk+l) ((Xk)A, (Yk)B)"
The main problem that arises with this algorithm is the difficulty of performing

the proximal step (1) when c 1 in most interesting situations including the decom-
position methods. When c 1, then the proximal step is a proximal decomposition
on the graph of T and the subspaces A and B only appear in the projection step.
In 3 we present the resultant algorithm, indeed equivalent to PIM with c 1. The
convergence is proved without the need to consider the Partial Inverse operator. The
iteration is now written in the following way.

Proximal decomposition. Find the unique (x, y) such that x+y
Xand k, Yk) e Gr(T) If (x, y) e A B, then stop.

Else (xk+l, Yk+) ((X)A, (Yc)B).

xk+y

The unique solution of the proximal decomposition step is given by

(1) xk (I + T)-(xk + Yk),
Yk (I + T-)-(xk + Yk).

Of course, only one proximal calculus is needed as (I + T-)-1 I- (I + T)-. We
propose then a modified proximal decomposition algorithm by introducing scaling
factors A and #. Indeed, problem (P) may be written in two ways

y E Tx =:*z x + ,ky e (I + T)x,
x T-y == y + #x (I + #T-)y,

which induces the following fixed point iteration, a natural scaled version of (1).

Modified proximal decomposition.

(2) xk (I + .kT)-(xk + )Yk),
Yk (I + #T-1)-(yk + #Xk).

If (X, y) e A B, then stop.
E se

It appears that the modified proximal step is uniquely determined and corresponds
to a proximal decomposition on the graph of AT if A# 1. We recover then the
scaled version of PIM proposed by Spingarn in [13]. It is mentioned in [6] that the
performance of PIM is very sensitive to the scaling factor variations and we give an
explanation of this fact, allowing its adjustment to an optimal value in the strongly
monotone case.

In 4, we give some numerical results that confirm the accelerating properties of
the scaling parameter.

2. The proximal decomposition on the graph of a maximal monotone
operator. We recall here some known results on the "Prox" mapping (I + T)-associated to a maximal monotone operator T and focus on the properties of the
decomposition on the graph of T. More details on that subject can be found in [2]
and [5].

Let T be a maximal monotone operator on a Hilbert space X. The graph of T,
denoted by Gr(T), is defined by

Gr(T) {(x, y) e X Xly e Tx}.
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Monotonicity implies that for all x,x E X and for all y E Tx, for all yt Tx,
/Y- Y, x- x/>_ 0. As T is maximal, its graph is not properly contained in the graph
of any other monotone operator.

If T is strongly monotone, then there exists a positive p such that

Vx, x’ e X and Vy e Tx, Vy’ e Tx’, (y- y’, x- x’) > pll ’11.
We say that the operator T is Lipschitz with constant L if

Vx, x’EX and MyCTx, My’CTx’,lly-y’ll<_Lllx-x’ll.

For monotone operators that share both properties, we get the following explicit
bounds:

(3) pllx- x’ll
_

fly- y’ll

_
LII- x’ll.

When T is a linear operator represented by a positive definite matrix 2", the best
estimates for p and L are, respectively, the smallest and the largest eigenvalues of 2-.

Of course, if T is maximal monotone, then for any A > 0, AT is maximal monotone
and if, moreover, T is strongly monotone with modulus p and Lipschitz with constant
L, then AT is strongly monotone with modulus Ap and Lipschitz with constant

The resolvent associated with maximal monotone operator T is defined by (I +
T)-1. It is single-valued, defined on the whole space, and firmly nonexpansive, which
means that, if we let U (I + T)-1 and V I U, then,

(4) Vx, x’ e x, IIUx Ux’ll + IlVx- Vx’ll <_ IIx x’ll

or equivalently

IIU Vx’ll <_ (x- x’, v Ux’).

Related interesting facts on this characteristic property of resolvents may be found
in theses by Martinet [9] and Eckstein [3] (see also [5]). Indeed, resolvents and maximal
firmly nonexpansive mappings coincide and, following [7], one-to-one correspondences
among these operators, maximal monotone, and maximal nonexpansive operators,
may be stated. This fact is explored further in the appendix.

We introduce now the proximal decomposition on the graph of a maximal mono-
tone operator.

Given a maximal monotone operator T and a vector (x, y) G X x X, there exists
a unique pair (u, v) G X x X called the proximal decomposition of (x, y) on the graph
of T such that

u+v=x+y and (u,v) EGr(T).

The unicity is a direct consequence ofthe maximality of T and we get

u (I + T)-1 (x + y),
v (I + T-)-(x + y).
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3. The proximal decomposition algorithm. We return now to problem (P),
which has been analyzed by Spingarn [13]. Let T be a maximal monotone operator
on X. Let A be a subspace and B its orthogonal subspace. The problem is to find

(x., y) E X X such that (x, y) E A B N Gr(T).

This problem is a particular case of the general problem of finding a zero of the sum
of two maximal monotone operators. The algorithms we are aiming at are splitting
methods that alternate computations on each operator separately (see [8]). Indeed,
most large-scale optimization problems can be formulated as the problem of mini-
mizing a separable convex lower semicontinuous function on a very simple subspace
which represents the coupling between the subsystems.

We propose then a generic algorithm that alternates a proximal decomposition
on the graph of T with a projection on A B. Before going on with the analysis of
the method, we observe that the other alternatives that come to mind to find a point
in the intersection of two sets are not suitable.

1. We can use the classical successive projections method on the two sets. The
problem is that Gr(T) is generally not convex in X X.

2. We cannot use another proximal decomposition on A B (which is indeed
the graph of the maximal monotone operator OXA, the subdifferential of the indicator
function of the set A), because it would lead back to the original point! Indeed,
if (x, y) A B and (u, v) is the proximal decomposition of x / y on Gr(T), then
x (u+ V)A and y (u+ V)B, which means that (x, y) is the proximal decomposition
of u + v on the graph of OXA.

The Algorithm PDG (proximal decomposition on the graph) is stated below.

ALGORITHM 2 (PDG). Let (x0,Y0) A B. k 0.
If (xk, Yk) Gr(T), then stop: (x, Yk) is a solution of (P).
Else compute the proximal decomposition (u, vk) of xk + Yk on the graph of T. If
(Uk, Vk) A B, stop: (uk, v) is a solution of (P).
Else, xk+l (Uk)A and Yk+l (Vk)B.
k=k+l

An iteration of the algorithm may be formally stated as

(x,y) e A x B (x,y) x + y z e X (u,v) JZz 7AxS(U,V) e A x B,

where L is isometric from X X into X, 9 is the proximal decomposition operator
from X into X X, and PAB is the projection on A B. Let us denote the composed
mapping by

J 7AxB O JC 01.

We verify now that any fixed point (x, y) of Algorithm PDG is a solution of (P).
Indeed, (x, y) TAB(U, V) and (u, v) 9z with z x + y. If (u, v) A B, then
(x, y) is a solution of (P). Else, we have

(u- x,v y) e L {(a,b) e X Xla + b 0}.

But, as (x, y) "PAB(U, v), we can state

(u-x,v-y) B x A.
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A and B being orthogonal subspace, the unique intersection of L and B x A is (0, 0).
Thus, (x, y)- (u, v) and (x, y) solves (P).

On the other hand, if (x, y) is a solution of (P), 9r(x 4- y) (x, y), and (x, y) e
A B, which means that (x, y) is a fixed point of Algorithm PDG.

The PDG Algorithm is a particular instance of Spingarn’s Partial Inverse Method
[12]. Indeed, when c 1, the proximal step on the Partial Inverse operator TA

x’ T((x’)A 4-becomes: Find k, Yk) such that xk 4- Yk X’k 4- Yk and (Yk)A 4- (Yk)B E
(Xk)B), which means, of course, that (x, y) is the proximal decomposition of (xk, yk)
on the graph of T. Thus, the convergence has been established by Spingarn who has
used the properties of the PPA applied to the partial inverse operator. However, here
we give a direct proof of this fact that does not use the concept of the Partial Inverse.
The main interest is that we shall obtain as a corollary the numerical analysis of the
scaled version of PDG in the strongly monotone case.

We prove first that the composed mapping/T associated with Algorithm PDG is
firmly nonexpansive. It can easily be seen that the mapping b/- Z: o o :- is indeed
the proximal operator associated to the Partial Inverse of T, i.e., ld (I 4- TA)-.
But, we do not use this fact to prove that is firmly nonexpansive.

THEOREM 3.1. The mapping associated to Algorithm PDG is firmly nonex-
pansive if and only ifT is monotone. Moreover, it is defined on the whole space A x B
if and only if T is maximal monotone.

Proof. Let (x, y) and (x’, y’) e A x B, z, z’ e :(x, y), :(x’, y’) respectively, i.e.,
z x 4- y and z’ x’+ y’, (u,v) e (z) and (u’,v’) e ’(z’), i.e., u 4- v z,
u (I + T)-z and u’+ v z’, u’ (I + T)-z’. Finally, let (A,VB) and
(u4 v) e A x B be the respective projections of (u, v) and (u’, v’) on A x B.

It is clear that, as z e (I+T)u, dom(9) R(I+T), and dom(fl) Z:- (dom(gr))
{(ZA, I,B) e A x BIz e dom(’)}.

Now, 7 is firmly nonexpansive if and only if

V(x, y), (z’, y’) e dom(7) and V(UA, VB) e 7(x, y), (U4, V) e (X’, y’)
() ((, ) (’, ’), (,) (,%)) > ]1(, v) (, v)ll.
But, we have

<(x, ) (x’, ’),.(,) (,)> (x x’, ( ’)> + < ’, (v v’)>

and, as x, x’ 6 A and y, y’ 6 B

< ’, (--’)> < z’, ( ’)>
((u + ’- v’, ( ’)>
((u ’) + ( ’), ( ’))

and

< ’, ( ’)> < z’, (v ’)>
(( ’) + (v ’), (v v’)>.

Hence, inequality (6) becomes

<( u’) + (v ’), ( ’)>
+ <(, ’) + ( ’), ( ’)> > I1( ’)11 + I1( ’)11
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We can now use the orthogonal decomposition of u u and v v on the direct sum
A @ B to get

V(u, v), (u’, v’) e Gr(T),
(( ’). ( ’)) + (( ’).. ( ’).) >_ 0.

Finally, remarking that

( ’, ’) (( ’), ( ’)) + (( ’)., (

we can conclude that 7 is firmly nonexpansive if and only if T is monotone.
Moreover, as dom(7) {(x, y) A BIx + y dom(’)}, we obtain

Tfirmly nonexpansive } { Tmonotone
dom(7) A x B :=> dom(9r) X 4= Tmaximal monotone.

Assuming that (P) has a solution, the convergence of the algorithm follows directly
from Opial’s lemma (see [10]), which states that, if a fixed point exists, a firmly
nonexpansive operator is asymptotically regular and generates a convergent sequence.
This is the very same idea as used by Martinet in the original proof for the PPA [9]
and developed further by Rockafellar who included approximate computations of the
proximal steps [11]

4. A scaled decomposition on the graph of T. We introduce now a scaled
version of the decomposition on the graph of a maximal monotone operator.

DEFINITION 4.1. Let (x, y) 6 X X, T be a maximal monotone operator and
a positive number. Then, the scaled proximal decomposition of (x, y) on the graph of
T is the unique (u, v) such that

u + Av x + y,
(u, v) e Gr(T).

Again, the existence and unicity of that new decomposition is a consequence of
T being maximal monotone. Indeed, if v Tu, we can write

u+ v u+ Tu

= u (I + AT)-(u +
( + T)-(x +)

v A-I(x + Ay u).

Observe that we can also write the following inclusions using the inverse operator T-1
for a given positive #:

u 6 T-iv,
v + #u 6 v +
then v (I + #T-1)-l(v + #u).

Now, if # satisfies #-1 A, we get v + #u #(u + Av) and, using the fact that
(#T)-lz T-l(#-lz), we obtain

v A-1 (I + #T-1)-1 (u + lv)
(I + #T-1)-I(#x + y).
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Resuming, the scaled decomposition on the graph of T can be defined by

(7)
u
V--

(I + AT)-I(x + Ay),
(I + #T-1)-l(#x + y),

which appears as a natural generalization of (1). But, in fact, only one scaling factor
can be introduced to maintain the desired properties, this is why we must fix A# 1.

We can now describe the iteration of a scaled version of Algorithm PDG.

ALGORITHM 3 (SPDG). (xk,Yk) E A B.
Compute the scaled decomposition of (xk, y) on the graph of T.

(I + AT)-(xk + AYk),
A-(Xk + Ayk -uk).

If (u, vk) e A B, then stop. Else, xk+ (Uk)A and Y+I (Vk)B.

Observe that the scaled proximal decomposition can be stated in the following
way.

Let w Av and r Ay. Then, if (u, v) is the scaled proximal decomposition
of (x, y) on the graph of T, (u, w) is the proximal decomposition of (x, r) on the
graph of AT. Hence, from the preceding section, we know that the sequence { (xk, r)}
converges to a point in A BNGr(AT). This fact implies that the sequence {(xk, Yk)}
converges to a solution of (P).

On the other hand, we can see that SPDG is equivalent to the scaled version of
the Partial Inverse Method (with c 1) described by Spingarn in [13, Algorithm 2, p.
208] for the minimization of a convex function on a subspace. It reduces, of course,
to PDG, i.e., to PIM, when 1. Again, as the decomposition on the graph of T is
a proximal step, approximate rules for computations can be added as in [11] to get an
implementable algorithm. We prefer to omit these details to focus on the accelerating
properties of the scaling parameter, which constitute the main contribution of the
present work.

To analyze the influence of the scaling parameter on the speed ratio of convergence
of SPDG, we consider now the case where T is both strongly monotone and Lipschitz.

THEOREM 4.2. When T is strongly monotone with modulus p and Lipschitz with
constant L, then the convergence of the sequence {(x, rk)} generated by SPDG with
rk AYk is linear with speed ratio

Proof. If is the composed operator associated to the monotone operator AT, we
define as in Theorem 3.1 (x, r), (x’, r’) e A B, z x+r, z’ x’ +r’, (u, w), (u’, w’) e
Gr(T). Then, (UA, WS) e 3"(x,r) and (UA,WB) e (x’,r’).

The strong monotonicity of AT implies that

(8)

and, as z (I / AT)u and z’ (I + AT)u’

(9)



PROXIMAL DECOMPOSITION ALGORITHM 461

From the composed nature of 7 and using the relations (8) and (9), we deduce the
following bounds:

Let (x*, r*) be the limit point of the sequence { (xk, rk)}. It is therefore a fixed point of
the mapping ,7. Applying the above inequality to the pairs (xk+l, rk+) and (x*, r*),
we obtain the desired result:

2Ap
(1 + $L)2 II(xk, rk) (x*, r*)ll

Observe that, as

2$p
L>_p,r(X)= 1-

(I+AL)2

We easily deduce the theoretical optimal value for :
/

(10) X 1/L and r(X) /1 2L

When T is a linear positive definite operator, we observe that bad conditioning implies
a slowdown of the algorithm. The optimal value of the scaling parameter must be
chosen very small if L #max, the largest eigenvalue of the associated matrix, is
very large. We may observe that the speed ratio obtained in Theorem 4.2 is the
same as the one given in [8] for the Douglas-Rachford splitting algorithm. Indeed,
the connection between that algorithm and the Partial Inverse Method has been
established by Eckstein [3] and we give its precise meaning in the Appendix.

The influence of the Lipschitz constant on the number of iterations has been
analyzed for quadratic convex functions that were minimized on a simple subspace.
The sensitivity to that parameter is shown on the five graphics of Fig. 1 and 2 for
different values of L, p, and the dimension of the space. These results are shown
in Table 1. The influence of the scaling parameter on the number of iterations is
illustrated by comparing columns iter(A) number of iterations when /k ) and
iter(1) (number of iterations when 1). The number of iterations corresponds to
the implementation of Algorithm PDG associated with the graph of AT. We show
below why it is faster than the straightforward application of SPDG even if the primal
sequences {xk} coincide in both algorithms.

It is also interesting to analyze the behaviour of the sequence {(xk, Yk)} and to
look for some values of the scaling parameter such that, that sequence is mapped by
a contraction. To be more precise, let ,7 and T/ be the maps associated with the
sequences { (xk, rk) } and { (xk, Yk) }, respectively. Then, if Oh is the mapping defined
by

D, (x, y) (x,



462 PHILIPPE MAHEY, SAID OUALIBOUCH, AND PHAM DINH TAO

dimension 10

L=I’2

dimension 10
L=I
p=l

/
/

//

-
/.

dimerlsion 10

FIG. 1. Number o] iterations .for dim--10o

we can write the following correspondence:

?-/,x D- o 7, o

As (xk, yk) D-1 (x, r), we already know that the sequence { (xk, Yk) } converges
when {(x, rk)} converges. Note that a direct proof of this fact seems rather hard to
state. The reason is that / is not necessarily a contractive map for any A. We study
below the conditions on ,k to get a contraction in the strongly monotone case. In the
strongly monotone and Lipschitz cases, we already know that T/ is a contraction for
A 1. The next theorem shows that this remains true if A lies in a specific interval
containing one.
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dimension =100
L 10,96807
p 10,02107

dimension 100

p o,110535

L 0.584036

FIG. 2. Number of iterations for dim=100.

THEOREM 4.3. Suppose that T is strongly monotone with modulus p and Lipschitz
with constant L. Then, if E [1, p + V/1 + p2), the mapping 7-l is a contraction.

Proof. Again let u (I + T)-Z(x + y) and u’= (I + T)-l(x + y’). We use
successively the nonexpansiveness of the projection and the firmly nonexpansiveness
of the resolvent to write

Using the Lipschitz property, we obtain

A2 2Ap 1) A2 2

(1 + AL)2 (llx-x’ll2/ Ily-y’ll 1.

Hence, a sufficient condition that ensures that 7"t is a contraction is >_ 1 and
0(A) A2 2Ap- 1 < 0. That condition does not depend on the Lipschitz constant
(indeed, this happens because 0 < p < L). We observe now that 0(1) -2p < 0 and
the desired interval must be

The different behaviour of both sequences { (x, z)} and { (xk, Yk) } is illustrated
in Fig. 3. Ybr a small A, the second sequence (which is the one that will yield a solution
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TABLE 1
Numerical tests for quadratic problems.

p L 1/L Iter() Iter(1) dim tolerance
0.584 1.712 2.05 17 34
1.068 0.936 1.05 17 20
4.940 0.202 0.26 18 29

0.1 9.781 0.102 0.13 18 42
19.461 0.051 0.07 18 60
29.142 0.034 0.05 18 70
96.907 0.010 0.02 18 92 100 0.01
L968 0.508 0.58 17 19
5.840 0.171 0.12 18 35

10.681 0.094 0.12 17 44
1 20.361 0.049 0.06 18 60

30.042 0.033 0.05 18 70
49.404 0.020 0.03 18 82
97.807 0.010 0.02 19 92
0.584 1.712 2.04 16 32
1.068 0.936 1.21 16 18
4.940 0.202 0.241 17 27

0.1 9.781 0.102 0.121 17 39
19.461 0.051 0.061 17 54
29.142 0.034 0.041 17 63
96.907 0.010 0.021 17 75 10 0.001
1.968 0.508 0.58 15 16
5.840 0.171 0.211 16 29

10.681 0.094 0.121 16 40
1 20.361 0.049 0.061 17 54

30.042 0.033 0.041 17 63
49.404 0.020 0.031 17 72
97.807 0.010 0.021 17 75

p=O,l
L=12
-.),0

/ \. dist((xk,yk);(x*,y’))

Iteration

FIG. 3. Comparison of both sequences

for the original problem (P)) converges much slower even if it presents a monotonic
decrease toward the fixed point.

We conclude with the following observations on the choice of the scaling pa-
rameter: if bad conditioning is due to a too-smM1 p, then we must accelerate the
convergence by choosing A close to the optimal value 1/L (if it is not too far from
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1!). If bad conditi6ning is due to a too-large L, then we may choose A close to 1 in

[1, p + +
Appendix. The relation between the partial inverse and the Douglas-Rachford

splitting operator may be explained in the following way which is directly inspired by
the work of Lawrence and Spingarn [7]. It was later derived by Eckstein and Bertsekas

We recall the one-to-one correspondences among maximal monotone operators,
maximal nonexpansive, and proximal operators as described in [7].

Let a (x, y) (x, 2y- x) be the one-to-one correspondence of the class of
proximal operators onto the class of nonexpansive operators and let (x, y) -(x + y, x y) be the one-to-one correspondence of the class of monotone operators
onto the class of nonexpansive operators. Following [7], let us define two types of
composition operations.

Let Pi *P2 o-i(a(pi)o a(p2)) be the proximal operator obtained by composing
two proximal operators Pi and p2 through their associated respective nonexpansive
images (which give indeed another nonexpansive operator when composed). Likewise,
let Ti (R) T2 3-i((Ti) o (T2)) be the monotone operator obtained by composing
two monotone operators in the same way. A straightforward calculus shows that, if Pi
and p2 are the resolvents of Ti and T2, respectively, then p Pi * P2 is the resolvent
of T Ti (R) T2. As observed in [7], we have the following interpretation of the *
operation

pi * p2 pi o (2p2 I) + I p2,

which is the operator associated to the fixed point iteration of the Douglas-Rachford
splitting method (see [8]). Observe that the nonexpansive operator a(pi) o a(p2)) is
the operator associated with the Peaceman-Rachford iteration.

On the other side, it is shown in [7] that, when Ti is the subdifferential mapping
of the indicator function of a subspace A, i.e., Gr(Ti) A x As, then Ti (R) T TA,
the Partial Inverse of T. Resuming these facts, we have the following proposition.

PROPOSITION. Let T1 and T2 be two maximal monotone operators on X. The
Douglas-Rachford splitting operator p Pi o (2p2 I) + I P2, where pi (I+ ATi)-
and P2 (I + AT2) -i, is a proximal operator, indeed p (I + T) -i, where T
ATi (R) AT2. Moreover, if Gr(Ti) A x A+/- and T2 T, then p (I + (AT)A) -1, the
resolvent of the partial inverse of AT. Then, the Douglas-Rachford iteration applied to
problem (P) is the partial inverse method associated to AT. SPDG is the corresponding
algorithm defined in the product space X x X.

Observation. Clearly (I + (AT)A) -1 (I + ATA) -1. This point is crucial because
the computation can only be performed in the first expression (this is then the SPDG
Algorithm) or in the second expression with A 1.
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Abstract. We study the problem of finding the minimum bisection of a graph into two parts
of prescribed sizes. We formulate two lower bounds on the problem by relaxing node- and edge-
incidence vectors of cuts. We prove that both relaxations provide the same bound. The main fact
we prove is that the duality between the relaxed edge- and node- vectors preserves very natural
cardinality constraints on cuts.
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edge relaxation and some other optimality criteria studied before. Finally, we briefly mention possible
applications for a practical computational approach.
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1. Introduction. We consider the problem of decomposing a weighted graph G
on n nodes into two parts of prescribed sizes nl and n2, nl / n2 n, so that the total
sum of the edge weights between the parts is minimum. For an edge weight function
c, and k := n n2, we denote the minimum by b(G, c, k).

We consider two lower bounds (G, c,k) and (G, c,k) on the bisection number
b(G, c, k), and call them the node- and edge-relaxation, respectively. We prove that
these two bounds are equal by means of duality. An interesting fact that we want
to emphasize is that the duality preserves certain cardinality constraints that are
trivially satisfied by the integer vectors. To be specific, let (S, V \ S) be a bipartition
of the node set V, and let x (xi) E n and y (yij) E () be the node- and
edge-incidence vectors of this bipartition, respectively, defined by

1 iS,
i C s,

and

1 iS,jS,(2) Yij 0 elsewhere.

Then the partition classes have sizes n and n2 if and only if either

n

(3)
i=1
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or

(4) E y/j =nln2.

We will show in 4 that the correspondence between an x satisfying (3) and a y
n 2satisfying (4) remains preserved even if (1) is relaxed to -i= x n and (2) is

relaxed to

l<_i<j<_n i=1

for each vector b (b,..., bn) E n. This condition will correspond to a positive
semidefiniteness constraint of a matrix derived from y.

NOTATION. We fix some notation that will be used throughout the paper. Given
a symmetric n x n matrix M, we denote by A1 _< _< An its eigenvalues. The mini-
mum and maximum eigenvalue of M will also be denoted as ,min (M) and max(M),
respectively. We will frequently use the Rayleigh expression for the extreme eigenval-
ues

(6) min(M)--min xtMx and )max(M)--maxxtMx.

The eigenspace of an eigenvalue A(M) will be denoted as Eig(A(M)). We write M

_
0

to denote that M is positive semidefinite, i.e., xtMx
_

0 for all x.
Finally, we will use b/and Xk to denote the following special subsets of vectors of

(z) u-= {uell.=u=0
(s) & := {

Capital letters will be used sometimes to denote the corresponding diagonal ma-
trix, as U diag(u) for a vector u

We use e to denote the n-vector of ones and define J := ee to be the all-ones
matrix.

Let y (y/j) (), 1 <_ < j < n, be a vector of () variables. We associate
to y the n x n symmetric matrix Y (Yij) with zero diagonal and entries ij and
ji y/j i < j.

We will feel free to consider real n x n matrices as vectors in Nn and vice versa.
G (V, E) denotes a graph on n nodes, with node set V and edge set E. We

assume V {1,..., n}. An edge-weight function is denoted by c. We consider c as

a vector in () where c/j is the weight of an edge e ij for ij E, and cij 0
for ij E, < j. Occasionally, we also use the symmetric weight matrix C (C/j),
where Cij Vii Cij and C/i 0 for all i. The pair (G, c) denotes the weighted
graph G with edge weights c.
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The weighted degree di of a node is defined by setting di :- -jn_l Cij. The vector
of weighted degrees is denoted as d (di), and D diag(d) denotes he corresponding
diagonal matrix. The matrix L L(G, c) :- D- C is called the Laplacian matrix of
the weighted graph (G, c). Let us recall a useful identity satisfied by the Laplacian
matrix for every vector x E n

(o)
l<_i<j<_n

We now state the problems under consideration.
Graph bisection. Let (G, c) be a weighted graph on n nodes an nl, n2 be a pair of

positive integers satisfying n + n2 n. Let k be such that n _u and n2 2
We define the bisection width b(G,c, k) as the minimum total weight of an edge-cut
induced by a bipartition of G into two parts of sizes n and n2, respectively. That is,

b(G, c, k) := min cij.
ISI=nl,SCV

Clearly, the integer k must satisfy 0 _< k <_ n and n- k _-- 0 (mod 2). We will call
any such k admissible.

Graph bisection under inequality constraints. The previous problem can be for-
mulated also in a slightly more general version where the sizes nl and n2 are not
exactly prescribed but rather constrained by a condition g _< n2 -nl

_
k, where the

bounds t and k are given in advance. Obviously, the exact bisection corresponds to
the case when k.

Given a weighted graph (G,c) and the bounds g, k, where 0 _< g _< k _< n, let
b(G, c, , k) denote the minimum total weight of an edge-cut induced by a bipartition
(S, Y \ S) satisfying

_
IS]- IV \ S

_
k.

Max-Cut. Given a weighted graph (G, c), the max-cut problem asks to find a
bipartition (S, V \ S) such that the total weight of the edges between S and V \ S is
maximum.

mc(G,c):=max
SCV

Thus, the max-cut problem can be viewed as a special case of the constrained bisection
problem by setting the bounds g 0 and k n and the objective function is c’ -c.
It is advantageous however to focus on the max-cut problem independently. The
max-cut problem is an unconstrained optimization problem; hence the main ideas of
our paper also become most transparent for it.

We note the following identity relating node and edge incidence vectors of bipar-
titions. Let (S, V \ S) be a bipartition with node-incidence vector x and matrix Y
corresponding to the edge-incidence vector y. Then

1
j y 1_xx.(10)

2

The paper is organized as follows. In 2 we develop and summarize the mathe-
matical tools to derive our main results. These tools are based on a duality theory
over convex cones. In 3 we apply these tools to show that the node relaxation and the
positive semidefinite edge relaxation of max-cut form a pair of dual programs satisfying
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strong duality. We show how existing optimality certificates for the node relaxation
are related to the complementary slackness condition of the two programs. In 4 and
5 we show a similar duality result for the bisection problem with and without con-
straints. We point out that the results of 3 are implied by the subsequent sections.
We have chosen to study the max-cut problem independently, because this allows us
to develop our basic proof strategy in more detail and it may help the reader be-
come familiar with our use of duality. In the last section we propose a computational
framework where the two approaches are combined.

2. Duality over cones. In this section we summarize the tools necessary to
prove our main results. For a closed convex cone C c n, let C* (x E n xy >_
0 for all y E C}. It is well known that C** C for every closed convex cone.

Let A be a matrix, b, c vectors, and and S closed convex cones. Consider the
following pair of problems.

(11) mincy subject to Ay-bS, y,
(12) maxbtx subject to c- Ax *,x S*.

Problem (11) is said to satisfy the generalized Slater condition if there exists
some y E rel-int f such that Ay b rel-int S (where rel-int denotes the relative
interior).

The following duality lemma is a special case of a more general result of [20, Thm.

LEMMA 2.1. [20]
(i) (weak duality) If y is a feasible solution of (11) and x is a feasible solution

of (12), then btx <_ c*y.
(ii) (strong duality) Assume that (11) satisfies the generalized Slater condition.

If both (11) and (12) have a feasible solution, then mincty max btx.
(iii) (complementary slackness) If y is an optimal solution of (11) and x is an

optimal solution of (12), then both yt(c- Atx) 0 and xt(Ay b) O.
In our applications we are mostly interested in the cone of positive semidefinite

matrices, which we denote by Psd.

Psd := {A e A At,A 0}.

We will use the usual inner product in the space of real square matrices:

(A, B) := trAB aijbij.
i,j

(Note that this is consistent with the inner product for vectors, if we consider the
matrices as vectors in n2.) To describe the dual cone Psd* we introduce the set

Skew "= {A n. A -At}

of real skewsymmetric matrices and point out that skewsymmetric matrices are or-
thogonal to symmetric matrices, i.e., (A, B) 0 for A At, B Skew.

PROPOSITION 2.1. It holds that

Psd* Psd / Skew.

Proof. Let X A+B E Psd + Skew. Then Y Psd implies (X, Y) (A, Y) _> 0,
so X Psd*. Conversely let X Psd*. X has a (unique) representation X A / B
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where B E Skew and A symmetric. We conclude that 0 _< (X, Y) (A, Y) for all
Y E Psd, therefore A

Let C1 :-- (A ,n. (j, A) 0}. Then C1 is a closed convex cone, and clearly
C {tJ" t }. We will also need the following subcone K "= Psd V C of Psd.

LEMMA 2.2. It holds that
(i) K is a closed convex cone,
(ii) (1/2 -p)J + pI e rel-int g where p 2’(us_i),
(iii) K* esd* + C.
Proof. (i) K is the intersection of two closed convex cones, hence K is a closed

convex cone as well.
(ii) Let A] := (1/2 -p)J + pI where p 2(n_). The eigenvalues of (1/2 -p)J are

(0,..., 0, n(1/2 -p)) (n- 1 times the eigenvalue 0). Therefore the eigenvalues of are
n(p, p,..., p, - -np/ p), and they are positive except the last one which is zero due to

the definition of p. Thus A (aij) is positive semidefinite and A E K. Let A (aij)
be an arbitrary (symmetric) matrix such that etAe 0 and {hij ajl _< , where

A2() 1
n 2(n- 1)"

Given a vector w, satisfying wte- 0 and Ilwll- 1, we have

wtAw wt(d (fi A))w wttw wt(t A)w

>_ >_ o.
i=1

Hence, every symmetric matrix A in the -neighbourhood (defined by [5j -ajl <_ )
of A is positive semidefinite as well. This proves that A rel-int K.

(iii) First let X e Psd* + C. Then X A + tJ, where (A, Y) >_ 0 for all Y in
Psd. Thus (Z, Y) (A, Y) + t(J, Y) >_ 0 for all Y K, so Z K*.

Conversely, let X E K*. Then X S + , where S is symmetric and 5 Skew.
Thus (X, Y) >_ 0 for all Y g is equivalent to (S, Y) >_ 0 for all Y K.

Let u := and U contain an orthonormal basis of u+/-. Thus UtU In-, Utu
0. Then the matrix P [u U] is orthogonal. Y K implies Yu 0, and therefore

ptyp I 0

\ 0
0

yielding (S, Y) tr(ptsp)(ptyp) tr(UtSU)(Utyu)UtYU /

Thus (S, Y) >_ 0 for all Y E K only if UtSU
_

O.
To conclude we show that UtSU 0 implies S + tJ

_
0 for some t N. Suppose

not. Then, for all t , S + tJ and therefore

R :- Pt(S -- tJ)P ( utSUutsu+ tn

Let x (a at) be a unit vector such that xtRx < 0. Then

0 > xtRx a2(utSu -- tn) + 2autSUa + atUtSUa.

Clearly a : 0, so without loss of generality a > 0 and a2 -[-ata 1. The inequality is
22 utSVa < 0 which in turn implies t < -(-5[[utSU[[- utSu).true only if tn + utSu + -5
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So for each > 0 the possible values for t, such that xtRx < 0 are bounded from
above, a contradiction. Therefore UtSU

_
0 implies S + tJ

_
0 for some t E .

Thus X E K* implies X S + (S + tJ / ) / (-tJ) Psd* / C. F1

As a final tool we derive a max-min relationship for the following optimization
problem in two real variables s and t. Let M be a (given) symmetric matrix of size
n n, n >_ 2, and let k be a constant satisfying 0 < k < n (k not necessarily integer).

(13) max ns k2t,
(14) M + tJ- sI - O,
(15) s,.

LEMMA 2.3. The maximum in (13) is attained for some -$, . Moreover,-- Amin(M - J).
Proof. Clearly, s _< ,min(M + tJ) for any feasible s and t due to (14). Hence we

may restrict our choice to s ,min(M + tJ), since increasing s increases the value of
the objective function as well. Let us denote p p(M) the spectral radius of M, and
)0 min(M) the minimum eigenvalue of M. Let us set f(t) "--/tmin(M--g) 25.
We claim that f(t) > f(0) hA0 only for t [_(p-o) n(p-o)

,n2.Lk2, k2, j.

(i) Lower bound. Take e (1 1) Then Amin(M+tJ) < e(M+J)e < p(M)+
n(p--Ao)tn. Assume that f(t) f(q), i.e., n(p + tn) k2t nAo, which yields t n-k

(ii) Upper bound. Take x (1,-1, 0,..., 0). (Here the assumption n 2 is

used.) Then Amin(M + tJ) < xt(M+g)x < p(M). Assume that f(t) > f(O) i.e.

np- k2t > nAo which yields t < n(p-o)

Since f(t) f(O) may hold only for t belonging to a closed interval containing
zero, and the objective function (13) is continuous, the maximum is attained for some
and min(M + J).
The following lemma is crucial for the proof of Theorem 2.1. We recall that

n kXk "= (X e n ]lX 1 and =, x }
LEMMA 2.4. Let and be the optimum for the program (13)-(15). Then Xk

Eig(Amin M +J I) is nonempty.
Pro@ Let us denote M(s, t) := M + tJ- sI, and set

f (s, t) "= ns k:t

and

g(8, t) :-- min(M(8, t)).

Hence, the problem (13)-(15) can be rewritten as

(16) max f(s,t)
t) _> O.

Let and denote the optimum solution, which exists by Lemma 2.3. We distin-
guish three cases.

Case (i). Assume that the eigenvalue Amin(M(,)) is simple.
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Using, e.g., Theorem 2 of [7], we get that the function g(s, t) is differentiable at
the point (, ), and its partial derivatives are given by

where 5 (5) is the eigenvector of AminM(, ) of norm one. The partial derivatives
of the objective function f are

Of($, ) _k2.
Ot

Using the Kuhn-Tucker optimality condition, by which

for some a E , we get a n, and hence

i--1
n

Case (ii). Assume that the eigenvalue )minM(, ) is multiple, and that there
exists an eigenvector x such that Ilxll 2 1 and i=ln xi > ".k Clearly, y -x

n k Since {X e nlllXll--is an eigenvector of unit length satisfying i=1Yi < -"1} N Eig(Amin(M /J I)) is compact and connected, we conclude that there exists
an eigenvector of norm one satisfying

Case (iii). Assume that neither case (i) nor case (ii) occur. We will derive a
contradiction. Let $ denote the eigenspace of AminM(,), S {x Ilxll 1}, and
$1 $ S. Set a := -, and := maxxeel xtJx. If neither case (i) nor case (ii)
occur, then < a. Let 9’ be chosen so that - < 9’ < a. Now consider

u := min{xt(M + J- M)x" xtJx >_ 7, xtx 1}.

The feasible set is compact and nonempty so the minimum indeed exists. (The feasible
k eset is nonempty, since x Jx n > a > 9’ for x .)

The choice of $, makes :- M + J $I positive semidefinite, and the choice
of 9’ ensures u > 0. Let

We show that

h:/:= M + J- M h:/+ e(9"I J)
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is positive semidefinite, so that , { are feasible for problem (13)-(15). We distinguish
two cases. Suppose xtx 1, xtJx >_ 3". Then, using xJx <_ n, xx > u, we get
xJf/Ix > u- 7_-e-(3" -n) O. Suppose xtx 1, xtJx < 3". Then xx > xJx >_ O.

Finally f(, {) f(, t-) %- e(c 3’) > f(, t-), contradicting optimality of
Let us remark that the proof of part (iii) in Lemma 2.4 is due to Ch. Helmberg,

and it simplifies our previous more complicated arguments.
THEOREM 2.1. It holds that

max s / tJ- min_xMx x E Xk_.}
n

Proof. Let , be the optimum of (13)-(15).
(i) Let e 2(k f3 Eig(,min(M / J- I)). We have

0 ,min(M %- J- I) ,min(M %- J)

Zt(M + J)-2- -$ -2tM-Z + -i -$

i--1

k k5tM5 %- > %- min x Mx.

Hence

(ii) Let Y: ,’k be such that yctMy: minxe xtMx. We have

Yct(M + -[J)Yc >_ Zmin(M %- J) .
k2 which proves the opposite inequality. [qHence tM& >_ -$- -d-

3. Max-cut problem. The node-relaxation (G,c) for the max-cut problem
was introduced in [5] as

(18) n(G, c) "= min max(L + diag(u)).

Let us note that (18) is nothing else but

(9) (G, c) "= min
n
max xt(L + diag(u))x

ueU I111=1

when using the Rayleigh quotient to express max.
The (positive semidefinite) edge-relaxation 2(G,c) of the max-cut is based on

(10).

{ 1 }(20) (a,c):=max E cijyijl-J-Y>-o
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where y (yij) E () is a vector of variables, and Y is the corresponding n n
matrix defined as before so that

yj i < j,
Yj := Yji i > j,

0 i--j.

Using the notions of node- and edge-incidence vectors defined by (1) and (2), and the
property (10) (which shows that 1/2 J- Y - 0), it is easy to obtain Lemma 3.1.

LEMMA 3.1. Both (G, c) and (G, c) are upper bounds on mc(G, c).
We will now show that the two relaxations form a pair of dual programs, satisfying

strong duality, thus and define the same bound.
THEOREM 3.1. Let (G, c) be a weighted graph. Then (G, c) (G, c).
Proof. Let us first rewrite the definition of the bound (G, c) in a form that allows

dualization by Lemma 2.1. Let M be the n2 () matrix defined such that w--- My
is the symmetric matrix corresponding to y with main diagonal zero and written as a
vector in n2. In other words, the entry M(i,j),(k,g (lying in the (i, j)th row and the
(k,th column, which are indexed by ordered and unordered pairs, respectively) is
defined by

1 if (i,j}
M(i,j),{k,} :=

0 otherwise.

We denote by j E n: the matrix J written as a vector. We have (identifying vectors
of size n2 with square matrices)

(21) (G, c) max cry,
1

(22) -j My esd,

Since (21)-(23) satisfies the generalized Slater condition (consider y (-
the strong duality of Lemma 2.1 can be applied. The dual of (2)-(23) reads

1
(24) (G, c) min -jtx,
(25) Mtx- c O,
(26) x Psd*.

Without loss of generality, we may assume that x corresponds to a symmetric
matrix, because jtz 0 for all z Skew. Hence (26) can be replaced by x Psd.

Equivalently, (24)-(26) can be formulated as

1
(27) (G,c) min E xj,

li,j_n

(28) x + xj cj 0, < j,

(29) x E Psd.

Since all entries xij but xii are determined by (28) as xi 1/2cij, the actual
variables are only xii. Let us express them in the form

(30) 2xii -di -ui + s,
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nwhere di, i 1,... ,n, is the weighted degree, and s "= i=1 (2xii + di) and ui

-di / s 2xii. Clearly, u E/. The constraint (29) is equivalent to

C- diag(d) -diag(u) + sI - 0

or, equivalently, to

(31) s >_ Zkmax(L + diag(u))

since L diag(d) C. The objective function (27) becomes, after substituting (30)

1 1
n

1 1
n

n

since ui 0 and iCj cij =, di. Now it is easy to see that (e4) and (25) are
equivalem to (18).

We point out that A. Schrijver [19] proposed formulation (20) with Y instead
of y to derive tractable relations of the m-cut problem. This formulation of
Schrijverw in fact the motivation for us to study the more general bisection problems
described in the present paper.

In the rest of this section, we show the way in which the optimum solution Y of
(20) is related to the optimality certificate formulated in [5].

Let (G,c) be a weighted graph and u e . Let z (zi),...,Zm (zi) e
Eig(Aax(L + diag(u))) be a collection of m eigenvectors. We say that the collection
Zl,..., z is an optimality certificate for u, if

m

(33) z5=1 for every/=l,...,n.

Let us say that u* is an optimum correcting vector for (G, c) if (G, c)
Amax(n + diag(u*)).

THEOREM 3.2. [5] Let u . Then u is the optimum correcting vector if and
only if there exists an optimality certificate for u.

The next theorem describes the mutual relation between an optimal Y in the
edge-relation (20) and an optimality certificate.

THEOREM 3.3. Let (G, c) be a weighted graph, and u be the optimum cor-
recting vector.

(i) Let z,,..., Zm be an optimality ceificate for u. Let Z [z,..., Zm] be the
(J- ZZt) is the optimum forn m matrix with columns Zl,..., Zm. Then Y "=

(ii) Let Y be the optimum for (20). Then there exists a collection of pairwise
orthogonal vectors z,..., Zm satisfying

(34) J- 2Y zz +... + zzL,
which form an optimality certificate for u.

Proof. (i) The matrix Y h zero diagonal, since ZZ h all ones on the main
diagonal due to (33). The matrix J-Y is positive semidefinite, since J-Y ZZ.
Thus, Y is feible for (20). It remains to show the optimality of Y.

Let U diag(u). We have

(35) tr((L + U)ZZt) nAma
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since the columns of Z are eigenvectors of max(L -- U), and ZZ has all ones on the
main diagonal. Furthermore, we have

(36)
n

tr(CJ) tr((D + U)ZZt) E cij E di 0.
ij i=l

Using (35), (36), and the identities L D C and C (C D U) / (D / U), we
get

tr(2CY) tr(C(J- zzt)) tr(CJ)- tr(CZZt)
tr(CJ) tr((C D U)ZZt) tr((D + U)ZZt)
tr((L + U)ZZt) nAmax

(ii) Using the complementary slackness (cf. part (iii) of Lemma 2.1) for (22) and
(29), we have

-2 My =0

or equivalently

(38) tr (Xt (J- Y))--0
when rewritten back in the notation using matrices. Since J- 2Y is positive semi-
definite by (22), there exist zl,..., z, such that (34) holds.

Claim. The vectors zl,... ,Zm are eigenvectors of Amin(X), and min(X) --0.
Let xij denote the entries of X, and zi the entries of z, t 1,..., m, respectively.

When substituting (34) into (38), we get

(39) 0:tr -Ez xz .
=I =i

Since X 0, we have ztXz >_ 0 for every g, and hence ztXz 0 for every
since the sum (39) of these nonnegative terms is zero. This proves that z,..., z, are
eigenvectors of X corresponding to eigenvalue zero, which is the minimum eigenvalue
of X. This proves the claim.

Since the constraints (29) and (31) are equivalent (they differ only by a diagonal
shift), we conclude that z,..., Zm are eigenvectors of Amax(L/diag(u)). The property
(33) follows immediately from (34).

COROLLARY 3.1. There always exists an optimality certificate z,..., Zm, m <_ t,
where the vectors z are pairwise orthogonal and t is the dimension of the eigenspace
Eig(mx(L + U)).

Let us remark that rn can be substantially smaller than t. In particular, m 1 if
Eig(Amx(L + U)) V {-1, 1 }n 0, i.e., the eigenspace contains a +/-l-vector x. Then
x determines a cut of size (G, c), and hence rnc(G, c) 99(G, c). However, it is
NP-hard to determine the minimum size of an optimality certificate [6].

The optimality certificate from [5] recalled in Theorem 3.2 is related to an opti-
mality criterion of Overton, formulated in [12] for a more general problem. We will
rephrase this criterion.
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Let (G, c) be a weighted graph, and u E/g. Let ql,..., qt be an orthonormal basis
of the eigenspace Eig(Amax(L + U)), where t denotes the dimension of the eigenspace.
Let r1,..., rn denote the rows of the matrix Q [ql,..., qt].

THEOREM 3.4. (Overton’s criterion) The vector u is an optimum correcting
vector for (G, c) if and only if there exists a t x t positive semi&finite matrix W, such
that rWri 1 for every 1,..., n.

The connection between Overton’s criterion and the optimality certificate of The-
orem 3.2 is the following.

Let t Eig(Amax(L + U)). Let z,... ,Zm ,$ be an optimality certificate, and
q,..., qt be an orthonormal bis of $. Let A denote the m x t matrix A (5)
of coefficients such that

for g 1,..., m. Let W (wiy) be the t t matrix defined by

m

(41) wy

THEOREM 3.5. The matx W defined by (41) provides Oregon’s criterion for-
mulated in Theorem 3.4. Conversely, let W be a positive semidefinite matrix given by
Theorem 3.4, and A (5) be a t t matdx such that

(42) W AtA.

(The existence of A follows from the fact that W is positive semidefinite.) Then
z,..., zt defined by (40) constitute an optimality ceificate.

Proof. Let q,..., qt be an orthonormal bis of the eigenspace $. Given an
optimality certificate z,..., Zm, let W be defined by (41). We have, for every i

1...

j,k =1

=1 j,k g=l j=l k=l g=l

which proves that W provides Overton’s optimality criterion. Reversing the argu-
ments proves the converse.

Remark a.1. Let and W be as in Theorem a.4. Then Y (J-QWQ) is the
optimum Y for the definition of (G, c) in (20).

4. Graph bisection into fixed sizes. Rendl and Wolkowiez [17] introduced
in an equivalent form (see the remark at the end of this section) the following lower
bound (G, c, k) on the bisection width, which we call the node relaxation. Let

(43) (O, c, k) := max min nx(L + diag(u))x,

where , Xk, and the Laplacian matrix L L(G, c) were defined above.
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LEMMA 4.1. [17] Let (G, c) be a weighted graph. Then ,(G, c, k) <_ b(G, c, k) for
every admissible k.

Proof. Let S C V, IS 1/2(n- k), be such that b(G, c, k) ies,js cij. Let 5
be the node-incidence vector of the bipartition (S, V \ S) given by (1). Using (9), we
have

es,s es,s
nivn u e u, e =,u 0 in i -ector, d .i=I

Hence

I(L + diag(u)) > (G, c, k)(v, , a)=
Our main result is again that (G,c,k) can alternatively be obtained the

optimum of another optimization problem. The importance of the result consists in
the fact that our new formulations allow adding further constraints that have already
proved to be useful in the approximation of graph partition problems. We postpone
the more detailed discussion to the lt section.

We introduce the positive semidefinite edge relaxation (G, c, k) the optimum
value of the following semidefinite linear program.

(44) r(G, c, k) :- min cry,
1j Y>-0,(45)
2

(46) ety m,

where

1
(n2 k2(47) m := nln2 - ).

The following lemma shows that r(G, c, k) is indeed a lower bound on the bisection
width.

LEMMA 4.2. Let (G, c) be a weighted graph. Then (G, c, k) <_ b(G, c, k) for every
admissible k.

Proof. It is useful to present a direct proof although the statement is a consequence
of Lemma 4.1 and Theorem 4.1.

Let S c V, ISI 1/2(n- k), be such that b(G,c,k -.es,sC. Let y be
the edge-incidence vector of the bipartition (S, Y \ S) given by (2), and Y be the
corresponding matrix. Then

1
-J-Y>-O
2

by (10) and y clearly satisfies (46). Thus, y is a feasible solution of the above program,
and hence (G, c, k) <_ b(G, c, k).

In 6.4 the condition (45), which is equivalent to (5), is further strengthened. It is
also useful to mention that the constraint (45) implies that 0 <_ y _< 1 by considering
2 2 submatrices of Y.

We now formulate our main theorem.
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THEOREM 4.1. Let (G, c) be a weighted graph. Then p(G, c, k) (G, c, k) for
any admissible k.

Proof. We first formulate the program (44)-(46) which defines the bound (G, c, k)
as a program of the form (11). We set fl :-- () and S :- {(w, 0) e n+l w e Psd}.
Then clearly * (0} C () and S* {(x,t) Ix E Psd*,t E N}. We recall the

definition of the operator M from the proof of Theorem 3.1, that maps y N() to
the corresponding symmetric matrix with main diagonal zero, written as vector.

The program (44)-(46) is equivalent to the following problem.

(48) (G, c, k) min cy,
(49) -My + j Psd,

(50) ey m 0,

We must distinguish two cases according to whether k > 0 or k 0. It will be
shown that these two cases correspond to whether or not problem (49)-(51) satisfies
the generalized Slater condition.

Case (i). k > 0. We claim that (49)-(51) satisfy the generalized Slater condition.
In order to prove the claim, let us define the matrix Y as a matrix with the zero

n:-k: With this choice of 1, wediagonal, and all off-diagonal entries equal p-= 2n(n-1)"
have i<j YiJ m, as required by (50). Let us consider 1/2J- (1/2 -p)J+pI. The
eigenvalues of this matrix are (cf. part (ii) of Lemma 2.2) (p,p,... ,p, -_np+p), and
they are all positive due to the definition of p. Thus the matrix 1/2 J- Y is positive
definite, and hence it lies in the relative interior of the cone of positive semidefinite
matrices.

The dual of (48)-(51) now reads as follows.

1
(52) max mr- - xij,

_i,j_n

(53) cij + xij + xji t 0 < j,

(54) x Psd*,
e

Here x is the vector of the variables dual to the constraint (45), and t is the variable
dual to the constraint (46).

j_ Y)e 0 if and only if Y satisfyingCase (ii). k 0. In this case, we have et(
(46). Hence no 1/2 J- Y is positive definite, and the generalized Slater condition is
not satisfied. Let K denote the cone of positive semidefinite matrices A satisfying
etAe 0, which is studied in Lemma 2.2. The program (48)-(51) can be replaced by

(56) (G, c, 0) min cry,
1(57) -My + -j K,

e

Now we will apply Lemma 2.2. By part (i), K is a closed convex cone. By part (ii),
the problem (56)-(58) satisfies the generalized Slater condition.
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Using Lemma 2.1, the dual problem of (56)-(58) reads

1
(59) max - E wi,

l_i,j<_n

(60) cij / wij +w 0 < j,

(61) W e g*,

where W (wij) is a symmetric matrix of dual variables. Using the characterization
of K* given in part (iii) of Lemma 2.2, we can write

1
(62) W X- -tJ
for some t. After this substitution, (59)-(61) turn into the form (52)-(55) with m
_n2
4

Thus, we have shown that independently of whether k 0 or k > 0, the dual of
the problem (49)-(51) can be reduced to the form (52)-(55).

The dual program (52)-(55) can be further simplified by replacing the constraint
(54) by

(63) x E Psd

in the program (52)-(55), because, as in the proof of Theorem 3.1, the cost matrix
is symmetric, and so Skew does not contribute to the objective function, x E Psd

l(t- Ciy) for every i,j,i j. (Matriximplies xij xji for all i : j, thus xiy
C (Ciy) based on c was defined in the introduction.) Let us introduce new variables
zi, i 1,...,n, by

(64) zi di 2xii + t,

where di -1 Cij, i.e., di is the "weighted degree" of node i. Hence (63) can be
replaced y (66). The objective function (52) becomes (using (64), (53), and (47))

1
mt - E xi

mr-- 1 n

l_i<j_n i--1

1
n

(t + t)
l<_i<j<_n i=1

1() 1

tk 1
+ - E zi.

i--1

1
n

1
n

1

l<_<j<_n =1

Thus, we can write the dual program as

(65)

(66)
(67)

1
n

1
7(G, c, k) max zi - k2t,

i-’1

tJ + L- diag(z) 0,
t N, z Nn,
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where L L(G, c) is the Laplacian matrix of (G, c).
We prove that the programs (65)-(67) and (43) defining v(G,c,k) provide the

same optimum.
nGiven z (zi), set s "= -i=l z, and u := -z + s, 1,..., n. Clearly, u E/g

since ’u- 0. Program (65)-(67)is equivalent to

1
max f(u)
uEl -where

(68) f(u) "= max ns k2t,
M(u) + tJ- sI

_
0,

t, sE.

Here M(u) "= L + diag(u). Since

v(G, c, k) :- max min nxt(L + diag(u))x,
uEbl xEXk -we can apply Theorem 2.1 with matrix M M(u). The equality

u(G, c, k) 7(G, c, k)

follows by taking M() where is the optimum of (43). D
COROLLARY 4.1. The relaxation rl(G,c,k) of the bisection width is monotone

with respect to k, i.e., rl(G, c, kl) >_ r/(G, c, k2) for kl < k2.
Proof. Let and be optimum for the program (65) (67) defining (G, c, k2).

We have

1 ’ 1 k22 < 1
n

1 k2 < r/(G, c, kl)
i=1 i=1

Remark 4.1. In the special case of nl n2 n/2, the relaxation (69) has been
first given by a. Boppana [4] (in an equivalent form). Since k nl- n2 0, the
node relaxation (43) takes the form

(69) (G, c, 0) "= max min nxt(L + diag(u))x.
ub/ xXo

Let us remark that the case with k 0 is somewhat easier than the general case
with k > 0. One reason is that {x etx k} becomes a linear subspace for k 0,

n t(L + diag(u))x can be reduced to an eigenvalue problem byand hence mnxexo x
projecting on this subspace. Another reason is that the proof of Theorem 4.1 can
be made much simpler for this case. We sketch some details. The dual definition
(65)-(67) of r/(G, c, 0) reads

1
n

r/(G, c, 0)" max E zi,

i=1

tJ + L- diag(z) - O,
t , z ’.
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The crucial part in the proof of Theorem 4.1 consists of the following claim.
If and are optimal for the above program, then

Eig(.min(J + L diag())) N X0 0.

Since k 0, case (iii) of Lemma 2.4 is immediately excluded. On the other hand, we
needed Lemma 2.2 in order to establish the correctness of the dual problem in case
k=O.

Remark 4.2. In [17] the general partitioning problem into subsets of specified
sizes is investigated. In the special case of partitioning into just two sets the approach
chosen in [17] is equivalent to the relaxation (43). To see the equivalence we note
that in [17] a partition ($1, $2) with [$1[ nl is represented by an n x 2 0-1-matrix
X (xj) where xj 1 if and only if E Sj. The relaxation in [17] for bisection is
then obtained by optimizing over all matrices X (y z), satisfying the constraints

yy nl ztz n nl yz O

y + z e, etY 1 e.z n ?1.

(The first set of constraints describes X as having orthogonal columns of specified
lengths, while the second set describes the bisection into specified sizes n, n- n.)
Defining x :- y- z shows that x normalized to unit length lies in Xk. Conversely
taking x e Xk we can set w := vx, and y := (e- w)/2, z (e q-w)/2. Then the
matrix X (y z) can easily be shown to satisfy the constraints above. This shows
the equivalence of the two approaches.

Remark 4.3. One of the early relaxations of graph partitioning was proposed in
[9]. In the case of bisections, this approach amounts to optimizing over all matrices X
satisfying just the orthogonality constraints described above. Therefore this relaxation
is never better than the relaxation from [17] or (43).

5. Graph bisection under inequality constraints. In this section we will
point out how the results of the previous section carry over to the constrained case. We
introduce lower bounds (G, c, , k) and (G, c, , k) on b(G, c, , k), which are obtained
by relaxation of node and edge incidence vectors, respectively. Let us introduce

(70)

where

(G,c,g,k) := max min x*(L + diag(u))x

(72) Xk :-- Ix Nn[llx[[-- 1 and <_ Exi <

and L- L(G, c) is the Laplacian matrix of the weighted graph (G, c), and
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(73) (G, c, , k)" min cry,
1J-y - 0,(4)

1 121
(n2 k2 < ety < (n2 ),

where Y denotes the symmetric matrix with zero diagonal and the off-diagonal entries

yj given by the vector y.
THEOREM 5.1. Let (G,c) be a weighted graph. Then

for any bounds g <_ k.
Proof. Using the duality given by Lemma 2.1, the dual problem to the definition

of /(G, c, g, k) can be transformed to the following problem.

1
t2(76) max -k2t, + t2 + z

i----1

(77) (tl t2)J + L diag(z) 0,

(78) tl,t2 >_ 0, z E n.

We omit further details of the proof, since it is quite analogous to that of Theorem
4.1.

6. Computational aspects. Two different practical approaches to the graph
partition problems have been pursued so far: (i) "polyhedral" approach, based on
solving a linear relaxation, and (ii) "eigenvalue" approach based on optimizing a
convex function involving the maximum (or minimum) eigenvalue of a matrix. The
theory developed in this paper suggests how to naturally merge these two approaches
into a more powerful computational scheme. Let us first recall some details about the
individual techniques.

6.1. Polyhedral approach. Let (G,c) be a weighted graph and x (xj)
() a vector of variables. Let r(G,c) (r for "polyhedral") denote the following
bound.

(79)
(80)
(81)

r(G, c) max ctx,
xij q-xik q-Xjk

_
2 for every < j < k,

xij xk xjk <_ 0 for every triple i, j, k.

Clearly, r(G, c) >_ mc(G, c) because every incidence vector x (xj) of an edge-
cut satisfies (80) and (81)o Computational experiments with this bound are reported,
e.g., in [3].

Since r(G, c) mc(G, c) for planar graphs G (see [2]), the bound can be expected
to behave well on nearly planar instances. On the other hand, it was proved in [15]

(a,c)that the ratio mc(c,c) tends to 2 for a certain class of random graphs (with ce 1 for
e



NONPOLYHEDRAL RELAXATIONS OF GRAPH BISECTION 485

6.2. Eigenvalue approach. The earliest experiments based on the eigenvalue
approach are reported in [9]. However, the bound considered there was not the best
possible for the approach. The computational experiments with the bound (G, c, 0)
(graph bisection into equal sizes) are reported in [10], and the bound (G, c) on the
max-cut problem is computed in [14]. Lower bounds are obtained by rounding a
suitable eigenvector to a +l-vector, and a consecutive local improvement of the cuts.
The approach provides solutions with about 5% relative error between the upper
bound and a cut found.

The eigenvalue bound (G, c) has several interesting properties that resemble the
behaviour of the actual value mc(G, c) ([5] [6]). In particular, the ratio (G,c) tendsmc(G,c)
to 1 for random graphs G, i.e., the bound is asymptotically optimal. However, the
worst case ratio is not yet known.

The bounds -(G, c, k) and (G, c) can be computed, for arbitrary required preci-
sion, in polynomial time by using the ellipsoid method. However, for practical exper-
iments we have used the Bundle Trust algorithm [18] in combination with a Lanczos
routine for computing the maximum eigenvalue. Recently, several other methods have
been proposed for minimization of the maximum eigenvalue of a parametrized matrix
[1], [13], but their practical efficiency has not yet been investigated thoroughly.

6.3. Semi-infinite programs. Our main theorem opens new ways to derive
even tighter relaxations of the graph bisection problem, by combining the polyhedral
approach relying on a (partial) description of the cut polytope with the semi-infinite
edge relaxation introduced in this paper. Specifically, we propose to merge the above
approaches in the following semi-infinite program, which presents a lower bound on
the bisection b(G, c, k).

(82) min c x,

(83) E bibjxij <_ - bi for every b (bl,..., bn) E n,
l<_i<j<n i--1

(84) xij + Xik + Xyk _< 2 for every i, j, k,

(85) xij -xik- xjk 0 for every i, j, k,
n2 k2

(86) xij= 4
li<jn

The program (82),(83), and (86) computes (G, c,k) since constraints (83) are
equivalent to 5 J X k 0. Let us also remark that (83) can be efficiently tested by

J- X, and if the eigenvalue is negative, thencomputing the minimum eigenvalue of
its eigenvector presents a b for which the constraint is violated.

6.4. Hypermetric and gap inequalities. For a particular choice of a vector b,
a cls of stronger inequalities than (83) can be considered. Let b,..., b, be integers
withi bi odd. Let us consider the following inequality

(87) bibjzij bi -1

It is not dicult to see that inequalities (87) are valid for the edge-cut incidence
vectors. (Pro@ Let z (zi) be the edge-cut incidence vector of a partition (S, S).
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Then, say,

Hence

iS i---1

and b>_ b+l

bi 1
iS jS i--1

A more general class of related inequalites, called gap inequalities, was proposed
in [11]. Let bl,...,bn be integers, and - be the maximum integer such that, for
any partition of V into S and V \ S, the difference between the sums (-ies bi) and
(ys b) is at let 7. (For example 1 if i1 bi is odd.) Then the inequality

(ss)
li<jn

is valid for all edge-cut incidence vectors by an argument similar to that above for the
inequalities (87).

Clearly, every inequality (87) is dominated by a gap-inequality. However, the
class (87) might be easier to handle, since it is NP-complete to determine the gap
for given b,..., b.

The gap-inequalities with 1 are called the hypermetric inequalities, and have
been quite intensively studied in the literature. An important theoretical result about
the hypermetric inequalities was proved in [8], telling that, for every n, the hyperme-
tric inequalities define a polytope.

The use of hypermetric inequalities in m-cut computation, and a heuristic
search for violated ones, was proposed by G. Rinaldi and C. De Simone [16] at the
workshop on graph partition problems in Rome 1991.

The cls of inequalities (87) contains all hypermetric inequalities. We propose to
search for possible violated inequalitites (87) in the "neighbourhood" of the eigenspace
of Ami(J X), but details will be elaborated elsewhere.
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FASTER SIMULATED ANNEALING*

BENNETT L. FOX

Abstract. By cooling slightly more slowly than the canonical schedule and simulating direct self-loop sequences
implicitly, the computer time to execute simulated annealing given the number of accepted moves becomes propor-
tional to that number in expectation and, in a certain sense, almost surely. This is generally orders of magnitude
faster than naive schemes, while (in contrast to previous work) not implicitly altering the cooling schedule. Running
simulated annealing on m independent parallel processors gives, in a certain sense, a further computer-time speedup
asymptotically linear in m, under an attractive way of constructing (not entirely local) neighborhoods, given that the
computer time is large. Roughly speaking, this happens as the set of optimal states gets hard enough to reach. A
pathology of purely local neighborhoods is pointed out.

Key words, simulated annealing, combinatorial optimization, Markov chains, parallel computing

AMS subject classifications. 60J10, 60J27, 90C10

1. Introduction and main results. This paper has two linked major themes:
1. Generate direct self-loops (of the form x -- x -- x) in O(1) computer time

while leaving the simulated time stochastically unchanged.
2. Give conditions that imply (in a certain sense) linear (computer time) speedup of

simulated annealing when it is executed independently on (say) m processors.
Step makes it practical, for the first time, to use cooling schedules where the temperatures

approach zero. In view of step 1, for step 2 it suffices to consider the chain pruned of all direct
self-loops. All results extend to hybrids with tabu search and (radically modified) genetic
algorithms. Fox [7] details these hybrids. From a mathematical viewpoint, they are (an
elaborate version of) simulated annealingmbut on a more sophisticated (though still finite)
state space, with a tailored (pseudo)objective function and neighborhood structure.

1.1. Computertime on one processor. Weimplement step 1 via an algorithm QUICKER,
detailed and discussed in 2. Its speed depends on the cooling schedule. The schedule
T A log(k+ 1), where A is (slightly) larger than the maximum difference among objective-
function values (or larger than an upper bound on that difference) cools at a subcanonical rate.
This is slightly slower than the canonical schedule, which replaces A by the maximum "depth"
among local, nonglobal minima (e.g., see Hajek 11 ]). The (subcanonical) schedule with A
replaced by the maximum difference among objective-function values falls in between. Sec-
tion 2.3 discusses these schedules and, more generally, cooling. A PC schedule is piecewise
constant, bounded away from zero, with all jumps downward. We have geometric cooling
when the schedule is PC and the ratio of the heights of successive fiat pieces is a constant;
such schedules are sometimes used in practice, though results of Hajek 11 and others about
converging in probability to the set of optimal states then no longer apply. These results
and counterparts for almost-sure Ceshro convergence of the proportion of time in optimal
states are especially relevant in practice when the objective-function values must be estimated
dynamically; see Heine [13].

By QUICKER(x, k), we signify that state x is entered from a different state at transition
number k, here counting both accepted and (implicitly) rejected moves. This algorithm
generates the (random) transition number L on which the next move to a different state is
made. Let J(x, k) be the number of geometric variates generated by QUICKER(x, k). Since

Received by the editors April 26, 1993; accepted for publication January 21, 1994. This research was partially
supported by Air Force Office of Scientific Research and Office of Naval Research Contract F49620-90-C-0033.

Department of Mathematics, Campus Box 170, University of Colorado, P. O. Box 173364, Denver, Colo-
rado 80217-3364 (bfox@castle.cudenver.edu).
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each such variate can be generated in O(1) time (with respect to the possible values of their
respective parameters), inspection of QUICKER(z, k) shows that the work to execute it is
proportional to J(x, k).

Our first result deals with QUICKER’s speed.
THEOREM n. Assume a PC schedule or {Tk}" then for each x, J(x, k) converges in

quadratic mean to one as k --All theorems are proved in subsequent sections. In 2.3.1, we show by example that
Theorem A does not extend to the canonical schedule or to {Tk }. For Theorem A, in the
definition of Tk we could replace A by anything (slightly) larger than the minimum distance p
to a neighbor among local minimizers that have no neighboring local minimizers. If there are
no such (isolated) local minimizers, then we can replace A by any positive number. Another
constraint on A is that it be larger than d* to get Hajek’s result. Since p and d* are generally
hard to find, we chose A as above.

Remark 1. The following fact follows from Heine [13]: with the schedule {T},

z is a strict (i.e., isolated) local minimizer

J(x, k) > for infinitely many k almost surely.

Heine uses an intricate argument involving the Borel-Cantelli lemma (e.g., see Chung [3],
Thms. 4.2.1 and 4.2.4). He allows schedules somewhat faster than {T}, though the param-
eters in these faster schedules are hard to find. Heine’s result contrasts with Theorem A, but
there is no mathematical contradiction.

Using QUICKER, the expected computer time to execute simulated annealing given the
number of accepted moves is proportional to that number, because, given that the next state
differs from the current state, the next state obviously can be generated in O(1) time. As
a practical matter, however, the implicit proportionality constants here and for QUICKER
depend on the neighborhood size. Thus, for example, it is impractical (and, regardless of
QUICKER, nonsensical except for some contrived problems) to let every state be an explicit
neighbor of every other state, but it is practical to do this implicitly as 3.4 details. With that
method, there can be, perhaps surprisingly, (many) local, nonglobal minimizers (at which the
speedup QUICKER gives is most striking).

The successive states that we visit explicitly are pairwise distinct. To recover known
results about convergence in probability to the set of global optimizers, each visit to a state is
weighted by the length of the corresponding implicit direct self-loop. That length is readily
available from QUICKER, in (small) constant time. Under certain conditions, papers surveyed
by Romeo and Sangiovanni-Vincentelli 17] find the (slow) convergence rate in terms of the
number of moves, accepted and rejected; see also Remark 2 in 2.1. Using QUICKER,
the convergence rate in terms of computer time is generally an order-of-magnitude faster
than would be inferred directly from those results. More relevant would be counterparts of
these results when self-loops are pruned from the sample path. We conjecture that, allowing
asymmetric neighborhoods (e.g., as in [6] and [7]) but assuming each global minimizer has
a neighboring minimizer (e.g., as with our construction of 3.4), these results extend to the
chain with all self-loops deleted. Heine [13] shows that Hajek’s result [11] extends this way.

Perhaps of(even) more interest than the above convergence rate, in view ofour observation
about expected computer time above, is the distribution of the number N of accepted moves
to first visit an optimal state or, in connection with a tentative move, to scan an optimal state.
The exact distribution of N is intractable, but under the following condition we can say a lot
about N.
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CONDITION R. The supremum A over temperatures of the spectral radii of the one-step
move matrices, conditioned on accepting all moves, with all rows and columns corresponding
to the optimal states deleted, is less than one. Each such matrix has just one eigenvalue with
modulus equal to its spectral radius and that eigenvalue has multiplicity one.

Section 3.4 discusses Condition R, showing that it holds under a heuristically appealing
way of generating neighborhoods. On the other hand, 3.6 shows by example that Condi-
tion R does not generally hold with purely local neighborhoods. Our second result deals with
the hitting-time distribution.

THEOREM B. Condition R implies that
(i) P{N > k} decreases exponentially in k.
(ii) All moments ofN are finite.
1.2. Speedup on parallel processors. Since the elements on the one-step move matrix,

conditioned on acceptance, vary continuously with the temperature, Condition R implies the
following stronger condition.

PROPERTY R*. The spectral radii of the one-step move matrices, conditioned on accep-
tance, with all rows and columns corresponding to the optimal states deleted, converge to

< 1. (Possibly, , -# A.)
This leads to a characterization of parallel speedup.
THEOREM C. Using QUICKER, Condition R implies that, starting from a fixed state,

the ratio of the (conditional) expected computer time to first visit an optimal state on one

processor to the (conditional) expected time to first visit an optimal state when simulated
annealing is executed independently on processors, given that the number of accepted
moves on each proce_ssor is greater than k, goes to m as A goes to one and k goes to infinity
with k o(1/(1 A)).

Roughly speaking, Theorem C says that parallel processing gives asymptotically linear
speedup as the set of optimal states gets hard enough to reachmgiven that we are in the tail of
the distribution. This corresponds to a metaprinciple in Keilson 15, p. 92], which we translate
from a reliability setting to ours as follows" the longer the search has not found an optimal state,
the more exponentially distributed is the residual time to visit an optimal state. The intuition
behind the theorem is then that the expectation of the minimum ofm exponentially distributed
independently and identically distributed (iid) variates is 1/m times the expectation of the first,
while the condition k o(1/(1 )) says roughly that the current time is asymptotically
negligible relative to the expected remaining time. If on some processor we hit an optimal state
before reaching the (approximate) exponential tail, speedup is unimportant; likewise, if is
not near one (again ignoring possibly large implicit constants). In the (important) remaining
case, we get asymptotically linear speedup in m on average. Keilson’s results [15, Chap.
8] show that, under certain conditions, including stationarity, the distribution of the time (on
one processor) to hit a rare set has an exponential tail. Here, however, stationary corresponds
to constant temperature for which condition R* holds trivially, assuming (as we do) that the
tentative-move matrix is irreducible. Even with constant temperature it is necessary to let k go
to infinity in the statement of the theorem. With decreasing temperatures, the condition also
makes only the matrices corresponding to low temperatures relevant asymptotically. For large
k, the matrices are asymptotically stationary (in the sense that they converge element-wise
to a limit) and so Theorem C could be anticipated from Keilson’s results, though it does not
seem to follow directly from them.

Fox and Simon [9] pinpoint the link between rarity, spectral radii, and corresponding
left eigenvectors. Probably, they record folklore. Roughly speaking, rarity implies that the
spectral radius is near one but not conversely. For rarity, in the sense of Fox and Simon [9],
the first condition (sufficient by itself) is that, especially at low temperatures, each (one-step)
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move from the complement Rc of the rare set to 7 should have small probability (made more
precise in [9]). Thus, translated to our setting here, generally most moves from
are uphill and 7 should consist not only of the global minimizers but also of all states from
which there is a downhill path to a global minimizer, where no move on that path has very
low probability at any temperature.

With that understanding, we temporarily redefine N and conditions R and R* accordingly.
In the limit, when it becomes impossible to get from Rc to TO, the truncated matrices in
Condition R become stochastic and so (the redefined) A 1 from the continuity of the
spectral radius as a function of the matrix elements. Strengthening a "downhill path to a
global minimizer" above to a "downhill path to a global minimizer and no downhill path to
a local, nonglobal minimizer" does not always work; as the example in 2.3.1 shows, that
requirement sometimes would eliminate all states not in S*, thus making the condition above
impossible to satisfy.

If on leaving R without first hitting S* the resulting state is independently and identically
(though not necessarily uniformly) distributed across successive exits from TO, then the random
restarting result in Fox [7] gives linear speedup in the sense made precise there. The (more-
obvious) condition for rarity is, roughly, that the equilibrium mass of R with respect to the
limiting matrix implicit in condition R* is small; this equilibrium mass is well defined when
enriching neighborhoods as in 3.4. Fox and Simon [9] show that a small equilibrium mass
is sufficient by itself (but not necessary) for the spectral radius to be near one. It follows that
the expected time to hit T is large; in that case, speedup is important.

With the respective revised definitions of N, R, and R*, if the phrase "an optimal state" is
replaced by "7"" in the statement of Theorem C, the revised statement is also correct. Starting
in 7 if the expected remaining time to visit a global minimizer is small, then for practical
purposes_ the speedup is essentially linear. This condition is sufficient but not necessary;
usually A is near one with the original definitions of N, R, and R*, because usually S* has
small equilibrium mass. Thus, in Theorem C, the condition on is reasonable.

No counterpart of Theorem C exists for deterministic methods, for example, based on
combining cutting planes with branch and bound. With such algorithms, we would expect
the (empirical) speedup from parallel computing to be (markedly) sublinear, at least when the
number of processors exceeds a dozen say. Unlike with simulated annealing, the processors
must exchange information (extensively).

An implicit assumption in Theorem C is that no overhead to parallel process occurs; this
is reasonable because the processors do not have to communicate. With this understanding,
(22) in 3.3 compactly transcribes Theorem C.

Examples in 3.5 and 3.6, respectively, show that letting A converge to one strictly from
below is a necessary condition for Theorem C. In 3.5, we show that there is essentially no
speedup if the problem is too easy or if the hitting time distribution is too peaked. Scanning
the proof of Theorem C shows that letting k is also a necessary condition for linear
speedup. In view of that condition, 3.6 shows that when equals one reaching an optimal
state is asymptotically too hard, in terms of _expected number of remaining moves, to get
any speedup. Section 3.6 also suggests that ,k usually equals one when the neighborhoods
are purely local. Section 3.4 gives a cure. Generally, the rare set 7 above consists mostly
of states from which there is a downhill path to S* in the original neighborhood structure,
not counting (low-probability) paths made possible by the neighborhood enrichment of 3.4.
From a practical viewpoint, we also get parallel speedup in the sense of Theorem C when
considering first hitting to the set of optimal and nearly optimal states (by essentially the same
argument).

Our treatment of speedup from parallel processing was stimulated by a preprint of
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Shonkwiler and Van Vleck 18], but our treatment differs significantly from theirs.

2. Implicit skipping of self-loops. Theorem A implies that, if at state x at transition
k, the expected time to generate the (possibly vacuous) self-loop sequence implicitly (via
QUICKER) is uniformly bounded over (x, k). On the other hand, the time to generate it
explicitly, via a sequence of time-inhomogeneous Bernoulli trials, goes to cx as k -- cx
whenever x is a strict local minimizer (all neighbors strictly uphill) and the temperature
converges to 0 as k .

When the self-loop sequence terminates, we exit to adifferent state, say Y. The distribution
of Y depends on the temperature at the end of the self-loop sequence via the corresponding
transition number, say L. The time to generate Y, say by "inversion," is independent of that
transition number. Just after generating Y, we reset simulated time to L + 1.

If one pretends that each self-loop takes exactly one transition, then the original chain is
not simulated, even implicitly, when the temperature strictly decreases. Greene and Supowit
10] implicitly take this approach. With it, results of Hajek 11 and others about convergence

in probability to the set of global optimizers no longer apply; they would no longer hold, when
there are strict local minimizers.

Another approach to get O(1) expected time to generate each direct self-loop sequence,
with a slightly smaller implicit proportionality constant, uses a random cooling schedule that
has constant temperature on each direct self-loop sequence. However, whether one then always
gets convergence in probability to the set of global optimizers is an open question. When
there are no isolated minima, Heine 13] answers affirmatively via an analysis of QUICKER.
Theorem A shows that, as k gets large, asymptotically QUICKER always is as fast on average
as the one tailored to the above adaptive schedule.

The lower the (unconditional) acceptance probability, the more savings from QUICKER.
At strict local minimizers, as the temperature goes to zero that probability goes to zero (at
a rate depending on the objective function distance to the nearest upward neighbor(s)) and
so the savings at these minimizers goes to infinity. Heine [13] gives explicit bounds for this
savings. The setup in Fox [7] always inhibits, via (tabu) penalties large enough to reverse
local uphill-downhill relationships, short-run oscillations among local minimizers and their
respective neighbors and (as a special case of that setup), the neighborhood enrichment in

3.4 of this paper, always prevents long-run oscillations among neighboring local, nonglobal
minimizers whether or not the temperature goes to zero. This prevention is more powerful than
that implicit in irreducibility of the tentative-move matrix or in convergence in probability to
the set of global optimizers. Thus, it i’s enough to (implicitly) prune self-loops to dramatically
increase the number of distinct states seen in fixed computer time.

2.1. The algorithm. Before stating our algorithm, we need two definitions. First, let
a(x, n) be the (acceptance) probability that, starting from state x at transition n, the state
at transition n + 1 differs from x. Second, let G(x, n) be a geometric random variable with
(success) parameter a(x, n). Here it is defined as the trial number of the first success. We note
that a(x, n) >_ a(x, n + 1) for all n, as is usual (but not universal) in the simulated-annealing
literature; this follows from our assumption about the cooling schedule. If, contrary to our
assumption, that schedule were not monotone, then the parameter of G(x, n) would have to
be sup{a(x, j) j >_ n}, generally resulting in a significant loss of speed.

Given the objective-function values (not necessarily all computed from scratch) at the
neighbors of x, the marginal cost of computing a(x, k) is modest. We view the cost of the
former as sunk, to compute the probabilities corresponding to intelligent tentative moves in
the sense of Fox [6], [7], which take account of these values. In particular, this is the only
way to discriminate among improving moves. Sunk costs are properly ignored. Tentative
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moves corresponding to a uniform distribution over neighbors or to a symmetric tentative-
move matrix are not intelligent, though some papers assume such blind moves. On the other
hand, tentative moves influenced solely by objective-function values at neighbors can lead to
short-run oscillation, especially with respect to local minima. Such oscillation is inhibited
by (tabu) penalties imposed in Fox [6], [7], via a (recent) history-remembering (Cartesian
product) state space. Tabu search also computes objective-function values at neighbors; in
numerous studies, it empirically beats simulated annealing with blind moves.

The algorithm QUICKER(c, k) below assumes that we start in state c at transition k. It
outputs the transition number L on which the next move to a different state is made.

ALGORITHM QUICKER(x, k)
Set j k
Until exit, repeat

Generate a geometric variate G(x, j)
Set L j + G(x,j)
Generate a standard uniform variate V
If V < (x,L)/t(x,j), then exit with L
Else set j L +

End

This algorithm is adapted from Fox [6], [7], where no analysis of speed is given.
Correctness. Briefly, here is the proof that the output L has the con’ect distribution. A

naive algorithm generates iid standard uniform variates U1, U2,... and outputs the first L such
that Uz < c(x, L). We do this faster by doing it implicitly. Just after passing the "V-test," L is
in effect the first index after j such that UL < c(x, L) since the geometric variate has implicitly
found that UL

_
O(X,j) but Ui > a(x,i) for j,...,L- 1; the latter assertion follows

from a(x, j) >_ a(x, i) for > j, which in tum is equivalent to (the assumed condition that)
the temperatures are nonincreasing. But P{UL < a(x,j), V < a(x,L)/a(x,j)lL }
is a(x, ) by independence. Memorylessness after each V-test failure justifies updating j as
indicated. This completes the proof.

QUICKER is a discrete-time analog of the Lewis-Shedler thinning algorithm [16] to
generate nonhomogeneous Poisson processes; e.g., see Bratley, Fox, and Schrage 1, 5.3.18]
or Devroye [5, VL.1.3] for a discussion of the Lewis-Shedler algorithm.

Remark 2. Chiang and Chow [2] give an inhomogeneous continuous-time Markov chain
version of simulated annealing, with a detailed analysis of the rate of convergence (in proba-
bility) to the optimal set. They do not say how they would simulate. If all neighbors are at the
same height above the state in question and a canonical or subcanonical schedule is used, then
generating holding times by inversion is fast. Otherwise, the only way that seems practical to
generate them notes that each such time corresponds to the first arrival in an inhomogeneous
Poisson process (with rate function depending on the current state) and then uses the Lewis-
Shedler algorithm cited above. This has the effect of introducing self-loops corresponding
to the rejected arrivals. Relative to discrete-time simulated annealing with QUICKER, it is
slower (by a constant factor) and more complex; likewise, for the subsequent generation of the
next state. Chiang and Chow consider the probability as a function of continuous, simulated
time that the chain is in the set of optimal states and find the (slow) rate of convergence of that
probability to one as (continuous, simulated) time gets large. A more appropriate measure
would be the rate as computer time gets large; on average, the latter is proportional to the
number of accepted moves (accepted "arrivals" in this case).

Remark 3. With PC schedules, our algorithm QUICKER applies without change and
Theorems A, B, and C apply. The following streamlined version of QUICKER may be
slightly faster in this case. Let n(j) be the next breakpoint in the cooling schedule after j or,
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are none, infinity.

ALGORITHM QUICKER(z, k)mtailored
Set j k
Until exit, repeat

Generate a geometric variate G(z, j)
Set L +- j + G(x, j) 1
If L < n(j)then

Exit with L
Else

Generate a standard uniform variate V
If V <_ a(x, L)/a(x, j) then

Exit with L
Else

Set j ,-- L + 1
End

We get a further speedup by treating the case n(j) equal infinity separately.

2.2. Its speed. Let T(x, k) be the expected number of geometric variates generated by
QUICKER(x, k) until exit. We show that T(x, k) is uniformly bounded in k for any cooling
schedule with decreasing (positive) temperatures. (To get convergence in probability to the
set of global optimizers, the probability of accepting an uphill move must go to zero. For
this, the limiting temperature must be zero but here we allow the limit to be any nonnegative
number.)

Denote by p(g; x, k) the joint probability that G(x, k) equals g and that the corresponding
(first) V-test fails. Clearly,

(1) T(x, k) + Ep(t; x, k)T(x, k + t)
--1

and

(2) p(g;x,k) [1 o(x,k)]e-’a(x,k){1 oz(x,k + g 1)/a(x,k)}
[1 O(X, k)]*-I lot(x, k) o(x, k + e 1)].

Because p(1; x, k) 0, the sum in (1) effectively starts at g 2.
Since

(3) E[1 a(x, k)]t-la(x, k) 1,
g--1

and

(4) [1 a(x,k)l-oz(x,k + 1) > 0
=1

for each k, to show that

(5) 0 supEp(e; x, ) < 1,
k =1
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it is enough to show that

(6) -- lim inf-[1-o(x )]g--Io(x /--e--1) > O.
=1

We will show more: the limit exists and 1.
To make the rest of the proof of Theorem A easier to follow, we divide it into two cases.
Case 1. x is not a strict local minimum or the temperatures are bounded away from zero.
Case 2. x is a strict local minimum and {Tk } is used.
The proof for Case 1 shows that, when x is not a strict local minimum, the conclusion of

Theorem A holds for any monotone-decreasing cooling schedule. When the cooling schedule
is PC, this part suffices. For Case 1, the proofrelies solely on the following fact: the acceptance
probabilities are bounded away from zero. Here, the strategy is to show that the probability
that the first V-test in QUICKER fails converges to zero as k . This is equivalent to
showing that 1. From this, it follows easily that T(x, k) 1. A similar argument,
detailed in 2.2.3, shows that EJ2(x, k) and hence that Var J(x, k) O, completing
the proof for Case 1.

The primary task for Case 2 is to show that (again) 1, now harder to do because the
acceptance probabilities are not bounded away from zero. Once we get 1, the rest of the
proof follows that for Case 1.

2.2.1. Case 1. Let 7- limk c(x,k) > 0. Because c(x,k) decreases in k,
[1 c(x, k)]e-1 o(x, k + g 1) < [1 7-]e-; the upper bound is clearly summable, because
7- > 0 in this case. So, by dominated convergence, we bring the limit inside the sum to get

(7)

For any fixed k, plainly p(1; x, k) + p(2; x, k) +... is the probability that the first V-test
fails. Consider the recursion

(8) R(x) 1 + OR(x),

where, under an alternative scenario, the V-test fails with probability 0, independently ofL and
j (and, hence, of k). This scenario is inconsistent with the form of the V-test in QUICKER,
but that does not matter. Clearly, R(x) is the expected number of geometric variates generated
under that scenario, R(x) 1/(1 0), and T(x, k) <_ R(x) for all k. The boundedness of
T(x, k) follows, since 0 < 1.

Since

(9) 1 < T(x, k) < 1 + R(x)ZP(g; x, k),
=l

and the sum in (9) (the probability that the V-test fails) clearly converges to zero (from (2), (3),
(7) and inspection of QUICKER), we get T(x, k) 1. The recursion for the second moment
of the number J(x, k) of geometric variates generated by QUICKER (x, k) is like (1) except
for a crossproduct tenn. So, the same analysis (detailed in 2.4) shows that Ej2(x, k) 1
and hence that VarJ(x, k) 0. The conclusion of Theorem A follows.
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2.2.2. Case 2. In this case, from the assumed form of the cooling schedule, a(x, k) has
the form pi(k + 1)-6 with 0 < 6i < 1, p > 0, and p 1. Here 6 is independent
of k (but depends on x). For large enough k, only the smallest 6 matters. (In principle, as in
Hajek 11, 5], one could insert dummy states and then rescale so that each 6i equals a positive
constant less than one, but it seems inefficient to do this.) In (6), stress the dependence on the
function a by writing . Temporarily denote by/34 the function a with each 6 replaced by. Now let

( argmin {Z min 5i _< _< max 6i}.

Making this replacement, we assume without loss of generality that a(x, k) equals (k + 1)-
with0<(< 1.

Clearly, for each m,

(10)

(1 o(x,k))’-lol(x,k -- 1)
=1

m

_> --(1 a(x,k))t-’a(x,k -% m 1)

+ (1 a(x,k))e-’a(x,k + t 1),

and (multiplying and dividing the sum of the finite geometric series by a(x, k))

(11)

m

E (1 oz(x,k))e-loz(x,k -]- m 1)

[a(z, k + m 1)
a(x, k)

[1 (1 a(x, k))’].

Pick a positive integer n and choose m [(k + 1)]n. Thus, the second factor on the right
side of (11) converges to e-n as k -. cx. Since < 1, the first factor converges to one.
Since the right side of (10) is positive (at least e-n), we get 0 < 1. It remains to show
that 1.

Now letting n ---. cx), the first term on the right side of (10) goes to one. At the same time,
since the sum on the left side of (10) is at most the sum on the left side of (3), which is one
(for all k), the second term on the right side of (10) goes to zero. Thus, 1.

Remark 4. We get additional insight by considering, over the vector space/?, the map-
ping 7-/defined by

(12) [7-/v](k) + p(g;x,k)v(k -% i),
i--1

where the left side is the kth component of the vector 7-/v. With respect to the sup norm, 7-/
is clearly a contraction with modulus/9. Therefore, it has a unique fixed point v* bounded in
sup norm and v*(k) T(x, k).

2.2.3. The second moment. We already showed that EJ(x, k) 1. Thus, it suffices
to show that EJ2 (x, k) 1.
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(13)

It is routine to check that

EJ2(x, k) + 2 Ep(g; x, k)T(x, k +
e=l

+ Ep(e;x,k)Ej2(x,k +
g=l

Because T(x, j) is uniformly bounded, as we already showed, so is the bracketed term. Now,
repeating the previous argument shows that Ej2(z, k + ) is uniformly bounded. Taking the
limit as k cxz in (13), we get Ej2(z, k) --* 1 by arguing as before.

2.3. Cooling.

2.3.1. Canonical and subcanonical schedules. A remarkable pathology of the canoni-
cal schedule follows. It is apparently folklore.

Example. There are three states: a global minimum and a local, nonglobal minimum
connected only via the third state, a local maximum. It is routine to check that, with the
canonical schedule, the expected number of explicit moves in a direct self-loop sequence
starting at either minimum at any transition number is infinite.

Denote by z the local, nonglobal minimum above. Since the sum of a finite number of
geometric variates is finite almost surely, it follows that there is no such that 0r(z, .) > only
finitely often almost surely; in turn, this implies that lim inf Ear(z, k) > 1.

We now sharpen this observation. As a preliminary, we note that

d k

p --(1 p)e _p-2 q.. p-2(1 p)k/ p-(k + 1)(1 p)k
e=O

k

_E( _p)e-1.

Now set p c(x, k) 1/(k + 1), for the canonical schedule and the example above, and
note that (1 p)k+l e-1 and (1 p)k --+ e-1 as k c. Hence,

k

(1 p)e-p
__

1.

Routine calculations now show that

_-p(g;x,k)- (1- O(X, ]g))-lo(x, ]g)( 1)
e--1 e---1 (k q- )

k )e- c(x, k)(g 1) 1> E (1 a(x, k)
2k 2

as k --. x. Thus, it follows from (1) and T(x,j) > for all j that, for each e > 0 and k
correspondingly large enough, T(x, k) > e. Peter Glynn (personal communication) gets
a great refinement. He shows that J(x, k) geom(E(1 + exp(1))-l). Convergence of the
means follows from Glynn’s argument and monotone convergence. Since T(x, k) is therefore
asymptotically the reciprocal of

) e-x fl
cx e,-u

dx e du
l+x u



498 BENNETT L. FOX

and the latter definite integral is in tables, we get T(x, k) 1.83 approximately.
Beyond this disadvantage relative to subcanonical schedules (where T(x, k) 1), with

the canonical schedule, when k is arandom variable (say, the transition number at the beginning
of the second self-loop at x), there are examples where QUICKER(x, k) can be infeasible
to implement numerically because c(x, k) can be smaller than machine precision with a
significant probability; likewise, for schedules cooling only slightly more slowly. A related
drawback, heuristically if not mathematically, is that the inhibition of uphill moves can be too
strong too soon. Hence, we recommend that the canonical schedule not be used; likewise, for
the perturbed schedule where the maximum "depth" is replaced by something epsilontically
larger.

With the schedule {7k ), an analogous pathology can happen only at an .optimal state.
From a practical viewpoint, this is still bad because a user, without clairvoyance or implicit
enumeration, would not have identified that state as optimal. A way out checks whether
the difference between objective-function values at the current state and its farthest uphill
neighbor equals the bound on the maximum difference among objective-function values used
in Tk. If equality holds, the current state is optimal; otherwise, the pathology cannot occur at
the current state. In Theorem A, we can replace T by provided that we exclude optimal
states x.

With the schedule {T}, this pathology never happens. However, the expected number of
explicit moves in a direct self-loop sequence starting at a strict local minimum is not bounded as
a function of the transition number on which that sequence starts. The contrast with Theorem
A is sharp.

2.3.2. Qualitative considerations. Under certain conditions (not all natural in general
but satisfied for a matching problem with a particular neighborhood structure), Hajek and
Sasaki [12] show (nonconstructively) that no monotone-decreasing cooling sequence is op-
timal. As they remark, finding an optimal sequence may well be harder than the original
optimization problem. In addition, the class of optimality criteria that they allow does not
include the cost of implementing the cooling schedule. As we remarked earlier, QUICKER
gets slowed down (generally significantly) if the cooling sequence is not monotone decreas-
ing. So, when the cost of implementing the schedule is accounted for, a cooling sequence that
decreases monotonely, at least from some point onwards, may be nearly optimal.

If the neighborhoods were purely "local," then a heuristic argument can be made occa-
sionally to increase the temperature, even when in the tail of the cooling sequence, to stimulate
the search to leave the current region. An example in 3.6 shows that, for any cooling schedule
with long intervals of low temperatures, purely local neighborhoods are generally bad in a
precise sense. However, when using the "enriched" neighborhoods of 3.4, if a better region
exists, the search will eventually "jump" to it without reheating. A tentative move (one-step
jump) to that region eventually becomes possible and any improving move is accepted.

In addition, the hybrid algorithm of Fox [7] has an initialization phase using random
restarting in tandem with a descent routine. While the former corresponds to infinite temper-
ature, the latter implicitly corresponds to zero temperature. So, our overall scheme does not
have monotone-decreasing temperaturewthough, once simulated annealing proper is begun,
it does. Without QUICKER, random restarting coupled with descent (as a stand-alone pair)
would beat simulated annealing in a certain asymptotic sense as Fox [7] details.

We view the remarks above as a partial reconciliation with the Hajek-Sasaki result, though
we certainly do not claim that our (implicit) overall cooling schedule is, in any sense, optimal
for any combination of problem, neighborhood topology, and tentative-move probabilities.
Some favor constant temperature, at least from some point onwards; results of Catoni [4]
indicate that such schedules are not (even nearly) optimal.



FASTER SIMULATED ANNEALING 499

Ideally, one would like to tailor the cooling schedule to the computer time budget (as
opposed to a simulated-time horizon); this looks hard.

Catoni finds a sequence of schedules which are "almost" optimal, in his sense, for each
respective simulated-time (not computer-time) horizon, assuming that the tentative-move ma-
trix is symmetric (which rules out the setup in [6] and [7]). Each such schedule is a sequence
of pieces, each amounting to a perturbation of the "standard" logarithmic form. The number
of pieces-depends on the objective function, whereas their respective lengths depend on the
simulated-time horizon. Like Hajek and Sasaki [12], Catoni [4] ignores the cost of imple-
menting the schedule and (because his schedules depend on parameters that seem as hard to
find as global optima) does not give a (genuinely) constructive way to produce nearly optimal
schedules.

To us, Catoni’s results roughly indicate qualitatively that the following properties are true:
1. A logarithmic tail, without breakpoints, gives a nearly optimal cooling schedule.
2. The longer the horizon (in simulated time or in computer time), the larger should be

the initial point of that tail and the longer should be the initialization phase.
Even without Catoni’s assumptions, the second property above is heuristically appealing.

Using QUICKER in the tail makes the logarithmic form practical; with a naive simulation, it
would not be. The term "tail" above seems appropriate when the horizon is far away.

2.4. Almost-sure behavior. This section states a consequence of a result of Heine 13].
Let U (L) be an upper (lower) bound on the objective function over the feasible set. By

choosing an integer j greater than one and then, in the definition of Tk, choosing A (slightly)
larger than (j/(j 1))(U L), we have J(z,.) > j only finitely often almost surely for
all states z. With this choice of A, we can modify QUICKER(z, k) to exit after at most j
iterations, while still assuring that the sequence of states visited converges to the optimal set.
The user specifies j.

Remark 5. This modification of QUICKER may make synchronization of processors,
especially on a single-instruction multiple-data (SIMD) machine, easier: if, on any processor,
QUICKER finishes in less than j (real) iterations, then dummy iterations can be added to that
execution of QUICKER so that a total of j iterations are executed with each invocation of
QUICKER on each processor.

From Theorem 2.3 of 13], it follows that no such synchronization is possible with the
canonical schedule.

3. The number of accepted moves. Consider the following weakening of Condition R.
CONDITION Rt. With Aj the (nonstationary) matrix of one-step transition probabilities,

conditioned on acceptance at move j, the matrix

(14) A= lim Aj

has no closed set of states not containing an optimal state. This condition does not rule out
isolated, local, nonglobal minimizers because their respective nearest uphill neighbors can
have other downhill paths leading from them.

Let -d be Ad with all rows and columns corresponding to optimal states deleted; likewise,
for Ao. We now show that condition R implies Condition R. It is well known that the
irreducibility of Aj implies that the spectral radius #j of Aj is less than one. Likewise,
Condition R’ implies that the spectral radius #oo of . is less than one. Therefore, since
eigenvalues are continuous functions of the matrix elements, there is a ,, less than one, such
that # < , for all j. We pick as in Condition R. The point of introducing Condition R is
that it is easier to guarantee directly, as 3.4 shows. An example in 3.6 shows that, without
Condition R, the conclusions of Theorems B and C may not hold.
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Let Nx be the number of moves to hitting the set of optimal states, starting from state x.
To bound the probability that Nz exceeds k, we note that P{Nz > k} would equal [Bk l]z if
the transitions among the suboptimal states were governed by a fixed matrix B. So,

(15) P{N=>h}_< max /llh,l|

Equation (15) and Condition R together imply that

(16) P{N= > k} O(Ak)
for fixed A and large k.

3.1. General Jordan forms. Perturbation of the elements of .j is one way to make its
eigenvalues distinct. One objection to such perturbation is that it may require changing zero
elements to positive elements.

So, instead, we consider the following weaker property.
PROPERTY E. Only one eigenvalue of each j has modulus equal to its spectral radius.
This follows from a well-known theorem of Frobenius when each ,j is irreducible and

aperiodic (in the sense that some power of Aj has all positive elements). Such irreducibility
and aperiodicity follow from neighborhood enrichment of 3.4. Property E is included in
Condition R.

3.2. ProofofTheorem B. The first assertion is now clear from (16). Summing (16) over
k yields

(17) ENx O(1/(1 A)) < x.

Since (16) implies that P{N= k} _< eA for some constant e and large enough k,
kP{Nx k} <_ -] ckA and so an easy calculation, differentiating the sum of a

geometric series j times, gives

(18) EN 0((I A) -j) < cxz.

This completes the proof. Only Condition R was used.

3.3. Proof of Theorem C. Clearly,

(19) P{N= > k + [I_N= > k} _< max
(jl jk+e)

.i--1 x i--1 x

where jl,..., j+e are the transition numbers where the first k + g acceptances occur. We
get an analogous lower bound by repla_cing max by min. By hypothesis of the theorem,
the spectral radii of the Ajs converge to A < 1; the corresponding left and right eigenvectors
also converge.

To get insight, we temporarily consider the time-homogeneous case with Aj diagonaliz-
able with eigenvalues/30,/31,...,/3n and =/3o. The right side of (19) then has the form

+ed + +ed2 +... + +e,
Ad +/3d2 + +

For fixed and g, this converges to e as k oc. Thus, the left side of (19) asymptotically
becomes the geometric distribution, consistent with Keilson’s results.
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Now we return to the time-inhomogeneous case, no longer assuming tht j is diagon-
alizable but using Property E. Fixing g and letting k -+ oo in (19), the right side has the
form

lim
[Bk{(’e+lc + o(,+1)d) +

[B {(e + o()d) + gk )Ix

where for some increasing subsequence {j } corresponding to the maximization

k-1

=1

gk [Aik A]I,

and fk,e --+ 0 and gk ---+ 0. Here f,e is the error term arising from replacing the final g + 1
terms in the matrix product by/oo; likewise, for g. The factors in parentheses come from
the spectral decomposition of Aoo. Thus, as k --+

(20) P{N > k + glNx > k} -+ e + o(e).
Now let Nx,m be the minimum of m iid copies of Nx. From (19) and the independence

of the m copies, we get

(21) P{Nx, > + elNx, > --, +

analogously to (20). It follows from the spectral decomposition that the second term on
the right above is small relative to the first uniformly in . Therefore, summing (21) over

1,2,... and using the hypothesis k o(1 / (1 )) gives

E[N,mIN, > k]-+ (1 ,m)- + o((1 ,m)-l).

Letting k --+ oo and --+ gives

E[NxlN. > k](22)
E[Nx,.IN,m > k] --’ m

by L’H6pital’s rule. This proves Theorem C.

3.4. Neighborhood enrichment. For each state x, we enrich its original neighborhood
N’(x), for example, consisting of all states Hamming distance k away, so that Condition R’
holds. We defer discussion of that construction. It is enough to guarantee that Condition R’
holds, because we already showed that Condition R implies Condition R.

Using A, the only moves possible are downward, horizontal, or, if at a strict local mini-
mizer, upward to the neighbor(s) with smallest objective function value, when the temperature
goes to zero as the transition number goes to infinity. (If these temperatures are bounded away
from zero, then A is clearly irreducible.) With moves restricted as above, Condition R
holds if every state is a neighbor of every other state, since then there are no local, nonglobal
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minimizers. Such neighborhoods would make QUICKER impractical, because of the work to
compute c(z, k). A way to assure Condition R while leaving c(z, k) practical to compute is
to make every state a potential neighbor of every other state in the following sense.

Enrich A/’(z) by generating a state Y" randomly (not necessarily uniformly) from the
remaining states, each state getting positive mass, and then replacing A/’(z) by its union with
{Y’} on entering z from a different state.

Remark 6. For example, we could provisionally generate Y uniformly, but with a certain
(high) probability replace that Y" by the result of using a descent algorithm starting at Y’.
Analogously to Remark 5, synchronization may be easier if the user specifies a bound on the
number of descent steps.

On exit from x to a different state, we delete Y from JV’(x). A new Y is added to A/’(x)
on each entrance to x from a different state. However, Af(x) does not change during direct
self-loop sequences. Thus, the acceptance probability in QUICKER depends (only) on x, the
current enriched neighborhood of x, the current simulated time, and the objective function.
This dynamic-neighborhood scheme can be recast in standard simulated-annealing form.

3.4.1. The construction: I. We now detail that construction. Clearly,

(23) /:’{tentative xj -- xe move} -[P{tentative xj -- xe movelEk}" P{Ek }],

where Ej is the (low-probability) event that x is added (explicitly) to the neighborhood of
xj. Since x is either in the original neighborhood of xj or has a positive probability of being
added to it (when k j), a tentative xj xe is possible for all j. Thus, every state is an
implicit neighbor of every other state. On the other hand, our algorithm never calculates the
unconditional probability of a tentative xj xe move. Another (equivalent) way of looking
at this considers (macro)states of the form (xj,/jk), whose objective function value is that
of xj and whose (permanent) neighborhood is the union of N(xj) and {x} by construction,
and redefines the transition probabilities accordingly. Thus,

(24) P{tentative (xj, j) (xe, &m)move}
P{tentativex we movelE}

The scheme already described streamlines that approach.

3.4.2. The construction: II. To show that our neighborhood enrichment implies not
only irreducibility of each Aj but also weak reversibility of each Aj and that Condition R’
holds, we proceed as follows. If and only if xj is a strict local minimizer with respect to its

original neighbors, we construct the macrostates so that (xj,/jk) and (xj, -je.) are neighbors
of each other for all k # ; both these macrostates also have uphill neighbors. To show weak
reversibility: any forward path from (xj,/jk) to (x,,/,e) has height (as defined by Hajek
[11]) at least as large as the backward path (Xn, ne) -- (Xm, nj) -- (Xj, jk) with obvious

shortening if j is in ne. Here m n if x, is a strict local minimizer with respect to its

original neighbors and m is another element of N(x,,) with at most the same height as x,
otherwise. To show Condition R’: from any macrostate there is a path, consisting only of
downward and horizontal segments, to an optimal macrostate. If xj is not a global minimizer
and if there is no downward move from (xj, -jk), then for some n there is a horizontal move
to (x,, E,z) where z is a global minimizer, and if with respect to its original neighbors xj is a
strict local minimizer, n j. To streamline this procedure: on "exit" from x with temporary
neighborhood N(x) t_J {Y}, with (small) positive tentative-move probability allow the next
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state to be x with new temporary neighborhood N(x) U {Y’}, where Y’ : Y. Thus, no
minimizer is isolated when considering macrostates. Hajek’s d* is zero.

Remark 7. Therefore, by Remark 1, when using {Tk } we can modify QUICKER so that
it generates just one geometric variate and then terminates after its first set statement. Thus,
neighborhood enrichment yields more efficient synchronization than (otherwise) obtainable
from Remark 4. Unless the objective-function value of yt is less than that of x, one would
normally make the tentative-move probability small; any other tentative move would be to
an uphill neighbor. Even though the speedup from QUICKER does not go to infinity, at low
temperatures the speedup at formerly isolated local minimizers is huge.

Equation (24) shows that (generally) not every macrostate is a neighbor, explicit or im-
plicit, of every other macrostate--in contrast to the situation for the original states. The
matrices Aj and j should be interpreted relative to transitions among macrostates, in the
setting of neighborhood enrichment. Equation (24) shows that (usually) there are macrostates
that are local, nonglobal minimizers. This is needed to make it reasonable that , is near one,
because otherwise, in the limit, absorption takes place in number of moves at most equal to
the (generally very large) number of rows of fi, implying that vanishes.

3.4.3. Diversification. Neighborhood enrichment can be seen as a way to diversify the
search over the state space, so that it is not myopic. Though not required for our theorems,
we let the probability of a tentative x z move vary inversely with objective function value
of z. To a large extent, this makes the work to compute c(x, k) a sunk cost, considering that
the calculation of the objective-function values of all elements of A/’(x) needs to be done to
compute the tentative move probabilities. It also makes the search unlikely to get sidetracked to
Y, unless Y has a smaller objective-function value than those in the original A/’(x), especially
at low temperatures. Thus, we diversify without making the search aimless.

Remark 8. Fox [7] uses this idea in a hybrid algorithm in which (tabu-searchlike) penalties
inhibit heuristically bad moves, such as those leading to short-run oscillation in the sequence of
states visited, and in which a radically modified genetic-algorithm is integrated. A counterpart
of neighborhood enrichment makes at least one historyless element, a randomly generated
feasible solution, part of each population as defined in Fox [7] following genetic-algorithm
jargon. While at low temperatures neighborhood enrichment as described above has a strong
flavor ofrandom restarting, in the richer setting ofFox [7] a better balance with local searching
(sometimes called intensification) is achieved. The (pseudo)objective function value for each
population is the minimum ofthe (pseudo) objective function values for its respective elements.
Tabu penalties are reflected in the latter values. While at first sight, remembering recent
history of some population elements excludes weak reversibility, the historyless elements and
a counterpart of the construction in 3.4.2 together guarantee weak reversibility.

Another advantage of diversification is that it makes irreducibility and weak reversibility
of the tentative-move matrix hold trivially; even in the limit as the temperature goes to zero,
A is not generally irreducible, but there is a path (not necessarily downhill) from every state
to the set of global optimizers and from each global optimizer to every other. Thus,A has
just one recurrence class and so (e.g., see Karlin and Taylor 14, p. 4] its (maximal) eigenvalue
one has multiplicity one. Condition R follows. In the Introduction, the phrase "equilibrium
mass of " should be interpreted as its equilibrium mass relative to Ak for large k. If the
(tabu) penalties mentioned above are high enough, then diversification makesA irreducible
too because, roughly speaking, the original neighbors of any local minimizer become farther
uphill than some new neighbor. Typically, when that minimizer is global, these new neighbors
are in c__ making it intuitively plausible that the equilibrium mass (in the sense above) of
is small. The latter property does not imply that the expected long-run fraction f of time the
(time-inhomogeneous) chain, with direct self-loops pruned, spends in is small. When the
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problem has been transformed so that the difference in objective-function values between each
state and its neighbors has absolute value zero or one, one might suspect that f is typically near
one, because, with the direct self-loops retained and a subcanonical (or canonical) schedule,
the limiting mass of the subset of R corresponding to global minima is one, as Hajek 11]
shows. The example in 2.3.1 shows that, when there are isolated global minimizers, the
problem transformation above or something akin to it is a necessary condition to assure that f
is near one. Heine 13] shows that this condition along with Hajek’s assumptions implies that
the long-run fraction of time the pruned chain spends at global optima and their respective
closest uphill neighbors converges to one; hence f 1.

Remark 9. When not at a local maximum, the probability of an upward move at transition
n given that the move at transition n is accepted is at least d(n 4- 1)- where d > 0 and
0 < < 1. Therefore, assuming that the objective function is not trivial, the Borel-Cantelli
lemma implies that an infinite number of upward moves are accepted almost surely, with
or without the problem transformation above. So, if f is near one, long-range as well as
short-range attraction to is indicated.

3.5. Limitations of parallel speedup. We have shown that, under certain natural con-
ditions, parallel processing gives nearly linear speedup--asymptotically, linear. Superlinear
speedup, however, seems beyond reach unless the original algorithm could be accelerated on
a sequential computer. At the other extreme, the speedup can be negligible. To see that, we
choose the tentative-move matrix so that the time to hit the unique optimal state is virtually
constant as follows. Let all other states have the same objective-function value among them-
selves. Assume that 2 -- 3 --, -- n is a downhill path, in the weak sense, that
state n is the global minimizer, and that there are n states. Let each superdiagonal element
of the tentative-move matrix be e. Set all other elements equal to e2, except that the
bottom-fight element is e. Choosing e 1/(n 1) makes all row sums equal one.
Taking n large enough forces e arbitrarily small. The tentative-move matrix itself and that
matrix with its last row and column deleted are each irreducible and aperiodic, yet parallel
processing yields essentially no speedup. Since all moves are accepted, except at state n,
the truncated tentative-move matrix equals the truncated one-step move matrix conditioned on
acceptance. The spectrum of that matrix becomes arbitrarily close to that of the corresponding
matrix with e equal zero when the actual e is small enough. For e equals zero, the spectrum
is the eigenvalue zero repeated n times. It is routine to check (by Cramer’s rule) that the
eigenvectors vary continuously with the spectrum and therefore so does the speedup. So, the
essentially zero speedup is consistent with our earlier analysis.

More generally, speedup is negligible whenever there are no local, nonglobal minima. In
such (unusual) problems, if the descent direction is deterministic, there is no speedup.

3.6. A bad example. To see what can go wrong without neighborhood enrichment or
some other diversification strategy, even when weak reversibility holds, consider the following
example.

Example. There are four states v, x, y, and z with heights 2, 1, 3, and 0, respectively.
The (symmetric) neighborhoods are" N(v) {x}, N(x) {v, y}, N(y) {x,z}, and
N(z) {y}. As the temperature 0, in the limit the only possible moves are v x,
x v, y x, y -- z, and z -- y. Since x y becomes impossible asymptotically, v and
x disconnect from the sole global minimizer z. With A corresponding to the set {v, x, y}
of strictly suboptimal states, it is easily checked thatA has spectral radius one and that

as k x where b can be v or x. Given the condition above, Nb,, is k plus the remaining
time to hit z.
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Without diversification, we believe that such examples are the rule rather than the excep-
tion. With our neighborhood enrichment, such examples do not exist. Tabu penalties that are
large enough to (in effect) raise v or x higher than /will cure the pathology on the example
above. However, in large problems in which the only way to reach a global minimizer is to
climb a hill higher than any other, tabu penalties may not cure the pathology because their
effect is too local to raise the other hills high enough.

Note added in proof. A recent related paper by the author is Simulated Annealing:
Folklore, Facts, and Directions, in Monte Carlo and Quasi-Monte Carlo Methods in Scientific
Computing, H. Niederreiter and P. J.-S. Shiue, eds., Lecture Notes in Statistics, Springer-
Verlag, Berlin, to appear.
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INCORPORATING CONDITION MEASURES INTO THE COMPLEXITY
THEORY OF LINEAR PROGRAMMING*

JAMES RENEGARt

Abstract. This work is an attempt, among other things, to begin developing a complexity theory in which problem
instance data is allowed to consist of real, even irrational, numbers and yet computations are of finite precision.

Complexity theory generally assumes that the exact data specifying a problem instance is used by algorithms.
The efficiency of an algorithm is judged relative to the size of the input. For the Turing model of computation,
size refers to the bit-length of the input, which is required to consist of integers (or rational numbers separated into
numerators and denominators).

We replace customary measures of size with condition measures. These measures reflect the amount of data
accuracy necessary to achieve the desired computational goal. The measures are similar in spirit, and closely related,
to condition numbers.

Key words, linear programming, complexity theory, condition numbers

AMS subject classifications. 90C05, 68Q25, 65Y20, 65G99

1. Introduction. To introduce concepts gradually, we begin by discussing the most basic
decision problem in linear programming, that of determining if a system of constraints is
consistent. Our main technical results do not concern this problem.

Let Ax < b, x > 0 be the system of interest, where A is an m n matrix whose coeffi-
cients are real numbers. The system is represented by the data vector d:- (A, b) E ’’+’;
think of the coefficients of A and b as being strung into a long vector. We refer to ,n+m as
data space; each vector in data space represents a problem instance.

For an instance d’ (A’, U), let

Soln(d’)’- {x; A’x <_ b’, x >_ 0}.

In attempting to determine if the instance d is a consistent system of constraints, we
assume that algorithms will be provided with rational approximate data d (A, b) and an
upper bound 6 on its error, i.e., lid- dll < . For example, one can think of the approximate
data as consisting of truncated decimal expansions of the actual real number data.

In working only with the approximate data d and the upper bound S, an algorithm will
not be able to distinguish the actual instance d from any other instance within distance 6 of
d. Thus, to make a decision about the actual instance d, the decision must be correct for all
instances within distance S of d. With this as motivation, we define the "condition measure of
instance d with respect to the decision problem" as follows.

If Soln(d) : 4) define

(1.1) C(d)’- lldl[o/sup{; lid’ dll < 6 Soln(d’) 7 0).

Replace 7 with
Observe that /C(d) is the minimal relative perturbation size required to obtain a system

from d whose answer for the decision problem is different than the answer for d. Roughly
speaking, log C(d) relative bits of data accuracy are necessary to reach a decision.

Note that 0 <_ C(d) <
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Instance d is "ill-posed for the decision problem" if C(d) ; it is ill-conditioned if
C(d) is large.

Note that C(d) is invariant under positive scaling d Htd just as the decision problem
is invariant; the reader might find it useful to assume Ildll 1 in what follows, or what is
essentially the same, assume Ilall 1.

Now we discuss what we want of an algorithm. We consider algorithms with input and
output as follows.

Input. d (A, b), 6.
Output. One of the following statements:
A. Consistent,
B. Inconsistent,
C. Decision deferred.
There are three properties we want such an algorithm to possess.
I. Correctness. The algorithm should never make an incorrect decision for the actual

problem instance d. As the algorithm must be applicable to any instance (i.e., d may vary
from one application to the next), if the algorithm replies Consistent then correctness requires
that all systems within distance S of the input d be consistent. Similarly, if the algorithm
replies Inconsistent.

II. Computational efficiency. There are various ways to define this. In this paper, we
take the approach of traditional complexity theory: requiting the input d, 6 to consist only
of rational numbers, we say the algorithm is computationally efficient if it terminates within
polynomial-time as measured in terms of the bit-length of the input.

III. Data efficiency. We want the algorithm to make a decision using nearly minimal data
precision. We say that the algorithm is data efficient if there exist a positive constant E and a
polynomial p(m, n), both independent of the actual instance d and input (d, 6), such that the
algorithm makes a decision if

(1.2)
Ildlloo

<
p(m, n)C(d)E

i.e., the algorithm makes a decision when provided with E times the number of relative bits of
accuracy necessary to make a decision (plus a number of bits growing only like the logarithm
of the dimensions of the instance).

We say that an algorithm for the decision problem is fully efficient if it is correct, com-
putationally efficient, and data efficient.

Important note. It is conceivable that when a more formal framework is developed to
encompass a broader class of problems, it may be necessary to replace (1.2) with something
like

di 1
(1.3)

Ildlloo
<

pl(m, n)C(d)p:(’,’)
i.e., a decision is made when provided with p2(m, n) times the number of bits of relative
accuracy necessary to make a decision.

Is there an algorithm for the decision problem which is fully efficient? The answer is yes
as is shown in 3. In fact, for constraints of the form Ax < b, x >_ 0 as we are considering,
the construction and analysis of such an algorithm are deceptively trivial, assuming that the
algorithm can call on a polynomial-time algorithm for LP as a subroutine. In terms of (1.2)
we have E 1, p(m, n) 2.

(In all of our algorithm constructions we rely on a polynomial-time LP algorithm as a
subroutine; any such algorithm is adequate. We treat the polynomial-time LP algorithm as a
black box.)
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If one removes the nonnegativity constraints, considering systems Az < b, it is not so
easy to argue the existence of a fully efficient algorithm for the decision problem. However,
Vera [7] has constructed and analyzed one, obtaining E 3 in (1.2).

A foremost goal in this type ofcomplexity theory is to keep E in (1.2) as small as possible,
subject to the condition of polynomially bounded running time in terms of the bit-length of

It is important to understand that once one has a good algorithm for one form of con-
straints it does not immediately yield a good algorithm for other forms. This is in contrast to
traditional complexity theory. For example, in traditional complexity theory one can replace
the single-variable, single-equation system 3z 6 with the equivalent two-constant system
3z < 6, 3z _> 6; such transformations roughly preserve bit-length. However, when develop-
ing a complexity theory based on condition measures, such transformations are inadequate.
The first system is well-posed with respect to the decision problem; small perturbations pre-
serve consistency. The second system is ill-posed; arbitrarily small perturbations can destroy
consistency.

Judging the efficiency of algorithms relative to condition measures introduces demands on
algorithms not required in traditional complexity theory, but the converse is also true. Judged
relative to condition measures, algorithms are required to perform few operations in deciding
that an instance is consistent (inconsistent) if the instance is far from being inconsistent
(consistent). However, algorithms are not even required to make a decision for ill-posed
instances, regardless of how accurate the data is. The reason why is the requirement that
input d, satisfy the strict inequality lid- dll < . If we replaced < with <, the results
of this paper would be unaffected, but the character of the general theory would not be. The
relation < would force our theory to be strictly more stringent than traditional complexity
theory because it would require that any rational data instance be solved in polynomial-time;
just input d d, S 0. A strict inequality leaves rational data vectors d undistinguished
from irrational ones. A strict inequality leaves open the possibility of efficient algorithms,
when judged in terms of condition measures, for problems that are NP-hard in the sense of
traditional complexity theory; this possibility is not addressed in this paper.

1.1. We now move to the next level of difficulty, constructing an approximate solution to
a system of constraints when one exists. Again we let d (A, b) denote the data vector of the
actual instance, d (A, b) denote rational approximate data, and denote a rational upper
bound on the data error, Itd- dllo < .

We consider algorithms with input and output as follows.
Input. d- (, ), .
Output. One of the following statements.
A. Consistent. Approximate solution: . Error bound: .
B. Inconsistent.
C. Decision deferred.
The approximate solution and error bound are computed by the algorithm. If the

algorithm replies statement A, then it is asserting that there exists x E Soln(d) satisfying

IIx 11 -< .
We allow ; we assume that the algorithm (Turing machine) has a distinguished

symbol for .
What do we want of such an algorithm?
I. Correctness. Besides the aspects of correctness previously discussed, correctness re-

quires that if the algorithm replies statement A, then

lid’ dl[ < S = z’ E Soln(d’)s.t. IIz’ l[o < ,
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that is, is an approximate solution for all instances d’ within error of d-.
II. Computational efficiency. The algorithm terminates within polynomial-time as mea-

sured in terms of the bit-length of the input d, 6.
III. Data efficiency. The next few paragraphs are devoted to a discussion of this.
Data efficiency is more involved here, primarily because we are not simply dealing with

a yes-no answer, but also because the tasks are becoming layered; first, there is the task of
deciding consistency; second, there is the task ofcomputing and g if the system is determined
to be consistent.

We associate a condition measure with each task layer. For the first layer, that of deciding
consistency, the condition measure is the same as before, C(d). The first requirement of data
efficiency is that the algorithm reply statement A or B whenever 6 satisfies (1.2), where E and
p(m, n) are again instance- and input-independent.

The second layer of tasks is that of computing : and (possibly oc) if consistency has
been determined. The condition measure associated with this should reflect the finest solution
accuracy one could hope for with the given data accuracy. There are various nonequivalent
ways to formalize this, at least one of which is natural for algorithm analysis.

For instance, d and all e _> 0, define

(1.4)

(d,)- Ildll! sup(; s.t. lid’ dll < z’ Soln(d’) s.t. [Ix’ 11 -< ).
Thus, 1/C(d, e) represents the largest relative inaccuracy in the data with which one could
hope to compute a point $ guaranteed to be within error e of a solution for d, i.e., log C(d, e)
relative bits of accuracy are necessary.

Note that C(d) <_ C(d, e).
Besides requiting an algorithm to decide consistency efficiently, we also require for all

e > 0 that

<
Ildll P(m,n)C(d,e)E

[Algorithm replies A where g < e],

i.e., the algorithm requires at most E times the number of relative bits of accuracy necessary
to compute an e- approximate solution.

We now summarize our discussion of data efficiency.
III. Data efficiency. There exist positive constants Ei and polynomials pi(m, n), 1,

2, all instance- and input-dependent, such that (i) the algorithm replies A or B if

(1.6) < =v [Algorithm replies A where < e].
Ildll p2(m, n)C(d, e)E

Again we say that an algorithm is fully efficient if it is correct, computationally efficient,
and data efficient.

There do exist fully efficient algorithms in this context. It is again a deceptively trivial
matter to construct and analyze such an algorithm for constraints of the form Ax < b, x >_ O.
We do so in 3, obtaining E1 E2 1, Pl (m, n) p2(m, n) 2. It is not so easy to argue
the existence of fully efficient algorithms for other forms of constraint. Vera [8] has done so.

(ii) For all e >_ 0,

(1.5)
Ildll

< p,(m,n)e(d) E’
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Some readers must wonder how our so-called condition measures relate to condition
numbers. Roughly, one can think of the limit

lim sup eC(d, e)
e0

as a condition number for instance d. In the context of linear equations, one can easily verify
that an analogous limit gives the usual condition number. However, the above limit is not
necessarily close to condition numbers for linear inequalities as defined, say, by Mangasarian
[3]; the main difference stems from the fact that C(d, e) is highly dependent on both A and b
in d (A, b), whereas condition numbers in the literature as represented by [3] are assigned
to A by considering the worst-case b; in the context of square systems of linear equations the
two approaches are roughly equivalent, but in the context of linear inequalities they are not.
Both approaches have their merits.

Condition numbers are defined asymptotically; by contrast, our condition measures are
global.

1.2. Now we consider linear programming proper, our main focus. We restrict attention
to problems with constraints of the form Ax < b, x >_ 0. In this context such constraints ease
the analysis but do not make it trivial.

So consider LPs of the form

max
s.t.

cTx
Ax<_ b,
x>O.

The data vector is d (A, b, c). Approximate data, assumed to be rational, is denoted by
d (A, b, 6), and 6 again denotes an upper bound on the error, lid

For an LP instance d’ (A’, b’, c’), let Opt(d’) denote the optimal solution set and let
Feas(d’) denote the feasible region, i.e., Feas(d’):- {x; A’x < b’, x _> 0}. Let DualFeas(d’)
denote the feasible region of the dual LP.

We consider algorithms with input and output as follows.
Input. d- (A, b, ), .
Output. One of the following statements.
A. There is an optimal solution.

Approximation: 2.
Error bound: g.

B. Unbounded optimal solution.
C. Infeasible.
D. Feasible, but decision on the existence of an optimal solution is deferred.
E. All decisions deferred.
As before we allow g o. If the algorithm replies statement A, then it is asserting that

there exists x E Opt(d) such that Ilx 11o < .
We now have three layers of tasks: (1) decide primal feasibility; (2) if primal feasible

then decide dual feasibility; (3) if both primal and dual feasible, then compute 2 and f. With
each task layer we have a condition measure:

(1) The same as the value we have been denoting C(d), i.e., if Feas(d) then define

(1.7) Cp(d)’= Ildll! sup{6; lid’-dll
Replace with if Feas(d) .
(2) We define

(1.8) Cp1)(d):- max{Cp(d), Co(d)},
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where CD(d) is defined as Cp(d) is, but with DualFeas(d) instead of Feas(d).
(3) For all e _> 0,

(1.9)

C(d, Ildll ! sup{6; 3 s.t. lid’ dl[ < 6 c Opt(d’) s.t. ]Ix’ llo < e}.

Note that Cp(d) <_ CpD(d) <_ C(d, e); the condition measures are monotonic in the task
number.

A fully efficient algorithm is one possessing the following three properties.
I. Correctness. The statement replied must be valid for all instances within distance

ofd.
II. Computational efficiency. Polynomial-time in the input bit-length.
III. Data efficiency. There exist positive constants Ei and polynomials pi(m,n).,
l, 2, 3, all instance- and input-independent, such that

1
(1.10)

ildllo
<

pl (m, n)Vp(d)E1 ==>" [Algorithm replies A, B, C, or D]

(1.11)
Ildllo -< p2(m,n)CpD(d)E2 [Algorithm replies A, B, or C].

For all e _> O,

(1.12) _<
Ildll p3(m, n)C(d, )E3

[Algorithm replies A where

In 4 we construct and analyze a fully efficient algorithm. Regarding (1.12), we obtain

(1.13) <
][dllc KnCpD(d)3C(d,e)3 [Algorithm replies A where g <_

K denoting a constant. Strictly speaking we thus obtain E3 6, but in a sense, E3 3, at
least when C(d, e) is large relative to Cpo(d), as it will be as e 0 if d has a unique optimal
solution and Cpo (d) < o.

Remarks. Requirement (1.12) is stringent, perhaps too much so even for linear program-
ming; it creates technical headaches when Opt(d) has positive circumradius (i.e,, Opt(d) is a
positive-dimensional facet) and is only slightly larger than the circumradius of Opt(d).

Our algorithm measures the exact gc-radius of certain polytopes specified by rational
constraints. This can be done in polynomial time; by contrast, it is NP-hard to measure the
2-radius of polytopes (Bodlaender et al. [2]).

It is the author’s opinion that the particular norm should not be of extreme importance in
a complexity theory based on condition measures. Perhaps the most natural way to remove
the dependence is to replace the fight side of (1.12) with

(1.14) [Algorithm replies A where g < p4(m, n)],

where P4 (m, n) is yet another polynomial. This alleviates the technical headaches mentioned
above. For our algorithm, we obtain

(1.15) <
ildllo KnCpD(d)3C(d, e)2

[Algorithm replies A where g _< 2e].
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Comparing (1.13) and (1.15), we save a factor of C(d, e) in the denominator on the left side
only at the expense of a factor of 2 on the fight side. However, to see what we lose with
(1.15) consider an LP instance d such that Opt(d) is of radius g > 0 and CpD(d) < x);

then C(d, e) cx = e < g. Note (1.15) does not require the algorithm be able to compute
e-approximate optimal solutions when g < e < 2g, whereas (1.13) does.

A final remark. In a more formal theory pertaining to a broader class of problem one
might want to replace the exponents Ei with polynomials.

In 5 we consider the problem of computing a feasible point whose objective value is

nearly optimal, again assuming that constraints are of the form Ax < b, x _> 0. As the reader
might expect, continuity of the optimal objective value under data perturbations makes this

problem much easier than that of approximating optimal solutions.
Vera [8] has "extended" all of our results to other forms of LPs. Although he relies on

some of our ideas, the other forms of LPs present many complications requiring additional
ideas; his work is a significant step beyond ours. Readers might be interested to know that he
finds analytical centers to be particularly useful.

Questions concerning the stability of linear programming solutions have been studied for
many years, although not in the context ofcomplexity theory; cf., Ashmanov 1 and Robinson
[5]. For example, it is well known that CpD(d) is finite if and only if the optimal solution sets
of both the instance d and its dual are bounded. Also of related interest are the regularization
techniques of Tikhonov and his followers; cf., Tikhonov, Ryutin, and Agayan [6].

2. Relations between measures of condition and solution size. In this section we es-
tablish a few simple, but crucial, relations between condition measures and sizes of solutions.
These relations are similar in spirit, and similar in role, to the following much-used relation
in traditional complexity theory: if an L-bit linear programming problem has a feasible point
(optimal solution), then it has one satisfying II ll _<

The relations established in this section generalize substantially as is shown in Renegar
[4]. However, we now only consider problem instances d (A, b, c) of the form

max
s.t.

cTx
Ax< b,
x>O.

Fixing m and n (the number of constraints and variables), let Pri0 denote the set of primal
infeasible LPs (represented as data vectors), and let DualO denote the set of dual infeasible
LPs.

For d (A, b, c) let dis(d, PriO) denote the/?-distance from d to the set Pri0; define
dis(d, DualS) analogously.

Let d* denote the LP that is dual to d, i.e., d* is as follows:

min
s.t.

bTy
ATy >_ c,

y>_O.

Let k(d) denote the optimal objective value of d; if d is unbounded define k(d) zx; if d is

primal infeasible define k(d) -.
PROPOSITION 2.1. Assume d (A, b, c) satisfies Opt(d) : and dis(d, DualO) > 0.

Then

x e Opt(d) = Ilxlll < max(llbll,-k(d)}
dis(d, DualO)
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Proof. Fix an optimal solution x 0. Let p > 0 and consider the perturbed LP

d + Ad:- (A + AA, b, c + Ac),

where

(1)AA:=-iixll bT’

Ac:= (max{O,-k(d)+p})llxll, ’
with e denoting the vector of all ones. Note that

(A + AA)x < O,
(c + Ac)Tx > O.

Farkas’ lemma implies d + Ad E Dual0. Since

i[Ad[[ < max{llbll,-k(d) + p}
Ilxlll

and since p > 0 is arbitrary, the proposition follows. []

PROPOSITION 2.2. Assume d* has an optimal solution. Then every optimal solution yfor
d* satisfies

Ilyll <
dis(d, PriO)

Proof. This proof is analogous to the proof of Proposition 2.1.
PROPOSITION 2.3. Assume k(d) is finite. Then

Ilbllollcll
-dis(d, Pfi0)

< k(d) <
dis (d, Dual0)"

Proof. In proving the rightmost inequality, we may assume k(d) > 0. Letting x denote
an optimal solution for d, we then have from Proposition 2.1,

k(d) aTx Ilcll Ilxll dis(d, DualO)"

The leftmost inequality is established analogously, relying on Proposition 2.2.
LEMMA 2.4. Assume k(d) is finite and Ad:----- (0, Ab, 0). Then

k(d + Ad) k(d) < II/bll max{llcll, k(d)}
dis(d, PfiO)

Proofi Let y denote an optimal solution for d*. Since y is also feasible for the dual of
d + Ad, we have

k(d + Ad) < (b + Ab)Ty k(d) + (Ab)Ty < k(d) + IIAbllllYlll.

Substituting the bound of Proposition 2.2 for Ilyll completes the proof.
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PROPOSITION 2.5. Assume Ad:- (AA, Ab, Ac) and assume both k(d) and k(d + Ad)
are finite. Then

[max{l[_c[[_,_k(d)}] [max{[[b+ Abll,-k(d + Ad)}]k(d + Ad) k(d) < IIAAII L dis(d, Pri0) dis(d + }k--d, Dual0)

+llAbll max{llcll,k(d)} 1
j

+llAcll [max{llb+Abll,-k(d+Ad)}]dis(d + }X--d-, Dual)

Trivially, an analogous lower bound on k(d + Ad) k(d) is obtained by interchanging the
roles ofd and d + Ad.

Remark. The value -k(d + Ad) occurring on the right side of the inequality can be
replaced with -k(d); this follows immediately from the inequality by considering the two
cases k(d + Ad) < k(d) and k(d) < k(d + Ad). Similarly, the value k(d + Ad) appearing
in the analogous lower bound can be replaced with k(d).

Proof Let x denote an optimal solution for d + Ad. Let Aid: (0, A/b, 0), where

A’b:- Ab- (AA)x.

Note that x is feasible for d + A’d and hence cTx <_ k(d + A’d). Thus

k(d + Ad) k(d + A’d) < (Ac)Tx < II/Xllllxll

and hence

k(d + Ad) k(d) < II/Xllllxll + [k(d + A’d) k(d)].

Noting that II/X’dll < IlzXbll + II/XAIlllxll, the proof is now easily completed using
Proposition 2.1 and Lemma 2.4. []

Whenever we speak of a "dimension independent constant K," we mean that the constant
does not depend on the dimensions of the LP instances being considered.

COROLLARY 2.6. There exist dimension independent constants K1 > 0 and K2 > 0 with
thefollowing property. Ifd and Ad satisfy

IIAdll < K1 dis(d, PriO U DualO),

then

Ik(d / Ad) k(d)l < K:IIAdll Ildll max{lldll, Ik(d)l}
dis(d, PriO)dis(d, Dual0)

Proof. The proof follows immediately from Proposition 2.5, relying on the previous
assertion that the value -k(d+ Ad) occurring on the fight side of the inequality in Proposition
2.5 can be replaced with -k(d) (similarly, the value k(d + Ad) appearing in the analogous
lower bound can be replaced with k(d)), and relying on the relations dis(d, Pri) < Ildll,
dis(d, Dual) < Ildll. []

3. Trivialities. In this section we consider the problem of deciding if Ax < b, x > 0 is
consistent and, if so, of computing a solution. The form of the constraints makes this section
deceptively trivial; by contrast, see Vera [7] for other forms of constraints.
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Let d (A, b) denote approximate data and let 6 denote an upper bound or its error, i.e.,
lid dllo < , where d is the actual data.

The triviality of this section results from the fact that there are two elements in the set of
instances

that determine the consistency or inconsistency of all instances in the set. The two instances
are

Defining

dl "= ( -- eeT, ) e),
d2"= (i eeT, + e).

Soln(d’)’- {x; A’z <_ b’, x >_ 0),

where d (AI, U), it is easily proven that

(3.16) d’ E B(d, 6) := Soln(dl) C_ Soln(d’) c_ Soln(d2).

The fully efficient algorithms alluded to in 1 and 1.1 follow from this implication. For
example, the one alluded to in 1.1 is as follows.

Input. d (A, b), 6.
1. Check consistency of d2. If inconsistent, then reply "Inconsistent" and STOP.
2. Check consistency of dl. If inconsistent, then reply "Decision deferred" and STOP.
3. Compute a feasible point for dl. Let 0. Reply "Consistent. Approximate

solution: :. Error bound: " and STOP.
Assuming that one uses a polynomial-time algorithm for checking the consistency in steps

and 2, and for computing in step 3, the claims of 1 and 1.1 follow trivially.

4. Linear programming proper. In this section we construct and analyze the fully
efficient algorithm mentioned in 1.2, for LPs of the form

max cTz
s.t. Az < b,

x>O.

The construction of the algorithm and the proofs of correctness and computational efficiency
are all simple. The interesting aspect is the proof that the algorithm is data efficient in
approximating optimal solutions.

The to-radius of a closed set S is defined to be the smallest value r for which there
exists : satisfying S c_ {x; IIz 11 < r); a corresponding is called a mid-point of S;
the o-radius may be o.

If S is specified as the feasible region for a system of linear inequalities with rational
coefficients, then its - radius and a mid-point can be computed in time polynomial in the
bit-length of the coefficients, as the reader can easily verify.

Letting d (A, b, ) and 5 denote input, define

dl’-- ( + eeT, {9- Se,- Se),
d2" (fit eeT, + e, 4- Se).

The algorithm is as follows.
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Input. d (A, b, ), S.
1. Check primal feasibility of de. If infeasible then reply "Infeasible" and STOP.
2. Check primal feasibility of dl. If infeasible then reply "All decisions deferred" and

STOP.
3. Check dual feasibility of dl. If infeasible then reply "Unbounded optimal solution"

and STOP.
4. Check dual feasibility of d2. If infeasible then reply "Feasible, but decision on the

existence of an optimal solution is deferred" and STOP.
5. Compute the go-radius and a mid-point for the feasible region of the following

system:

(4.1)
A2x <_

cx >
x>_O,

where d2 (A2, b2, c2). Reply "There is an optimal solution. Approximation: :. Error
bound: ." STOP.

Assuming polynomial-time LP algorithms are used as subroutines, the computational
efficiency of the above algorithm is immediate.

Correctness of the algorithm follows from the easily proven fact that if d E Bo (d, 6)
then

(4.2) Feas(dl) C Feas(d’) C Feas(d2),

(4.3) DualFeas(d2) C_ DualFeas(d’) C_ DualFeas(dl ),

(4.4) k(dl) < k(d’) < cx(d’),

where x(d’) denotes any optimal solution of d’ (assuming one exists). We leave verification
of correctness as a simple exercise.

We discussed in 1.2 that, regarding data efficiency, there are three layers of tasks, each
with an appropriate condition measure: Cp(d), CpD(d), and C(d, e). The definition of data
efficiency in that section addresses the task layers consecutively.

For the first task layer, that of deciding primal feasibility, the data efficiency of our
algorithm is an immediate consequence of (4.2); in fact, it follows immediately that E1 and

Pl (m, n) in (1.10) can be taken as the constants i and 2, respectively. Similarly for the second
task layer, that of deciding dual feasibility, i.e., (1.11).

Finally, we come to something interesting; proving data efficiency of the algorithm in
approximating an optimal solution. Fixing e > 0, we wish to establish (1.12). In doing so,
we may assume the input d, 6 satisfies 6 < 1/2C(d, e); it follows we may assume that upon
input d, 6 the algorithm does not terminate until step 5.

In what follows, Y and refer to the approximate optimal solution and error bound
computed by the algorithm upon input d, 6. As always, d refers to the actual instance, i.e.,
the one d is considered to approximate.

Most ofthe remainder of this section is devoted to proving the following two propositions,
the first of which is largely a consequence of the second. The first proposition is appropriate
for the more stringent definition of data efficiency relying on (1.12). Either proposition is
appropriate for the less stringent definition relying on (1.14), although the second proposition
provides better bounds.
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Recall that CpD(d)

_
C(d, e).

PROPOSITION 4.1. There is a dimension independent constant K3 > 0 with thefollowing
property: For all e >_ 0,

IIdll nCpD(d)3C(d, e)3

PROPOSITION 4.2. There is a dimension independent constant K4 > 0 with thefollowing
property: For all e >_ 0 and p satisfying 0 < p <_ 1,

Kap
lldllo - nCpD(d)3C(d, e)2 = -< (1 -+- p)e.

Before proving the propositions we use them.
THEOREM 4.3. The preceding algorithm isfully efficient.
Proof The proof follows immediately from Proposition 4.1, (1.12), and the preceding

discussion. []

Remark. Note that in the notation of (1.12), E3 6 and p(m, n) n/K3; moreover, if
C(d, e) is large relative to CpD(d) then, in a sense, E3 3. If one instead uses the weaker
definition of data efficiency relying on (1.14), then Proposition 4.2 provides better values.

Before proceeding to the proofs, we introduce simplifying notation:

spD(d)’= dis(dl, Priq} tO Dual0),

i.e., the -distance from d to the set ofLP instances, which are either primal or dual infeasible.
Also, for all e _> 0,

s(d, e)’- sup{; 3 k s.t. lid’ dl[ < x’ e Opt(d’) s.t. IIx’ 11 }.

Note that

(4.5)

and

s(d, e) Ildll/C(d, )

(4.6) SpD(d) > 0 spD(d) --Ildll/CpD(d).

4.1. In this section we derive Proposition 4.1 from Proposition 4.2. The next section is
devoted to proving Proposition 4.2.

We begin with two lemmas, the first of which is only an intermediate step to the second.
LEMMA 4.4. IfO < e <_ e, then

Proof We may assume s(d, e’) < s(d, e).
Let 6’, 6 satisfy 0 < s(d, e’) < ’ <_ < s(d, e). We first show it suffices to prove that

(4.7) ’ < s(d,

where

(4.8)
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To see that this suffices, observe that (4.7) and s(d, e’) < 6’ imply s(d, e’) < s(d, e/p); hence,
e < e/p. Substituting from (4.8) for p thus yields

and hence

Ildll + 6

Taking the limit as 6’ s(d, e’), 6 T s(d, e) gives the lemma.
Now to prove (4.7). Consider the set of instances

S: {d; d (A’, pb’, c’) where (A’, b’, c’) E Bo(d, ’)}.

Observe that S c_ B(d, 6); for if d (A’, pb’, c’) and d’ (A’, b’, c’) then

lid- dllo lid- d’ll + lid’- dll
(p- ])llb’ll + lid’-dll
6-5

Ildll + 6, IIb’ll + Iid’-
6 6’ + lid’- dll

<6.

Since 6 < s(d, e) there thus exists such that

d S :::lb e Opt(d)s.t. I1- 11oo _< .
Note that if d (A’, pb’, c’) and d’ (A’, b’, c’), then

It follows that

Opt(d) = : Opt(d’).

d’ Bo(d, tS’) = 3x’ Opt(d’)s.t. Ilx’- (1) l[ _< _.pC
Hence (4.7).

LEMMA 4.5. Assume >_ 0 and define

(4.9) e" s(a,)+ 211allo

Then s(d, ) < 3s(d, ’).
Proof. We may assume > 0. Since < , Lemma 4.4 is applicable. Substituting (4.9)

for in that lemma, and rearranging yields

s(d, ) < 2 ( + s(d, ) ) s(d, ’).
211dll

Finally, note that s(d, e) <_ lidlloo.
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ProofofProposition 4.1 from Proposition 4.2. We assume 6 satisfies the assumed upper
bound, that is,

(4.10)

Let

s(d, s) s’:(4.11) P: 211dll’
Lemma 4.5 shows

l+p

(4.12) s(d, e) <_ 3s(d, e’).

Together, (4.10), (4.11), and (4.12) imply that we may assume (by requiring K3 to be suffi-
ciently small)

Ildllo,:,
<

n Ildltoo J Ildlloo J
where K4 is as in Proposition 4.2; thus, from that proposition,

4.2. In this section we prove Proposition 4.2. We begin with a proposition which in effect
asserts that for slightly worse data error than S, one cannot hope for much better solution
accuracy than g if SpD(d) is not small (i.e., if CpD(d) is not large).

PROPOSITION 4.6. There exist dimension-independentpositive constants Ks, K6 with the
following property: If6 and A6 are positive numbers satisfying

6 .qt_ A6 <_ KSSPD(d),

thenfor all e >_ O,

(4.13) E < g-K6 -- LaRD(d)
26 + A6 >_ s(d, e).

We begin the proof of Proposition 4.6 with a lemma. The instances dl and d2 referred to
are those of the algorithm.

LEMMA 4.7. Assume A6 is a real number satisfying

(4.14) 0 < A5 and + A5 < 8PD(d).

There exist instances d and d" satisfying

(4.15) lid’- dll _<

(4.16) lid"- dll _< , + A6,

(4.17)
k(dg.) k(dl) ]dis(Opt(d’), Opt(d")) > 2 g-

A6
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where dis(H, T) is the goo-distance between subsets S and T. (Note: (4.14) and (4.15) imply
Opt(d’) : ; similarly, Opt(d") .)

Proof. First assume that g < ; recall that g is the goo-radius of the feasible region
for (4.1), so the projection of that feasible region onto some coordinate axis is an interval of
length 2; assume this is so for the first coordinate axis. Let z’ denote a feasible point for (4.1)
whose projection is least, and let z" denote a feasible point whose projection is greatest. So
e(x" z) 2g, where el is the first unit vector.

Let

d’ (A’, b’, c’): (A2, b, c2 (AS)e),
d": (A2, b2, c2 + (AS)e),

where d2 (A2, bz, cz). Since Feas(d’) Feas(dz), we have

(4.18) x

Since x is feasible for (4.1), we have cx > k(dl) and hence

(4.19) (c’)Txt > k(dl)- (AS)eT x’.

Noting that x Feas(d), together with (4.18) and (4.19), yield

x e Opt(d’) = k(dz)- (AS)eTx _> k(d,)- (AS)eTx’,

that is,

(4.20) x Opt(d’) = eTx <_ e(x + k(d2) k(d)
A5

Similarly,

(4.21) x Opt(d") eTx >_ eTx’’- k(d2) k(dl)
A5

From (4.20), (4.21), and e(x" x’) 2g, we obtain (4.17).
If g cx then the proof proceeds exactly as above except that x and x" are chosen so

that el
T (x" x’) is arbitrarily large. []

ProofofProposition 4.6. Since spD(d) < SpD(d) + , we may assume by choosing K5
sufficiently small that A6 satisfies the assumptions ofLemma 4,7. Hence there exist instances
d’ and d" satisfying

(4.22) d’, d" Boo(d, 2 + AS),

k(dz) k(d) k(d) k(d)](4.23) dis(Opt(d’), Opt(d")) _> 2 g-
A5 A5

Choosing K5 sufficiently small we may assume d and Ad: d -d satisfy the assumption
of Corollary 2.6; similarly for d and dz d. Substituting the implied bounds on k(dz) k(d)
and k(d)- k(d)into (4.23), then substituting the bound I(d)l _< Ildll/pD(d)implied by
Proposition 2.3, one obtains (using SpD(d) <

(4.24) Ildllo dis(Opt(d’), Opt(d")) _> 2 g-K6 - LSpD(d
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where K6 is a dimension-independent constant. Together, (4.22) and (4.24) give (4.13). []

The fact that the nonnegativity constraints x > 0 are unaffected by data perturbations
forces spec_.ial attention be given the zero vector as an optimal solution; the set of instances
for which 0 is optimal has nonempty interior. With this in mind we define

so(d): sup{di; lid’- dll < 6 6 Opt(d’)}.

If 6 Opt(d) then so (d) O.
It is easily seen that

so(d) sup{c5; lid’- dll < (5 Opt(d’) {6}};
for if Opt(d’) (6} then an arbitrarily slight perturbation of the objective for d’ yields an
instance for which 0 is not optimal.

LEMMA 4.8. /f6 < so(d)/2 then 0, 0.

Proof. If < so(d)/2 then Opt(d1) Opt(a:) (6) and hence k(dl) k(d2) O.
Lemma 4.7 then implies g 0; for the lemma implies, by choosing A6 < so(d) 2S, that if
g > 0 then there exists d’ and d", both of distance less than so(d) from d, and such that either

Opt(d’) # (6) or Opt(d") # (6), contradicting the relation for so(d) noted just prior to the
statement of Lemma 4.8.

If 0, the_ correctness_ of the algorithm implies is optial for all instances in the open
set {d’; lid’ dll < 6)};from this it easily argued that 0. []

One should keep in mind the relations

so(d) < s(d,) < SpD(d).

LEMMA 4.9. For all > 0, s(d, ) < so(d) + 4enlldll.
Proof. We may assume so(d) < s(d, ) and hence so(d) < SpD(d). Then it is easily

seen that for each p > 0 there exists an instance d (AI, U, c) satisfying

lid’ dll < p / so(d)

and such that Opt(d) consists of a single point x’ .
Consider the instance

((2+P) A’x’c’)d": A’, b’ + IIx’ll
It follows from the complementy slacess conditions for optimality that Opt(d") {x"},
where

x,x: x’ + I1"11]
Hence,

dis(Opt(d’), Opt(d") IIx’- x"ll 2 + p,

Consequently,

s(d, ) < max{lid’- dill, lid"- dill}
< lid’- dll + lid"-
_< lid’- dll + (2 + p)nlld’ll
< [0(d) + ] + (2 + )n[lidll + 0(d) + ],
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Noting so(d) < Ildl[, the lemma follows since p > 0 is arbitrary, rn

ProofofProposition 4.2. We assume 6 satisfies the assumed upper bound, that is

We prove the proposition assuming that K4 is sufficiently small; what constitutes sufficiently
small will become evident during the course of the proof.

We may assume > 0 and hence, by Lemma 4.8,

(4.26) > so(d)
2

Since

(4.27)

it follows from (4.25), (4.26), and p < 1 that by choosing K4 sufficiently small, we may
assume

so(d) < s(d,)

Thus, by Lemma 4.9,

(4.28) s(d,

Also note (4.25) and > 0 imply

(4.29) s(d, e) > O.

Define

(4.30) {’ }Lk6:- min , K5 s(d, e’) 2,

where K5 is as in Proposition 4.6. Note that (4.29) and (4.30) imply

(4.31) 2 + A6 < s(d, e).

Also note that (4.25), (4.27), (4.30), and p < imply that by choosing K4 sufficiently small
we may assume

(4.32) A6_> min ,K5 s(d,).

From (4.29) and (4.32), we have

(4.33) A6 > 0.

Moreover, (4.27), (4.29), and (4.30) imply

(4.34) + A6 < K5sPD(d).
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From (4.33) and (4.34) we find that Proposition 4.6 is applicable; consideration of the
proposition in conjunction with (4.31) gives

1(4.35) e >_ g-K6 -- lspo(d)J
Substituting (4.25) and (4.32) into (4.35), we find

>
_

K4K’p [ s(d, e)

where

K’: 2K6
rain{1/2, Ks}"

Hence, by choosing K4 sufficiently small, we may assume

->- L IIdll
Then, by (4.28)

s

completing the proof.

5. More simple stuff. In this section we consider the problem of computing a feasible
point whose objective value is nearly optimal assuming, as always, constraints are of the form
Ax<_b,x>_O.

The algorithm is identical with that of 4 except we replace step 5 with the following.
5. Compute an optimal solution 2 for d, compute k(d and k(d). Let: k(d)-k(d ).

Reply "There is an optimal solution. Feasible point 2. Bound on the difference between the
optimal value and the objective value of the feasible point: ."

Assuming polynomial-time LP algorithms are used as subroutines, the computational
efficiency of the algorithm is immediate: it terminates within time polynomial in the bit
length of the input d, 5.

Correctness of the algorithm is a simple exercise relying on relations (4.2), (4.), and
(4.4).

It only remains to prove the algorithm is data efficient, a phrase which we have yet to
define in this context but which the reader no doubt can infer from the previous development.
The definition is the same as (1.10), (1.11), and (1.12) except for two changes. First, statement
A in the algorithm referred to there should be replaced with the statement replied in step 5
above. Second, C(d, e) must be redefined:

C(d, ): Ildllo/sup{8; k s.t. lid’ dll < 6 Ik(d’) k < s}.

This value indicates the data accuracy necessary to approximate the optimal value to within
error , but does not seem to indicate the accuracy needed to compute a feasible point whose
objective value is within of the optimal value. The fact that it does so follows from the
relations (4.2) and (4.4) which are very particular to constraints of the form Ax <_ b, x > O.
In fact

C(d,) Ildll/sup{6; B s.t. lid’-dll < 6 [ e Feas(d’)and Ik(d’)- c’l _< ]},
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where c refers to the objective of d.
Relying on the relations (4.2), (4.3), and (4.4) the reader should have no difficulty verifying

that the algorithm is data efficient. Once again constraints of the form Az < b, z >_ 0 result
in a deceptively simple proof, unlike that of 4.

Acknowledgment. In closing I wish to thank a referee for the careful reading of the
manuscript and many thoughtful suggestions.
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GLOBAL CONVERGENCE OF A LONG-STEP AFFINE SCALING
ALGORITHM FOR DEGENERATE LINEAR PROGRAMMING

PROBLEMS *

TAKASHI TSUCHIYA AND MASAKAZU MURAMATSU$

Abstract. In this paper we present new global convergence results on a long-step affine scaling
algorithm obtained by means of the local Karmarkar potential functions. This development was
triggered by Dikin’s interesting result on the convergence of the dual estimates associated with a long-
step affine scaling algorithm for homogeneous LP problems with unique optimal solutions. Without
requiring any assumption on degeneracy, we show that moving a fixed proportion A up to two-thirds
of the way to the boundary at each iteration ensures convergence of the iterates to an interior point
of the optimal face as well as the dual estimates to the analytic center of the dual optimal face, where
the asymptotic reduction rate of the value of the objective function is 1- A. We also give an example
showing that this result is tight to obtain convergence of the dual estimates to the analytic center of
the dual optimal face.

Key words, linear programming, interior point methods, affine scaling algorithm, global anal-
ysis, degenerate problems

AMS subject classification. 90C05

0. Introduction. Since Karmarkar [17] proposed the projective scaling algo-
rithm for linear programming in 1984, a number of interior point algorithms have
been proposed and implemented. The affine scaling algorithm, originated by Dikin
[7] and rediscovered by several authors including Barnes [4], Vanderbei, Meketon, and
Freedman [43], Karmarkar and aamakrishnan [18], and Adler et al. [1], is one of
the most popular interior point algorithms obtained by substituting the affine scaling
transformation in place of the projective transformation in Karmarkar’s algorithm.
This simple algorithm works well in practice, and now several promising experimental
results [1], [2], [6], [12], [21], [24], [26], [30], [33] are reported. In contrast to its great
performance in practice, our knowledge on this algorithm is rather poor, particularly
under the existence of degeneracy, and there are large gaps between the theoretical
convergence results and the existing efficient implementations.

The first problem to be addressed is global convergence, which is one of the most
fundamental properties to be shown from the theoretical point of view. There have
been several milestone papers on this problem [3], [4], [8], [11], [14], [23], [34], [43], [44]
under various step-size choices and nondegeneracy assumptions; see [15] for a survey.
The analysis becomes difficult, particularly when we remove the primal nondegeneracy
condition. We introduced the local Karmarkar potential function [39] to overcome the
difficulty and then succeeded in proving the global convergence without any assump-
tion on degeneracy with the step-size 1/8 [38], where the Dikin’s displacement vector
is taken as the unit. This bound has been the best obtained so far theoretically, but it
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Science and Culture of Japan..
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is quite unsatisfactory from the viewpoint of practice. In fact, most of the efficient im-
plementations adopt the long-step step-size choice procedure proposed by Vanderbei,
Meketon, and Freedman [43], which determines the next iterate at the point obtained
by proceeding a (fixed) proportion A < 1 of the way to the boundary. Usually A is
taken to be 0.9 0.99 and this is a step-size much greater than the theoretically best
bound mentioned above.

The second problem concerns terminating the algorithm and recovering a dual
optimal solution. In contrast to the primal-dual interior point algorithms [19], [20],
[22], [27], [28], the affine scaling algorithm generates sequence only in the space of the
primal problem, and there is no dual feasible solution available during the iterations.
This is a serious disadvantage of the algorithm, since without dual feasible solutions,
it is very difficult to know whether the iterates come close to the optimal face to
stop iterations. To remedy this drawback, we compute a quantity so called the dual
estimate that satisfies only the linear equality constraints of the dual problem [4], [8],
[43], expecting its convergence to an optimal solution of the dual problem. If the
convergence is confirmed theoretically under realistic assumptions from the viewpoint
of implementation, we obtain meaningful (and hopefully, powerful) stopping criteria
by computing the duality gap. To date, convergence of the dual estimate is only
shown under nondegeneracy assumptions [4], [8], [43], or, if we do not require any
nondegeneracy assumption, for a short-step version [37], [42] or for the continuous
version [3].

Thus, while most of the implementations use the long-step version of the al-
gorithm, almost nothing is proved on this version without requiring nondegeneracy
conditions.

In this paper we establish new convergence results on the long-step version of
the affine scaling algorithm obtained by developing the approach taken in [37]-[39],
[42]. Specifically, we will show that, without requiring any nondegeneracy conditions,
any step-size choice up to A 2/3 ensures global convergence of the iterates to an
interior point of the optimal face as well as the dual estimates to the analytic center
of the dual optimal face, while the asymptotic reduction rate of the value of objective
function is 1/3 (in the case of A 2/3), not dependent on the dimension of the
problem! These results seem to make it possible to overcome the two major difficulties
in implementation discussed above by adopting the strategy choosing A 2/3 if the
reduction of the objective function becomes small.

We also give an example to demonstrate that 2/3 is the largest step-size that
ensures convergence of the dual estimate to the analytic center of the dual optimal
face as long as we move with a fixed ratio towards the boundary at each iteration;
thus showing that our bound is tight. (See also Hall and Vanderbei [16], who obtained
a stronger result on the tightness of 2/3.)

This development was triggered by the work of Dikin [10], who proved convergence
of the dual estimates when applying the algorithm to homogeneous linear programming
(LP) problems with unique optimal solutions with A 1/2. Dikin obtained this result
by analyzing the reduction of the Karmarkar potential functions associated with the
LP problems, which is similar in spirit to our approach. In fact, after releasing the
first version of this paper [41], we received the paper by Dikin [9], where he proved the
global convergence of the primal iterates and the dual estimates with A 1/2. The
proofs of Dikin and ours are similar as are the results. The major difference between
the two is the inequalities to estimate the reduction of the local Karmarkar potential
function.

Fairly speaking, the results obtained here are surprising to the authors, who did
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not expect to improve the global convergence results [38] of the affine scaling algorithm
based on the idea of the local Karmarkar potential function.

1. Problem and main result. We deal with the dual standard form linear
programming problem (D)"

(1.1)
minimize ctx, subject to x E P,

-" {x Rn[Atx- b >_ 0},
A (a, ,am) e Rnm c R" b R"

We study global and local convergence properties of the affine scaling algorithm
for the dual standard form linear programming problems [1] under the following as-
sumptions.

Assumption 1. The feasible region P has an interior point and Rank(A) n;
Assumption 2. c O.

We do not require any condition on degeneracy. Note also that the boundedness of
the optimal face is not assumed.

We use the following notations. For a vector v, we denote by Iv] the diagonal
matrix whose diagonal entries are elements of v. We denote the slack variables Atx- b
by (x), and define the "metric" matrix G(x) for the affine scaling algorithm as follows:

(1.2) G(x) A[(x)]-2At.

1 and I denote the vector of all ones and the identity matrix of proper dimension,
respectively. We use I1" (without subscript) for the 2 norm. Given a vector v of proper
dimension, we denote by a(v) the largest component of v. For the sequence {x() } (
0,1,... ;x() e R’), we abbreviate {f(x())}, {g(x())}, etc. as {f()}, {g()}, etc.
We denote by x+ the new point obtained by performing one iterative step at the
point x E Rn, and use f+,g+, etc. to denote f(x+),g(x+), etc. We do not indicate
arguments of functions when they are obvious from the context.

Let x() be an interior point of the polyhedron P. The iteration of the long-step
affine scaling algorithm for the dual standard form problem (D} is defined as follows:

(1.3) x(TM) x() )() G(x())-c
a([(’) AtG(x(’))-c)"

It is easy to check that x(TM) is also an interior point of P if 0 <_ () < 1, so
that the iteration can be continued recursively. Since G(x) is a positive definite
matrix, the algorithm is a descendant method for ctx. If a([()]-lAtG(x())-lc)
becomes zero or negative, then we stop the iteration, since this means that the prob-
lem does not have an optimal solution. To exclude this trivial case, we assume that
a([(’)]-IAtG(x())-lc) > 0 throughout the iterations.

The vector

(1.4) () [()]-eAtG(x(,))-c

satisfies the equality constraints of the dual problem of (D), and is referred to as the
"dual estimate." The dual estimate plays a role similar to the shadow price in the
simplex algorithm [32]. We expect that the quantity converges to an optimal solution
of the dual problem.
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The goal of this paper is to prove the following theorem.
THEOREM 1.1. Let (D) be a linear programming problem satisfying assumptions

1 and 2, and let (x(V)} be a sequence generated by the a.trine scaling algorithm (1.3)
applied to (D) with the step-size

(1.5) 0 < min A(’)

_
2/3,

where ,min is a positive constant. If (D) has an optimal solution, the sequence con-
verges to an interior point x* of the optimal face with IIx() -x*ll--O(ctx() -ctx*),
where the reduction rate of ctx() -ctx is 1- () asymptotically, while the dual
estimate [(v)]-2AtG(x())-ic converges to the analytic center of the optimal face of
the dual problem of (D). On the other hand, if (D) does not have an optimal solution,
the sequence is unbounded with ctx() - -cx as -- oc.

It is also worth noting that the pair (x(), ()) of the iterate and the dual estimate
converges to a pair of optimal solutions of (D} and its dual problem satisfying a
strict complementarity condition. Hence, the algorithm can be used to determine the
optimal faces of (D) and its dual problem [12], [25].

The proof of Theorem 1.1 will be given in 4, and we will show in 5 that this
bound is tight. Our result can be directly applied to show global convergence of the
affine scaling algorithm for the standard form problems as well. A brief explanation
for this is given in the Appendix of [39].

We introduce some more notations related to polyhedra, together with a few
specific concepts. See [32] for basic theory of polyhedra.

(1) We use the letters A, B,..., Z to denote the faces of :P. We do not treat the
empty set as a face. We denote by , the optimal face of (D) if it exists. For a face $"
of :P, we denote by E() the set of indices of the constraints that are always satisfied
with equality on the face. We sometimes abbreviate E(9v) as E when the face "which
associates with the notation E is obvious from the context.

(2) Given a set E C {1,...,m} of indices, we denote by AF, bE the matrix
and the vector composed of the corresponding coefficient vectors and constants. We
use F(X) for AtEx --bE Analogously, for a vector v, we denote by VF the vector
composed of the part of v associated with F.

(3) A point x on a face $" of P is referred to as an "interior point of ’ if
E(iT)(X) 0 and {i(x) > 0 (i E(.T)). The interior point of a vertex is the vertex
itself. The face -is the smallest face (as a set) among the faces that contain the point
x as their element.

(4) For an index set F, we use IFI to denote its cardinality. If F is a (proper)
subset of another index set F’, we denote F C_ (C)F’. Then we denote by F’- F the
set consisting of the indices that belong to F’ but not to F. The complement of F,
which is defined as {1,..., m} F, is written by Fc.

(5) A face - of P is referred to as a "dual degenerate face" if the objective
function ctx is constant on the face. We include vertices also as dual degenerate faces.
Dual degenerate faces are characterized as follows (Proposition 3.2 of [39])" A face "of :P is a dual degenerate face if and only if c E Im(AE().

By definition, the optimal face is a dual degenerate face. We note that a dual
degenerate face does not necessarily contain an optimal solution. Any face "of P that
is contained in a hyperplane {xlctx co} with appropriate co is a dual degenerate
face. For example, every vertex is a dual degenerate face.

We conclude this section with a basic and general result for the iteration sequence
of (1.3), obtained as a direct consequence of Lemma 5.1 of [38].
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LEMMA 1.2. Let (x() } be a sequence generated by the iteration (1.3) of the aj:fine
scaling algorithm with the step-size )() bounded below by a positive constant Amin- If
the monotone decreasing sequence (cx() } has the limiting value c, then the following
is true.

(1) The sequence (x()} converges to an interior point z* of a dual degenerate
face X with

ctx() c
(1.6)

iiE(A,)(x())ll > rl > o

and IIx(") where is a constant.
(2) The value ctx() of the objective function converges linearly to c asymp-

totically, where the reduction rate is less than (1 &min/IE(X)[/2).
Proof. We rewrite the iteration (1.3) as follows:

G(x())-lc(1.7) x(v+l) x(v) A(’)a([(,)]_iAtG(x(,))_ic x(’) #(’) G(x(V))-lc

where

(1.8) #(’)---- A(’)
a([()]-AtG(x() )- c)

We show that #() is bounded below by a positive constant. Since (r(.) <_ I1" Iio, we
have

(1.9)

This is all what we need to apply Lemma 5.1 of [38], from which the lemma immedi-
ately follows. D

Thus, under the very weak condition, the sequence generated by (1.3) converges
to an interior point of a dual degenerate face (or diverges with ctx() -c).

2. Asymptotic search direction of the aitine scaling algorithm. As we
showed above, the limiting point of the iteration sequence of (1.3) lies in the interior of
a dual degenerate face of 7). Hence in order to study properties of the limiting point,
we need to obtain an asymptotic formula of the search direction when the sequence
approaches an interior point of a dual degenerate face. In this section we derive an
expression of the search direction in the space of the slack variables which is useful for
this purpose.

Let y be a vector in Rm which satisfies the equality Ay c. The iteration (1.3)
is written as follows in the space of the slack variables (x):

(2.1)
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where

(2.2) P(x())(x())
a(P(x(’))(x(’))) P(x) [(x)]-lAtG(x)-lA[(x)]-I

and a(x) [(x)]y. We refer to A() as the displacement vector of the ane scaling
algorithm in the space of the slack variables. Note that P(x) is a projection matrix.
Multiplying both sides of (2.1) by [()]-1, we have

[(u)]-- (u+1) 1 &()
p()(()

a(P()c())"

,(v+l)This means that the value of each slack variable i at the next iteration is bounded
()below by(1 A())-i

In [39], an asymptotic formula for the affine scaling algorithm near the boundary
of feasible region is investigated intensively. From Lemmas 4.1 and 4.2 of the paper,
we obtain the following lemma. (A long and cumbersome matrix manipulation is
necessary to derive this lemma, but we think that the result is rather simple and
natural.)

LEMMA 2.1. Let be a dual degenerate face, and let y be a vector such that

Ay AE($-)yE(j: C, yEt(y:) O,

the existence of which follows from (5) of 1, and, for any x E P, let

-(z)

Then the displacement vector A() of the algorithm in the space of the slack variables
is written as follows:

(2.6)

where E E() Here () EE(E(X())) EE(E) is a projection matrix ontoEE
Im([E]-IA) with respect to the Euclidean metric satisfying

(2.7) PEEl 1,

and EEr)() QEE((x())) and Q(E)E QEcE((X())) are matrices whose norm is
bounded by IIQEE( (x))II O(llb (x)ll 2) and IIQEE( (X))II O(II E(X)II) when x
converges to an interior point of ..

Proof. The formula (2.6) follows by substituting the expressions (4.4) and (4.5) of
P(x) in Lemma 4.1 of [39] into (2.2) with F := E($), and by taking note of aE O.
We may regard the matrices PER and QFF in (4.4), (4.5) of [39] exactly as the same
matrices as those appearing in (2.6) above. It is not written explicitly in Lemma 4.1
of [39] that PEE(E) is a projection matrix onto Im([E]-IA), but we can confirm
this fact by a simple calculation from its definition.
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The order of IIQEEll and IIQEEII fonows from Lemma 4.2 of [39] using the fact
that the quantity OE appearing in Lemma 4.2 has the order of [[E[[ when x converges
to an interior point of the face . Finally, we see (2.7) easily, since we have

(:.8) 1 [E]-IE [E]-XAtEU,

choosing appropriate u and PEE(E) is a projection matrix onto Im([E]-IA).
It is important to say something about the limiting scaled search direction of the

affine scaling algorithm here. Now suppose that we have the limiting point in the
interior of the face $’. Then the lemma tells us that the E() part of the scaled search
direction [(E)]-IA(ff becomes proportional to ()EEa) asymptotically, since EE
converges to zero. What is ()()? Interestingly, this direction is identical to theEEE
scaled search direction of the affine scaling algorithm for the following homogeneous
problem:

min ytEE subject to AtEz / E 0, E >_ 0

at E (ff), which can be interpreted as a search direction of a version of Karmarkar’s
algorithm with conical formulation [5], [13], [35], [36], [45]. This is why analysis of the
projective scaling algorithm comes in the analysis of the affine scaling algorithm, and
is one of the key observations on which our analysis is based.

3. Basic lemmas. In this chapter we provide basic lemmas. In particular, the
first lemma, which is an improvement of the result obtained by Dikin [10], plays a
very important role in the proof of the global convergence of the iterates (Theorem
4.8) and the dual estimates (Theorem 4.9).

LEMMA 3.1. Let

k

(3.1) Ha(, ) k log(1 111112) E log(1 /i),
i--1

and

(3.2) Tk(, ) k II I ( )I1 - +
( X())

which are well-defined on the set

(a.a) a0 {(a, )l a e m, e R, /tl 1, XI[l[ = < 1, 0 < a(/) < 1}.

Then, Hk is bounded as follows over t0:

(3.4) Hk(, X) <_ Tk(, ).

Furthermore, if

(a.5)

file have

(a.6) H(/, ) <_ T(/, ) <_ o,
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where Tk(/, )----0 holds if and only if 1/_k.
Proof. We introduce a new variable "y - 1/k. Then we have

Putting

X
i XII{I i . X{I?II .
kX

(3.8) o

and taking note that 0 < < k in 0 (this follows from tl 1), we obtain

k

(3.9) Hk(/, )= k log(1- 0ll-yll 2) E log(1-0,7,).
i--1

Note also that

1
(3.10) a(7) a(/)

k

and

(3.il) 9’tl 0,

which follow from/tl 1. By using the well-known inequalities on the logarithmic
function

(3.12) log(1- ) <_ - (5 < 1),

k

E log(1 -(i)
i--I

i:>-() i:<-()

(3.13) > E (-i {i’2
2

{i{3
2 ) + E log(1 i)

:>-() i:<-()

> ( )+ - 2(1

2 -tl
}ICII (C e R, 0 a() < 1),( ())

we see that Hk is bounded above by

(3.14)

k

Hk(, X) k log(1 Ollll) log(1 0"7i)
i=l

<- -kl{Tll2 + 2(1 Oa(y))

( o )0llTll 2 -k + 2(1
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provided that 0a(-y) < 1 and 0ll ll 2 < . These conditions are equivalent to a() < 1
and 11112 < 1, which are always satisfied on fl0. Substituting_the definition of and
into the rightmost side of (3.14) to represent it in terms of fl and , we obtain

(3.15) Hk(/, ) _< k 1

ill - +
2(1

To see the lemma, it is enough to check that

(3.16) -k + < 0
2(1 a())

is satisfied over tl, where the equality holds only if 1/k. This can be done as
follows" , 2/(3a()) 1
(3.17) -k / < -k / < -k < 0,

2(1 a()) --- //3) /
a(/)

by using a() >_ l/k, which completes the proof. [

The function Hk was introduced independently by Dikin and by Tsuchiya and
Tanabe in the context of studying the convergence of the dual estimates in a long-step
affine scaling algorithm applied to homogeneous LP problems with unique optimal so-
lutions [10] and of analyzing the local convergence of the dual estimates in a short-step
affine scaling algorithm under the assumption of uniqueness of the optimal solution
[42], respectively.

The second lemma is used to observe asymptotic behavior of the dual estimates
in the proof of Lemma 4.7 and Theorem 4.9.

LEMMA 3.2. Let :7z be a dual degenerate face, and choose y such that

(3.18) Ay c, yEc(F) O.

If x is an interior point of P, then

(3.19) )(x) ()E, SEc) ([E(X)]-IPEE(E(X))[E(X)]yE, O)

is a solution of the equality

(3.20) A) c,

where E E(Jz).
Proof. It is enough to show AERIE C. This is equivalent to

(3.21) AE[E]-I(I- PEE)[E]Y 0,

which holds obviously because of the definition of PEE.
The third lemma is a characterization of the analytic center of the optimal face

of the dual problem of (D) used in the proof of Theorem 4.9.
LEMMA 3.3. If (D) has an optimal solution, the analytic center of the optimal

face of the dual problem to (D) is the unique solution y* of the following system of
equations:

(3.22) [yE(,)]-ll / A(8)u 0, AE(S)yE(S) C, yE(S) O,
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where ,.q is the optimal face of (D>.
Proof. Due to the strict complementarity, the optimal face of the dual problem

to <D> is written explicitly as follows:

(3.23) AE(,.q)yE(S) c, YE(5") )-- O, yEc(,.q) O.

The analytic center of (3.23) is defined as the unique optimal solution for the following
strictly convex optimization problem:

(3.24) min log yi subject to AEYE --C, y >_ O.
iEE(8)

The system of (3.22) is obtained immediately from the Karush-Kuhn-Tucker condition
for the optimal solution for this problem. [:]

4. Convergence results. Now we are ready to prove the main results. By
moving a ratio A() up to two-thirds of the way toward the boundary at uth iteration,
we will show convergence of the iterates to an interior point of the optimal face of
(D (Theorem 4.8), convergence of the dual estimates (1.4) to the analytic center of
the optimal face of the dual problem of <D> (Theorem 4.9), and asymptotic linear
convergence of the objective function, where the asymptotic reduction rate is 1 A()
(Theorem 4.10). Theorem 1.1 follows immediately from Theorems 4.8-4.10.

4.1. Outline of the proofs. Let {x() } be a sequence generated by the iteration
(1.3) of the affine scaling algorithm with step-size {A()} under the assumption of
Lemma 2.1, i.e., 0 < Zmin

_
z()

_
,max < 1 and boundedness of {ctx()}. Due to

Lemma 2.1, the sequence converges to an interior point of a dual degenerate face. We
denote by x* the limiting point and by A’ the face that contains x* as its interior point,
and denote by c the limiting value of the objective function. We use k for

The local Karmarkar potential function which was introduced in [39] and was
used to prove global convergence of a short-step version in [38] plays an important
role in the proof of the main theorems. In this subsection we briefly outline how this
function is used in the proof. The definition of the local Karmarkar potential function
associated with the dual degenerate face A’ is given by

(4.1) fx(x) IE(A)I log(ctx c) log 5(x).
iEE(d)

We observe that f,v(x) is a homogeneous function in E(X)(x). Let us take y such that

(4.2) AE(A,)YE(A, c, yEc(2) O,

the existence of which is ensured since A’ is a dual degenerate face. Since AEx* bE,
we have

ctx c c(x x*) yA(x x*)
(4.3) ’(x x* YE(AEx--bE)YEAE .
With this relation, we can rewrite f(x) as

(4.4) fx(x) [E(l log (x)(x) log,(x),



GLOBAL CONVERGENCE OF A LONG-STEP AFFINE SCALING ALGORITHM 535

thus we see that f,v(x) is a homogeneous function.
If ,is the optimal face S, the function fs is bounded below by a constant, because,

in this case, we can choose y such that YE(,S) > 0 due to strict complementarity. This
is a crucial property of the local Karmarkar potential function associated with the
optimal face, which holds if and only if A’ is the optimal face.

Now, we are ready to outline the proof of the main results. In view of Lemma
1.2 and well-known inequality between the arithmetic mean and geometric mean, this
function is bounded below by a constant, since

exp(yx(x())) (ctx(") co)IE(A’)I (ctx(,) cO) >_ (x/r]) k

holds, where /is the constant appearing in (1.6).
On the other hand, we are able to show the following claim.
CLAIM. f,’(X()) tends to mins infinit if $() 2/3 and N # 8.

Together wih (4.5), his fac immediately implies N 8, thus global convergence of
the sequence when $() 2/3 is obvious if i can be shown. To obtain his claim on

{f) }, we use the function T introduced in Lemma 3.1. Roughly speaking, he differ-
ence fx(x(+x))- fx(x()) of the potential is approximately bounded by
when is sucienfly large, where () and X() are functions of x(), and his leads
us o the following ympotic bound for he value of he potential function when
is suciently large (Lemma 4.5)"

+ (fx( 

0

where 0 and M are constants. We can show ha T((),X()) in he last sum is
smaller han a sricfly negative constan if X # 8 and $() 2/3 (Lemma 4.7), and
his proves he claim.

Thus X 8 is shown, and we move o. prove hat dual estimates converge to the
analic center of he dual optimal face and hat asymptotic convergence rate of he
objective function is given by 1 $(). As we mentioned before, fs(x()) is bounded
below by a constant. In view of (4.6), we have

(4.7) Tk(("), A(") O,

which implies, due to Lemma 3.1,

k"

Once (4.8) is obtained, convergence of the dual estimates to the analytic center of the
dual optimal face and the result on convergence rate of the objective function follows
without much difficulty. This is the outline of the proof.

We divide the proof of these results into two parts. In 4.2 we obtain preliminary
results under the sumption of Lemma 1.2, and then prove the main results adding
the condition A() 2/3 in 4.3.
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4.2. Preliminary observations. In this subsection we make preliminary ob-
servations under the assumption of Lemma 1.2, i.e., {x()} is generated under the
step-size satisfying 0 < ,min

_
()

_
max < 1 and (ctx() } is bounded below. From

property (1) of Lemma 1.2, we see that

(4.9)

where ? is a positive constant. Now, let

(4.10) c=[]y and = []Y= c

ty ctx() ca

By definition, we have/1 1, and due to (4.9),

(4.11)

Equations (4.9) and (4.11) are important relations, which will be used frequently
in the consecutive analysis. The unit displacement vector A() of the algorithm in
the slack space (cf. (2.2)) is written as

(4.12) A() [()]
p()()

a(P()())"

From Lemma 2.1, it is easy to see that P()() is written as

EE "gEE EE(4.13) p()/() )E._ (I
(P()())( Q(E")E

Since (2.7) holds, we have

(4.14) lt()() I(E) IEE’E

() ()
EE plays a very important role in the proof. In fact, we will follow the argument

outlined in 4.1 letting

(4.15) (() ()) (()R() %()/(()R()=.. ,., ... )) (c. (a.6)).

LEMMA 4.1. We have

WE EE’E

and, for sujficiently large

1 Mo(ctx() c)2 <_ fl()tp()fl()
(v)t(v) (v) <- 1 + Mo(ctx(u) -c)2,
WE EEE

where Mo is a positive constant.
B() is a projection matrix, weProof. Since ,-(()())tlEEE 1 (cf. (4.14)) and EE

have

(4.18) . ll . .
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The second inequality in (4.16) follows from (4.11) because

(.9) ()()() < I1() )

Now we prove (4.17). From (4.13) and Z(E)( 0, we see

(4.20) Z()tP()Z() ()t() (I () ()()
E EE EE] EEE

Since

fl()tp(,lfl(,) a(’)t(’) (I r)(’) (’) a(’) a(’)t$(’) r)(’) (’)
E EE "EE]" EEE 1 t-’E EE’EE EEt-’E(4.21) ()t(,)() ()t(u)() ()t()()

t-’E EEt-’E t-’E EEt-’E tE EEE

and the norm of the last term on the rightmost side is bounded by

II ()t(’)3() ()(’’E EE"EE EEE

t-’E EEt-’E

(4.22) _< II"EE]I (use the fact .(t)EE is a projection matrix.)

_< M1 [[(E) 2 (use Lemma 2.1)
<_ Mo(ctx() c)2 (use (4.9)),

where M1 > 0 is an appropriate constant, the relation (4.17) follows.
LEMMA 4.2. Wehave

(4.23)
1 ,.((’)/(E)

(4.24) ()() c)I(P()())E(X)--’EE’E < M2(ctx() 1

and, for sufficiently large t,

(4.25) 1 M3(ctx(t) c)2 _< ()()o’ EEE
<_ 1 A-M3(ctx(r’) -c)2

(4.26) II(P()())E(X)II O(ctx() c),

where M2 and M3 are positive constants.

Proof. Since (()t() 4)) we’E EE)1 1 (cf. (4.1 have

1 ,,t() (), EEE(4.27) IE(,V)I
<

The second inequality of (4.23) is immediately seen from (4.11).
The relation (4.24) is obtained as follows:

B()()

< I1,(> (use (4.13)).;EI] [IZ(") 1
(a.28)

< I1() - (useEEII IlYlI1 ))
M2(cx() -c)21. (use Lemma 2.1 and (4.9)).
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To show (4.25), it is enough to prove

(4.29) <_ M3(ctx() coo)21.

Due to (4.28), we see that the numerator of (4.29) is bounded by M2(dx(’) -coo)2.
Together with (4.27), we obtain (4.29), which implies (4.25).

Now we show (4.26). Due to (4.13), we have

r)() ()(4.30) (P(’)(’))Ec(X) E E’E(X)"

IIf(v)Since [IQ(E)E[I O([l)[I)= O(CtX() --C) by Lemma 2.1 and (4.9), and "PE(] is

bounded by a constant due to (4.9), the relation (4.26) is seen immediately.
LEMMA 4.3. If {A()} has an upper bound Amax < 1, we have

(4.31)
cx(+l) c P()/()
ctx() coo

1 A()() > 7’ > 0
a(P(’)/(’))

and

f(+l) (p()())
(4.32) 1 A(v) > 1 -/max ) 0

f(’) a(P(’)/(’))
"i

for all , where is a positive constant.
Proof. We have the first equality of (4.31) follows:

ctx(u+l) C yt(u+l)
(use (4.3))cx() c y()

yt() A()ytA(
(use (2.1))

(4.33)
Y()

1-()yt[(,)]p(.)()
(use (4.12))yt(,) a(p()())

1 A() ()tp()()
a(p(u)(.) (use (4.10)),

which proves the first equality of (4.31). The second inequality is seen follows"

(4.34)

(+i)>_  ll E<X)II (use (4.9))

> 7(1 ,max) ,,E(X)II (use the remark following (2.3))

IlYE II iiYE  , E

> ,,t ()
’ YEbE
’(c() c),

where v/’ _= r](1 Amax)/llYEll is a positive constant. Similarly, we have

(4.35)

(P()a())i
1 A(v)

a(p()a()
(p()(u))i

1 A()
a(p()(v)

> 1 A()

(use (2.3))

>_ 1 Amax.
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Thus the relation (4.32) is shown.
Now, we are ready to analyze the reduction of the local Karmarkar potential

function. From Lemma 4.3, the change in the value of the local Karmarkar potential
function at the uth iteration is written as follows:

ctx(+l) cOO
IE(X)I ctx() ca

[E(A’)I log (1- A()()
\

We recall the definition (3.1) of Hk(, ) and substitute (, ) (()() ()/EEriE

a((E (E))), then obtain
(4.37)

IE(I log (1 .(()() E log 1- )(u) EEt"E
(()()

i6E(2 (Tk EEt-’E

Making use of the similarity between the rightmost sides of (4.36) and (4.37),
below we derive an upper bound and lower bound for f(A.) written in terms of Hk for
sufficiently large u.

LEMMA 4.4. I {()} has an upper bound max < 1, We have

(4.38) 1 M4(ctx() c)2

_
and, for E E(2,

(4.39) 1 M5(ctx() c)2 _< <_ 1 + M5(ctx() c)2

if u is sujficiently large, where M4, M5 > 0 are appropriate constants.
Proof. Let

r(,) (,) f(,) fl() p()fl(,)
(4.40) A() tE EE’E

ar()()) a(P()/3())
" EEE

Then we have

1 A() ’E EE’E
.,()(’)

(4.41) EE’E 1-

1 A() (u)tP(u)(u)
A()A()

1 A() () p()/()
a(P()(’))
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Due to (4.31) and A() <_ 1, we see

A()
(4.42) A()

1 A(,)fl()tp()fl()

_
A()I,’-IA()I <_

a(P()fl()
In view of (4.41), to prove (4.38), it is enough to show

(4.43) a(’) Ma(cx() -c)2.

Due to Lemm 4.1 and 4.2, we have

EEE
(()()

(4.44) 1 M(cx() -c)2 < a. EElS < 1 + i6(cx() -c)2

for sufficiently large , where M > 0 is a constant. By multiplying this inequality by
()tP()/a(P()(’)), we have

fl(’) p() ]3(’)
(4.45) IA()l < M6(ctx() co):a(p()())
From Lemma 4.3, we have

(4.46)
ctx(+l) ca (t’)tP()()

1 () > 0,ctx() ca a(P()())
hence we obtain

fl()tp()fl() 1 1
(4.47) a(p()()
The relation (4.43) follows from (4.45) and (4.47) immediately, completing the proof
of (4.38).

The relation (4.39) follows in a similar manner, by taking note of (4.32) and the
fact that
(4.48)

E()
() (P()())E IIEwE

.(()a( (P()())

1 1 ) ()()(S() ((p(.()) +
() ()()
EE EEt-’E

a((P()/()))
() ()() [IEE EEE

a((P()/())E

(Use (4.11) and a((P()())E) >_ IEI/2 where the latter follows
from (4.23)and (4.25).)

<_ Ms(ctx(r’) c)2 (use Lemmas 4.2 and 2.1 and (4.9).)

(use (4.13).)
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where M7 and Ms are positive constants. [:]

LEMMA 4.5. If (A(v) has an upper bound )max < 1 and vo is.sufficiently large,
the value of f(x) is bounded below and above as follows for all >_ o"

(4.49)

where M9 is a positive constant that does not depend on .
(()() (v)- ,()()Proof. From Lemmas 4.3 and 4.4, we see that Hk. EEriE /0"1-’E/9E )) is

well-defined for sufficiently large . Then, by using the relations obtained by taking
logarithm of (4.38) and (4.39) to evaluate fx, we have the following estimate on (4.36):
(4.50)

Hk EEI.E {(v) f4(, Mlo(ctx(v) -c)2

o’.. EEt"E

< ,E(A,)l log (l A(v) fl(v)t
p(v) fl(v) )a(p()())

e(+) f(x)

(1G Hk EEI,E

(P()())i )1
o’(p() fl( )

,./() f4()
q- Mlo(ctx() coo)2

* EEt-’E

where M10 > 0 is an appropriate constant.
By using the inequality above, the value of the local Karmarkar potential function

at the pth iteration is bounded below and above as follows for sufficiently large w

(4.51)
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where v0 is a number such that the inequality (4.50) holds for all v _> 0, and M9 is
the positive constant such that

(4.52) Z Ml(CX(r) c00)2 -< M9,
’r--’0

the existence of which follows from the linear convergence of (cx(v) -co} shown in
Lemma 1.2.

It remains to show the last inequality in (4.49). By using Lemmas 4.3 and 4.4,
we see that

(4.53) 1
A(’) (’) (’) > o

a(Cv)()EEE

for sufficiently large . Together with (4.14), we see that

(4.54) (0") (-) A0-)/a(()()EE--E EE--E )) E D0 (cf. (3.3)),

then we can apply the inequality (3.4) of Lemma 3.1, to obtain the last inequality by
replacing Hk by Tk. [3

4.3. Main results. Now, we restrict ourselves to the case with the step-size
satisfying (1.5) and prove the main results. The results obtained in 4.2 are available in
this analysis because (1.5) is a stronger condition than the conditions on A(v) adopted
in 4.2.

LEMMA 4.6. If (1.5) is satisfied throughout the iteration, we have

(4.55) 2 ,min (v) 2
min -- ,.r{() f.4(v)

<
((v)R(v) < E(I

for sufficiently large .
Proof. The rightmost inequality is obvious by using () < 2/3, lt/S()/(E) 1EE

We show the leftmost inequality. From Lemmas 4.1 and 4.2, we see

(4.56) IIP()()II/a(P()()) - 1()()112/a(()()EE’E / ," EEmE

as v --, oo. Then it follows from Lemma 4.3 that

()(v)()
(4.57) 1- (v)"E EE’E > 0(()(,)ff EEE

i1()() ..(() (v)asymptotically. We replace A() by Amin, I(E)tP(EE(= ,, EE’E 2) by v. EE’E )2,
to obtain

(4.58) minLin [-]

LEMMA 4.7. If (1.5) is satisfied throughout the iteration, we have

(’) A(’.’)" "(’) "’(’)
EEIE /a(#.Ep# )) e 1
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(cf. Lamina 3.1) .for suj:ficiently large u, yielding

(()()(4.59) Hk O.

Furthermore, if X is not the optimal face S of < D >, then we have
(4.60)

()() A() (u)() A()
H t()()

< T t()()
<

(N. B. IE(X)I >_ 2 is always satisfied under the assumptions of the lamina as explained
in the proof.)

()()Proof. As shown in the proof of Lemma 4.5, ,(()EE,E(), A()/a(" EE’E )) 6 0
holds for sufficiently large u. Now we have the condition () _< 2/3, hence

n(,) A()
(4.61) EE’E ((u) f4( e 1,

EEE

which, together with Lemma 3.1, proves the first part of the lemma.
To see the latter part (4.60), we show that

(4.62) ()()
EEt"E 0

if X is not the optimal face
1t(’) s(’) 1 thatEEE

Once (4.62) can be shown, it follows, by using

(4.63) S(,) (,) 1112 1 ((,) (,) 1
E’E --- >-- k(k-1)’ at" EE’E >

k- l’

which, together with Lemmas 3.1 and 4.6, implies (4.60). Here we note that k is
guaranteed to be greater than 1, because a dual degenerate face can be IE(J;)I 1
only if :P S or 3) is the optimal face for the problem {max ctxl x P}, both of
which are excluded due to the assumptions.

Assume, by contradiction, X 7 S and (u)s()
EEriE > 0. Since yt() ctx() cOC >

0, we have

(4.64)

Due to Lemma 3.2, putting

(4.65) (E,Ec) ([E(u)] -l(u) [E(U)]YE, O)EE

we see A) c. Then the pair of an interior point of X and 9 satisfies a strictly
complementarity condition, yielding that X is the optimal face S of (D). But this
contradicts the assumption X S, thus, B(u)

EEriE 0 if X is not the optimal face.
This completes the proof.

Now, we are ready to see the main results.
THEOREM 4.8. Let {x(U)} be the sequence generated by the iteration (1.3) of the

affine scaling algorithm with the step-size satisfying (1.5). /f {ctx(u) } has the limiting
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value c
with I]x() x* O(ctx() c).

Proof. We already observed that the sequence converges to the interior point x*

of the dual degenerate face X with

O(ctx() -c) (cf. Lemma 1.2). Then it is remaining to show that X is the optimal
face

As was mentioned in (4.5), (1) of Lemma 1.2 and the well-known inequality
between the arithmetic mean and geometric mean imply

(4.66)
exp(f:v(x())) (ctx() c)lE(A:)l

>_

/JE(X)I
On the other hand, due to Lemma 4.7, if X S, we have

\((")(") ;(") ) -"(4.67) Hk .((.) (,)

holds for suciently large., where 5" is a positive constant. Together with Lemma
4.5, this implies

f")-(4.68)

as /-- c, and hence

(4.69) exp(f(x)) -- 0.

Comparing (4.66) and (4.69), we see that X S must hold to be consistent,
completing the proof.

THEOREM 4.9. Under the assumptions of Theorem 4.8, the sequence of the dual
estimate

(4.70) (") [(x("))]-AtG(x("))-c
converges to the analytic center of the optimal face of the dual problem of (D}.

Proof. Due to the previous theorem, we know now that the sequence {x() } con-

verges to an interior point of the optimal face S with "() O(ctx() -c)
Without loss of generality, we may assume that y defined in (4.2) satisfies

(4.71) (YE( =)YE( > 0.

The existence of such y is guaranteed by the strictly complementarity condition. Note
that ty ctx C.

The dual estimate is written as

() [(,)]-2AtG-c p(-)(-)
LytS(

(4.72) [ (.) -1
( Z( ))(
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Now we prove the theorem in two steps.
Step 1.

1
(4..73) (P()/(V))E(8)- IE(S)I

Proof of Step 1. We will show that (v)() converges to 1/[E(8)1 Due to (4.24)EEt"E
this implies convergence of (P()(U))E(S) to 1/[E(8)l. To show this, we assume that

U)o (u) does not converge to 1/[E($)[ and derive a contradiction In the case, forE/,)E
an ’ > 0, we can take a subsequence {x(U-)} of {x() } such that

IE()[

Since .:(")(")EEtE,/()/O"/(v)f(y)k‘EEt"E )) E 1 for sufficiently large u, we see, by using
Lemma 3.1, that

()() A()
Uk i- EEt"E < 0

\ EEt-’E

for sufficiently large u, and from (4.74) and Lemma 3.1,

(4.76) Hk ((E)I(E) () )
for sufficiently large T, where 5" is a positive constant. Then Lemma 4.5 yields that

f(8) -c as -- cx. However, this contradicts the fact (4.66) that the local
()Karmarkar potential function f,v is bounded below. Thus EEl’S(8) converges to

1/IE(,)l completing the proof of Step 1.
Step 2. () converges to the analytic center of the optimal face of the dual

problem.

Proof of Step 2. Due to Lemma 2.1, (4.9), (4.72), and lim_, (E > 0, we see
()that UEc(,V) converges to zero with an order of (ctx() -c)2. We analyze the behavior

~(v)of UE(8)"
() To begin with, we show that lYE($)} is bounded. Let

yt()

Because of

)t
E YE 1 and YE > 0,

{(E)} is bounded. Since

(4.79) f(8v) E log ,i()
iE()
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and f(8) is bounded above by a constant due to Lemmas 4.5 and 4.7, we have

(4.80) (E) _> 1,
where is a positive constant. Then, from (4.72) and (4.73), we see

im (Eu)- [(EU)]-- im [[[(EU)]-I((P(U))E -)[1
(4.81)

1_< lim ]l[(E’)]-lll (P(’) )E -This implies that )(E) is bounded.
Choose an accumulation point of the sequence {(EU)}, and let {(Eu) } be a

subsequence convergent to . Because of (4.81), we see {(E’) } also is convergent.
Denote by the limit. Then we obtain

[]-11 )(4.82) ]E(S)---’ 0

Now, we check that

(4.83) lim 9() lim (9(E), 9(E)) (9, 0)
7" CK:

is the unique solution of (3.22). Since

(4.84)

and, due to Lemma 3.2,

(4.85) AE [(E)]-I(E)[(Er)]yE C

holds for all T, the limit YE also satisfies AEI*E . It is also easy to see that the first
equation of (3.22) is satisfied, because

(4.86) []-11 IE(S)IS e Im(A).
Due to Lemma 3.3, these relations show that 9" is the analytic center of the dual
optimal face. Since this holds for any accumulation point of the sequence of the dual
estimates, the dual estimates converge to the analytic center of the dual optimal face,
completing the proof.

THEOREM 4.10. Under the assumptions of Theorem 4.8, the asymptotic reduction
rate of the value ctx() -ca of the objective function is 1- A().

Proof. On the way to proving Theorem 4.9, we have shown that () (v) --EE’E
l-A() is bounded below by 1/3. From these two facts, we see the lemma immediately,
by using Lemmas 4.1 and 4.2, as follows:

(4.87)

ctx(+)

lim ctx() c lim- 1 ()

lim

A()

a(P()fl())
fl()tp()()

1 A()
=I. D
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Now Theorem 1.1 easily follows by joining the contents of Theorems 4.8-4.10.

5. A small example on the convergence of the dual estimates. In this
section we show that the bound 2/3 on A() is tight to obtain the results of Theorem
1.1 as long as we take a fixed ratio A at every iteration. (We refer to this step-size
as "fixed ratio step-size.") Specifically, we give a two-dimensional example where no
fixed ratio step-size choice with () A > 2/3 can ensure convergence of the dual
estimate to the analytic center of the dual optimal face. On this point we cannot
improve Theorem 1.1 any more.

Let us consider the following LP problem:

(5.1) min (1 1)(\Xl/, subject to 0 1 Xl > 0
x2 1 1 x2 0

The optimal solution of this problem is (0, 0).
problem of

The dual problem is the feasibility

(1 0 1)( yl)y2 (1)(5.2) 0 1 1 1
0.Y

y3

The central trajectory of (5.1) is given as the line Xl X2, Xl

__
0. We will show

that the affine scaling algorithm with any fixed ratio step-size , > 2/3 can generate
iterates exactly on two different rays symmetric with respect to the central trajectory,
if we choose an initial point appropriately.

The iterative formula (1.3) of the affine scaling algorithm turns out to be

Xl

X22/Xl(5.3) xXi
We do not write down the case xl _< x2 because it is obvious from the symmetry.

Let

X2

Reflecting the homogeneous property of the problem, the dual estimate is a function
of r, which can be written as:

where

y 1 + p(r) 1
Y3 0 "-1

1 +r2

(5.6) p(r)
1 + r2 + (1 + r)2"

Note that p(r) is a strictly monotone decreasing function in [0, 1], and p(r) p(1/r).
Thus the dual estimate is identical on two rays symmetric with respect to the central
trajectory. If r 1, then we have p(r) 1/3, and with this value, (5.5) gives the
analytic center of the feasible region of (5.2).
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From (5.3), the iteration for r is written as

1 Ar(5.7) r+ r
1-A (r < ),

where r+ x+2 /X+l
Now, suppose we have r such that

1
(.s) +

r

Then due to symmetry, we have

(5.9) r++ r.

This implies that every iterate is exactly on one of the two rays determined by r and
r+ if we start with a point on the ray determined by r. Hence, we focus attention on
the solution of

1 Ar 1
(5.10) r+=r=- (r<l).1- r

Solving this equation with respect to A, we have

l+r(5.11)
1 +r +r2"

The right-hand side function is strictly monotone decreasing between 0 and 1, which
takes A 1 at r 0 and A 2/3 at r 1. Hence for each value of I > A > 2/3, there
exists a unique solution 0 < r(A) < 1 of (5.11).

Thus, given 1 > A > 2/3, if we start from a point on the ray determined by r(k),
the generated iterates exist just only on one of the two rays determined by r(A) and its
reciprocal which are symmetric with respect to the central trajectory. The sequence
has the two directions of approach to the optimal solution. Then, what is going on in
the dual estimates?

Due to the properties of the dual estimates observed in the remark following (5.6),
the dual estimate on the two rays coincides, but is not the analytic center of the dual
optimal solution.

Thus, we showed that given any k > 2/3, there is an initial point where the dual
estimate cannot converge to the analytic center of the dual optimal face.

6. Concluding remarks. Now the theory allows A() 2/3 to ensure global
convergence of the primal-dual iterates, but one may still feel that there remains a gap
to A() 0.9 0.99 that is often adopted in efficient implementations. A conventional
strategy to fill this gap is to use A() 0.99, say, as a default step-size and switch to
A() 2/3 only if the reduction of the value of the objective function becomes smaller
than a tolerance given in advance. The global convergence of the primal iterates and
the dual estimates is also ensured with this procedure as well.

In any case, we have to reduce the step-size to about 2/3 in the final stage of the
iterations, but this should not be taken badly when we recall that we can obtain the
dual optimal solution at this cost, still ensuring the asymptotic reduction rate of the
objective function 1/3. The efficiency of the strategy proposed here deserves further
investigation by extensive numerical experiments.
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We make some comments on the convergence of the dual estimates. Here we
showed by the example that the step-size 2/3 is the largest fixed ratio step-size that
ensures "convergence of the dual sequence to the analytic center of the dual optimal
face."

The example shows that the direction of approach to the optimal does not con-
verge any more if we adopt a fixed ratio greater than 2/3. On the other hand, we
know that accumulation points of the dual estimate are determined by the accumula-
tion points of the direction of approach. Hence it looks likely that "the step-size 2/3
is the longest fixed ratio step-size that ensures convergence of the sequence of the dual
estimates to one point, i.e., convergence of the pair of the primal iterates and the dual
estimates to one point on the primal-dual optimal face." In fact, this conjecture was
shown to be true by Hall and Vanderbei [16], who were inspired by the talk given by
Tsuchiya at AT&=T [40].

Notes added in revision. (1) This is a revised version of the paper [41] where
we proved global convergence of the long-step affine scaling algorithm with A < 2/3.
In the first revision in September 1992, we extended the major results to the case
of A 2/3 (we find that the proof substantially holds also in this case), and point
out that this is the largest step-size that ensures convergence of the dual estimates
to the analytic center of the dual optimal face, as long as one moves with a fixed
ratio towards the boundary. (2) Unfortunately, this paper refers some results from
[38] and [39] and is not self-contained. We recommend [29] and [31] for self-contained
elucidative papers that duplicate the results of this paper.
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ON EIGENVALUE OPTIMIZATION*

ALEXANDER SHAPIRO AND MICHAEL K. H. FAN:

Abstract. In this paper we study optimization problems involving eigenvalues of symmetric
matrices. One of the difficulties with numerical analysis of such problems is that the eigenvalues,
considered as functions of a symmetric matrix, are not differentiable at those points where they
coalesce. We present a general framework for a smooth (differentiable) approach to such problems.
It is based on the concept of transversality borrowed from differential geometry. In that framework
we discuss first- and second-order optimality conditions and rates of convergence of the corresponding
second-order algorithms. Finally we present some results on the sensitivity analysis of such problems.

Key words, nonsmooth optimization, transversality condition, first- and second-order opti-
mality conditions, Newton’s algorithm, quadratic rate of convergence, semi-infinite programming,
sensitivity analysis

AMS subject classifications. 90C30, 90C31, 90C34

1. Introduction. Optimization problems involving eigenvalues of symmetric
matrices arise in many applications (see, e.g., [3], [13], [16], [19], [23] and references
therein). One of the main difficulties with numerical analysis of such problems is
that the eigenvalues, considered as functions of a symmetric matrix, are not differen-
tiable at those points where they coalesce. This results in problems that are typically
nonsmooth (nondifferentiable). In the 1970’s and 1980’s first-order algorithms for
optimization of nonsmooth functions were developed and applied, particularly, to the
eigenvalue optimization problems (EOP) (cf. [3], [9], [16], [18]). At the same time
various attempts were made to develop a second-order theory for nonsmooth opti-
mization problems. In spite of these attempts such a general second-order theory has
not crystallized yet.

An approach to a second-order analysis of the EOP was suggested by Overton
[12] and developed further in [13] and [14] (see also [27] and [28] for an application
of Overton’s method to some particular problems). Recently Fan [6] suggested an
alternative quadratically convergent algorithm for solving the EOP.

The goal of this paper is to present a general framework for a second-order analysis
of the EOP. In the process we intend to clarify the above methods and to obtain a
number of new results. The main idea of Overton’s approach can be described as
follows. Let ,4(x) be a differentiable mapping from ]Rm into the linear space Sn of n x n
symmetric matrices and let A1 (x) _>... _> An(X be the eigenvalues of A(x) considered
as functions of x E ]Rm. Suppose that we want to minimize the largest eigenvalue
Al(x). Let x* be a minimizer of A(x) over the space ]Rm. If A(x*) has multiplicity
k > 1, then A (.) is not differentiable at the point x* and consequently the considered
optimization problem is essentially nonsmooth. In order to overcome this difficulty let
us restrict the feasible set by introducing the constraints A (x) Ak(x). Clearly
minimization of A1 (x) subject to these constraints is equivalent to minimization of the
function g(x) ki=1 Ai(x) subject to the same constraints. It can be shown that,
under certain regularity conditions, the such constructed constrained optimization
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problem is smooth in a neighborhood of the point x* and hence powerful methods of
smooth analysis can be applied.

The organization of this paper is as follows. In the next section we discuss reg-
ularity conditions that are required for the constrained optimization problem to be
smooth. The development of the section is based on the transversality theory bor-
rowed from differential geometry. In particular we give conditions under which the
restricted feasible set {x l(x)= k(x)} is a smooth manifold near the point
x*. In 3 we discuss first- and second-order optimality conditions for the constrained
and the original (unconstrained) problems. Section 4 is devoted to a discussion of
algorithms of Overton and Fan. We show that typically these algorithms converge
quadratically. Finally, in 5 we present some results on sensitivity analysis of the
EOP depending on parameters.

The described methods can be applied to a variety of optimization problems
involving eigenvalues of symmetric matrices. For example, one can consider the con-
straint n(x) >_ 0, which is equivalent to the condition that the matrix A(x) is nonneg-
ative definite. In that case the corresponding constrained problem should be defined
by imposing the additional constraints An-q+l(x) n(X), where q is the mul-
tiplicity of the smallest eigenvalue of jr(x*). In order to simplify presentation and
to demonstrate main ideas we shall not attempt to discuss the problem in its most
general form. Instead we restrict our attention to the following problem:

(1.1) min f(x)

with f(x) i--1 i(x) and 1 _< c _< n. We refer to (1.1) as the original or uncon-
strained problem.

2. Transversality condition. In this section we discuss the transversality con-
dition and its application to the EOP. For a detail study of transversality concept and
relevant references we refer to [4].

Let X and Y be two finite dimensional vector spaces, W C Y be a smooth
manifold, and f X --. Y be a smooth (differentiable) mapping.

Definition. It is said that f intersects W transversally at a point x E X (denoted
by fxW)if either (i) f(x) W or (ii) f(x) W and

Y + (dy) X.

If ffxW for all x X we say that f intersects W transversally (denoted ffW).
Here TyW denotes the tangent space to W at y W and (df)x :X --. Y is the

linear mapping corresponding to the differential of f at x, i.e., (df)X is the range
space of the Jacobian ratrix Vf(x).

The following pro. ties of transversality will be important for our analysis. It
is possible to define transversality in an equivalent form as follows. Suppose that in
a neighborhood of a point f(2) G W the manifold W is defined by equations
W {y" g(y) 0}, where g (g,... ,gk) is a smooth mapping from Y into ]Rk
such that the Jacobian matrix Vg(9) has full rank k. Then fTW if and only if
the Jacobian matrix Vh(2), of the composite mapping h gof X ]Rk, has full
rank k. Consider now the set V f-(W) which can be also written in the form
Y {x X gof(X) 0}. By the Implicit Function Theorem it immediately follows
from the above characterization of transversality that if E V and ffW, then the
set V is a smooth manifold in a neighborhood of the point 2.
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Transversality is stable under small perturbations. That is, if fTW, the set W
is closed and g X -- Y is a smooth mapping sufficiently close to f in the C norm,
then gTfW. Alternatively we can say that the set of mappings which intersects a
closed manifold W transversally, forms an open set in the normed space CI(X, Y).

Transversality is a generic property in the following sense. Let H be a finite
dinensional vector space and let F(x, ) be a C(X H, Y) mapping, i.e., F is
an infinitely differentiable mapping from X H into Y. We view H as a space of
parameters and for r E H define the mapping f(.) F(., r). Suppose that FTW.
Then it can be shown that for almost every r E H the mapping f intersects W
transversally. That is, those r H such that f does not intersect W transversally
form a set of Lebesgue measure zero in H. Note that, in particular, FW if the
Jacobian matrix VF(x, ) has full rank equal to dim Y, i.e., dF(x, r) X H Y,
is onto, for all (x, ) such that F(x, ) e W.

Finally let us note that if f(x) W and f-x W, then necessarily the following
dimensionality condition holds:

dimW + dimX > dim Y.

We apply now the transversality theory to the space Sn of symmetric matrices
and the mapping Jr" ]Rm -+ 8n. Note that the space 8n has dimension n(n + 1)/2.
By A1 (A) >_ >_ An(A) we denote the eigenvalues of a symmetric matrix A Sn.
For two integers p and q, 1 _< p + 1 < q _< n, consider

W(p, q)= {A e Sn Ap(A) > Ap+ (A) Aq(A) > Aq+I(A)}.

Recall that a symmetric matrix A 8n can be written in the form (spectral de-
composition) A EAET, where h is the diagonal matrix h diag(A (A),..., An(A))
and E is an orthogonal matrix formed from the corresponding set of orthonormal
eigenvectors. This decomposition can be viewed as the mapping (I) (A, E) --. EAET
from the manifold 7:)n O(n) into 8n. (Here T)n and O(n) denote the sets of di-
agonal and orthogonal n n matrices, respectively.) The set W(p, q) is then the
image, under the mapping (I), of the submanifold of/)n O(n) obtained by restrict-
ing the diagonal entries Ap+ Aa of the matrices A /)n. By verifying
that the Jacobian matrix of the mapping (I) restricted to this submanifold has a
constant rank it is possible to show that W(p, q) is a smooth manifold (cf. [2]). More-
over, the tangent space of W(p, q) can be derived by linearization of the mapping

That is, d (dE)AET + EA(dET) + E(dA)ET and since ETE In, we have
that (dET)E + ET(dE) O. It follows from these equations and the constraints
)p+ Aq that the tangent space to W W(p,q) at A W(p, q) is given by
the linear equations

TAW {dO e S e(dO)ej O, p+ 1 <_ < j

_
q; eTi (dO)ei 5, i= p+ 1,... ,q},

where e,..., en is a set of orthonormal eigenvectors of A corresponding to the eigen-
values AI(A),..., An(A) and ti is the additional parameter representing the common
value of eT(d)ei, i p + 1,..., q.

These arguments can be extended to the following more general situation. Con-
sider a sequence of integers p, q,.. :,pk, qk such that 1 <_ pl + 1 < ql < P2 -+- 1 <
q2 < < Pk + 1 < qk

_
n and the manifold

W(p, q,..., pa, qk) W(p, q ... W(Pk, qk).
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This manifold is formed by symmetric matrices with the corresponding eigenvalues of
multiplicities

PROPOSITION 2.1. The set W W(pl,ql,...,Pk, qk) is a smooth manifold of
dimension n(n + 1)/2 + k- k= r(r + 1)/2. The tangent space to W at A e W is

given by the linear equations

(2.2) TAW {X E Sn eT xej ----O, p + 1 <_ i < j <_ q;
eTi Xe , i p + 1,...,q; 1,...,k},

where e,..., en i8 a set of orthonormal eigenvectors corresponding to the eigenvalues
A(A),... ,An(A) and is the additional parameter representing the common value
of eT Xe, p + 1,...,q.

Denote e(z),..., en(X) a set of orthonormM eigenvectors of A(x) corresponding
to the eigenvalues A(x),..., An(X). With the mapping ,4" lRm Sn are associated
symmetric matrices A.s(x) given by the partial derivatives As(x) OA(x)/Oxs, s

1,..., m, and m-dimensional vectors

(2.3) vy(x) (e(x)TA(x)e(x),...,e(x)TA,(x)ey(x))T, i,j 1,...,n.

Transversality conditions for the mapping j[ with respect to the smooth manifold
W W(pl, ql,..., Pk, q) are given now in the following theorem.

THEOREM 2.2. ,Suppose that A(x) W. Then AxW if and only if vectors
vii(x), p + 1 <_ < j <_ q; v(x) Vqa(X), p + 1,...,q 1; 1,...,k are
linearly independent.

Proof. Consider the inner product (B, C} tr BTC, on the space of n x n square
matrices, and let : be the linear space generated by the matrices Al(x),... ,Am(x).
Note that : (d4)x]Rm. Consider the tangent space TAW at A 4(x). Recall
that this tangent space is defined by the linear equations specified in (2.2) and note
that eTXej 0 if and only if (X, ejeT} 0. Therefore the orthogonal complement
(TAW) +/- to the space TAW, with respect to the inner product (-, .}, is generated
by matrices ey(x)e(x)T, p + 1 <_ < j <_ q; e(x)ei(x)T- eq(z)e(x)T,
p / 1,...,q 1; t- 1,...,k.

It will be sufficient to show that +/- (TAW) +/- {0}. That is, if Y (TAW) +/-

and (Y, A(x)} 0, s 1,... ,m, then Y 0. These last conditions can be writ-
ten as a system of m linear equations with unknowns corresponding to the matrices

ej(x)e(x)T, p + 1 <_ i < j <_ q; e(x)e(x)T eq(X)eq(X)T, i p + 1,... ,q 1;
g 1,..., k. It remains to note that this system only has the zero solution if and
only if the linear independence condition, specified in the formulation of the theorem,
holds.

Consider now the set V V(p,q,...,p,qk) ,4-(W(pI,ql,...,p,qk)). We
have then that if x V and JtW, then V is a smooth manifold, of dimension

km + k-=r(ri + 1)/2, in a neighborhood of the point x. The tangent space to
this manifold at x V is given by the linear equations

yTvij(x) O, p + 1 < i < j <_ q;(2.4) TV {y lR"
yTv(x) 6, i p + 1,..., q; 1,..., k}.

Note that A(x) W and 4-xW imply the dimensionality condition

k

(2.5) m + k- r,(r, + 1)/2 _>. 0.
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As we mentioned earlier transversality is a generic property. Suppose, for example,
that A(x) is an affine mapping, i.e., A(x) Ao / xlA1 /... + xmAm, and consider
the (symmetric) matrix A0 as a parameter vector. That is, define F(x,A) A /
xlA /... / xmAm. Clearly .4(.) F(.,Ao). Moreover, dF(x,A) ]m x Sn "-’+ Sn
is onto and hence FTW. Consequently, for almost every A0 the affine mapping ,4
intersects W transversally and hence for almost every A0 the corresponding set V is
a smooth manifold. Note that, in particular, this implies that if the dimensionality
condition (2.5) does not hold, then for almost every A0, A(x) W(p,q,... ,Pk, qk)
for all x E ]Rm and hence the set V(pl, q,... ,Pk, qk) is empty (cf. [20]).

3. Optimality conditions. In this section we discuss first- and second-order
optimality conditions for the original problem (1.1) and the associated constrained
problem (3.2) formulated below. We assume that the mapping 4(x) is twice contin-
uously differentiable. Let x* be a minimizer of the function f(x) -iC=l i(x) over
]R" and let p and q be two integers such that 1 _< p/ 1 <_ c <_ q _< n and x* V(p, q),
where

(.) v(,q) {x ,(x) > +(x) (x) > +,(x)}.
Note that the sum of the eigenvalues q-i=p+ i(x) is a differentiable function at any
x e y(,q)(c. [a], []).

Together with (1.1) we associate the following optimization problem, referred to
as the constrained problem,

(3.2) min g(x),
xeV(p,q)

where
p q

(x) (x)+ (x).
i=1

q p
i-p+l

Let us observe that the objective functions f and g coincide on the set V(p, q) and
hence the constrained problem (3.2) is obtained by restricting the feasible set of
problem (1.1) to Y(p,q). It follows that x* is also an optimal solution of (3.2).
Moreover, the function g is differentiable in a neighborhood of the point x* and
V(p, q) is a smooth manifold near x* provided 4-x* W(p, q). Consequently we obtain
that the problem (3.2) is smooth near x* provided the transversality condition holds.

If c q, then f is differentiable at x* and standard (first-order) necessary condi-
tions are given by Vf(x*) -0. Note that in this case (cf. [10], [14], [23])

Vf(x*) vi(x*) (trAl(x*)Q(x*), trdm(x*)Q(x*))T,
i--1

where the matrix Q(x*) -=1 ei(x*)ei(x*)T is independent of a particular choice
of the orthonormal eigenvectors el (x*),..., en(x*). Suppose now that c < q and that
4.W(p, q), and hence the problem (3.2) is smoOth at x*. By the standard first-
order necessary conditions we have then that Vg(x*) is orthogonal to the tangent
space T. V(p, q). This together with the corresponding formula for the tangent space
Tx. Y(p, q) (see (2.4)) implies existence of multipliers aij such that

q--1

(.) v(*) + v(x*) + (v(x*) v(x*)) o.
p-l_i(j_q i--pW1
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Moreover,

p q

+
i=1

q p
i--pd-1

Putting these two equations together we derive existence of multipliers ij such that

p qEi=l vi(x*) + Ei,j=+ ivi(x*) O,
ij ji, i, j p + l, q, and v’q p.

Equations (3.4) represent first-order necessary conditions for the constrained
problem (3.2). Note that because of the transversality, and hence the linear inde-
pendence condition specified in Theorem 2.2, the multipliers flij satisfying (3.4) are
unique. Consider the r r, r q p, symmetric matrix B [/ij], i, j p + 1,..., q,
formed by the multipliers flij. It can be shown by methods of convex analysis (e.g.,
[14]) that if x* is a minimizer of f over IR", then in addition to (3.4) the matrix B
must satisfy the conditions B >_ 0 and B <_ Iq_p, i.e., the matrices B and Iq_p- B
must be nonnegative definite. (Note that if c-p 1, then the condition B <_ Iq_p
follows from the conditions B >_ 0 and tr B 1.) Moreover, if the mapping jt is
affine, then the function f is convex and (3.4) together with nonnegative definiteness
of B and Iq_p- B, are sufficient conditions for the optimality of x*. It is remarkable
that the only difference between the first-order optimality conditions for the problems
(1.1) and (3.2) is the additional condition of nonnegative definiteness of the matrices
B and Iq_p B.

Let us discuss now second-order optimality conditions for the optimization prob-
lems (1.1) and (3.2). Consider the n (q-p)matrix E(x)= [ep+l(X),...,eq(X)] and
the corresponding orthogonal projection matrix P(x) E(x)E(x)T onto the space
generated by the eigenvectors ep+(x),... ,eq(X). Although the individual eigenvec-
tors ei(x) can be even discontinuous, the projection matrix P(x) is a differentiable
function of x in a neighborhood of x* [10]. Let us consider the following representa-
tion of the projection matrix P(x). We construct now an n (q- p) matrix U(x)
[Upq-I(X),..., Uq(X)] such that: (i) P(x) U(x)U(x)T, (ii) U(x)TU(x) Iq_p, (iii)
U(x*) E(x*) E, (iv) U(x) is a differentiable function of x in a neighborhood of
x*, and (v) U(x*)TdU(x*) O.

In order to construct U(x) we use the least squares method. That is, consider the
following set of n (q -p) matrices

AA(x) {G P(x)C G, ate Iq_p}.

Note that the set A4(x) is formed by matrices G E(x)H, where H is a (q-p) (q-p)
orthogonal matrix. We take U(x) to be a matrix G E A4(x) which minimizes the
squared distance tr(E-G)T(E-G) from the matrix E E(x*) to A4(x). Since E e
A4(x*), it follows that U(x*) E. For a fixed x, the set A4(x) is a smooth manifold.
Moreover, since P(x) is differentiable, AA (x) depends on x in a smooth (differentiable)
way. That is, A/[ (x) can be locally defined by a system of differentiable equations which
are also differentiable functions of x. Since E fl4(x*), it is then a general result that
the least squares solution U(x) is a differentiable function of x in a neighborhood of x*.
(This general result can be derived by writing the corresponding first-order optimality
conditions and applying the Implicit Function Theorem to the obtained system of
equations, see, e.g., [1], [8], [22]. A somewhat similar result is given in Goodman
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[5, Lemma 4.1] although the construction there is different and the corresponding
smooth functions generate the tangent space to the manifold rather than the manifold
itself.) Finally, it is known that ETU(x) is a symmetric matrix [26]. It follows that
ETdU(x*) is also a symmetric matrix. Moreover, since U(x)TU(x) Iq_p, we have
U(x)TdU(x)+dU(x)TU(x) 0 and hence, by symmetry of U(x*)TdU(x*), we obtain
V(x*)TdV(x*) 0. Note that up+l(x),..., Uq(X) are not necessarily eigenvectors of
4(x) unless x e Y(p, q).

Now, in a neighborhood of x*, the manifold V(p, q) can be defined by the equations

(3.6)

where 5 is the additional parameter corresponding to the common value of Ap+l(x),.., .q(X), when x E V(p, q). Denote by 5" the common value of the eigenvalues
.p+l(x*),... ,Aq(x*) and let Ji(x*) #1P1 +’" "+#hPh be the spectral decomposition
of the matrix ,4(x*). That is, #1 > > #h are the distinct eigenvalues of
and P1,..., Ph, are the corresponding orthogonal projection matrices. In particular
for some e {1,...,h}, #l 5" p+l(x*) )q(X*), and PI P(x*). We
have that P(x) is differentiable at x x* and the corresponding differential can be
written in the form [10],

(3.7) dP E(#t #k)-l[P(d.A)Pk + Pk(dA)Pt]
k:l

(all differentials are calculated at x x*). Moreover,

P(x)ui(x) ui(x), p+ 1,..., q,

and hence

(dP)ui + P(dui) dui, -p+ 1,...,q.

Since P(x*)dU(x*) 0 and U(x*) E(x*), we obtain

du(x*) (dP)e(x*), p+ 1,...,q.

Together with (3.7) this implies that

dui(x*) Y’k#(ttt #k)-lPk(dA)ei(x*)
Ek#p+l (ti* k(X*))-lek(x*)ek(x*)T(d.,4)ei(X*),

p+ 1,...,q, and hence

(a.s) Oxs k=/zp+ ,q

where Tk eTAsek and all functions are calculated at x x*. (Note that, by the
symmetry of As, "r/s Ti.

Consider now (3.6) defining the manifold V(p, q). By differentiating these equa-
tions at x x* we obtain,

(3.9) UT(d.A)U + UT.A(dU) + (dUT).AU (dh)Iq_p,
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where all terms in (3.9) are calculated at x x*. Since U(x*) E and ETdU 0
we obtain from (3.9)

ET(dA)E (d)Iq_p.

Note that d,4(x*) Al(x*)dxl /.. "/Am(x*)dxm and hence (3.10) define the tangent
space Tx. Y(p, q) in the same way as in (2.4) with the vector y in (2.4) replaced by
dx.

Consider now the Lagrangian function

corresponding to the constrained problem (3.2). It follows from the above discussion
that the standard first-order optimality conditions, applied to this Lagrangian, lead
to the same Lagrange multipliers a* (aij) as in (3.3) and hence to the multipliers
/j given in (3.4). Furthermore, (3.8) allow us to calculate the Hessian matrix of this
Lagrangian.

Consider the matrices Ast(x) 02A(x)/OxsOxt of second-order partial deriva-
tives and the functions j(x) u(x)TA(x)uy(x), p + 1 <_ i,j <_ q. We have

0(x)
OXsOXt

02ui(x)T Oui(x)TA(x) Ou(x) Oui(X)TAt(x)uy(x)
OxOx .4(x)(x) + Ox----T- Ox + Ox-T-

Oui(x)T Ou(x) (x)TAt(x) Ouj(x)+(x)t(x)(x) + t(x) +OxOxt Oxt Ox Ox
Ou(x)Oui(X)TA(x)u(x) + ui(x)TA(x) OXt + ui(x)TAt(x)uj(x)"ox

Moreover, since ui(x)Tuj(x) is constant (zero if j and one if j), we have

o[(x)(x)l
0-"

OxOxt
o(Z)ru(x + o(x) o(x)
OxOxt Ox Oxt
Ou() o() +()o(x)

Oxt Ox OxOxt

Since A(x*)u (x*) , (x*)uj (x*) and by (3.8) it follows from the above equations
that

o,(x*) +OxOxt kTp-t.-1 q

(5* k)-I s(+

We obtain that the typical element 02L(x*, a*)/OxOxt of Hessian matrix V2xxL(x c*)
of the Lagrangian can be written as
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p q

OxOxt
i,j=p+li--1

(3.11) +EE ,i_/
i=1 ki

+ 5" Ai,j=p+ kCp+ q

All terms in the above equations are calculated at x*. Also if some of the eigenvalues
A,..., Ap have multiplicity more than one, then the third term in the right-hand side
of (3.11) should be corrected by writing in the corresponding projection matrices.

Now the standard second-order necessary conditions (e.g., [7]), for the constrained
problem (3.2), and hence for the original problem (1.1), are

(3 12) T :y VxxL(x*, a*)y 0 for all y Tx. V(p, q).

The corresponding second-order sufficient conditions for x* to be a local minimizer of
g(x) over V(p, q) are given by

(3.13) y-TV2xxL(x*, a*)y > 0 for any nonzero y e Tx. V(p, q).

We show now that under the additional conditions that the matrices B and Iq_p-
B are positive definite, conditions (3.13) are sufficient for x* to be a locally optimal
solution of the original problem (1.1).

THEOaEM 3.1. Suppose that A.W(p, q), that the first-order necessary condi-
tions (3.4) hold and that the matces B and Iq_- B are positive definite. Then
conditions (3.13) are sucient for x* to be a locally optimal solution of the problem
(1.1).

Pro@ Let us make the following observations. The function f(x) can be repre-
sented as the composition f(x) h(A(x)) of the convex function h(A) i1 Ai(A),
defined on the space S, and the smooth mapping A(x). We have

A(x + U) A(z) + VA(x)u + R(z, U).

By continuity of the second-order derivatives of A(x), the remainder term R(x, y)
in the above Taylor expansion is of order O(llyll 2) uniformly in x. That is, for any
compact, convex set S c there is a positive constant K, independent of x and y,
such that IR(x,y) glly l 2 for x and y with x,x+y e S. Since h(A) is Lipschitz
continuous on any bounded subset of Sn, we obtain

I(z + U) h(A() + VA(x)) + r(z, ),

where the term r(x, y) is of order O([y[[ 2) uniformly in x in a bounded subset of Nm.
Moreover, by convety of the function h we have that

h(A(x) + VA(z)u) h(A(z))+ h’(A(x), VA(x)u),

where h’(A, D) denotes the directional derivative of h(-) at A in the direction D. By
the chain rule for directional derivatives

h’(A(x), VA(x)y) f’(x, y),
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and hence

f(x + y) f(x) + ft (x, y)+ r(x, y).

Now since f(x) is a composition of the convex function h and the smooth mapping
,4, its directional derivatives can be written in the form

f’(x,y) max zTy,
zOf(z)

where Of(x) is a convex, compact set called the generalized gradient of f at x. It can
be shown by methods of convex analysis (cf. [14]) that

(3.15) Of(x*)= vii(x*) + 7ijvij(x*) 7ii c- P, F E Pq_p
i=1 i,j=p+l i=p+l

where F [Tij] and Pr denotes the set of r r symmetric matrices E such that E > 0
and E _< It. The first-order necessary conditions mean that 0 E Of(x*). Moreover,
since 0 < B < Iq_p, it follows from (3.4) that 0 belongs to the relative interior of the
convex set Of x* ).

Consider now the linear space generated by the convex set Of(x*). It follows
from (3.15) and (2.4) that this linear space coincides with the orthogonal complement
to the tangent space Tz. V(p, q). Consequently we obtain that it follows from the
positive definiteness of the matrices B and Iq_p B that f’(x*, y) 0 if and only
if y Tz. V(p, q) and that f’(x*, y) > al]y[[ for some a > 0 and all y orthogonal to
Tx.V(p,q).

Consider a point x in a neighborhood of x*. Let be a point in V(p, q) closest
to x, i.e., e Y(p,q) and IIx- 11 gist(x, Y(p,q)). We have then that x-
is orthogonal to the tangent space TV(p,q). Note that the generalized gradient
Of() can be written in a way similar to (3.15) with vectors vii(x*) replaced by
vij(). Consequently, by the arguments of continuity, we obtain that for all x in a
neighborhood of x*, f’(,x- ) > 1/2al[x- ’1[. Together with (3.14) this implies
that f(x) > f(5:) for all x sufficiently close to x*. It remains to note that by the
second-order conditions (3.13), f() > f(x*) for all e V(p,q) sufficiently close to
x* and hence f(x) > f(x*). [3

4. Optimization algorithms. As we mentioned earlier the main idea behind
a smooth (differentiable) approach to the optimization problem (1.1) is to restrict
the minimization procedure to the smooth manifold V(p, q) for appropriately chosen
p and q. That is, if the algorithm generates a point sufficiently close to V(p, q),
then instead of minimizing f(x) over IRm one solves the corresponding constrained
problem of minimization of g(x) subject to x V(p, q). The integers p and q can be
updated in the process of optimization. Properly constructed such an algorithm will
converge to a point x* satisfying the first-order optimality conditions (3.4). Recall
that the associated multipliers ij are unique provided the transversality condition
holds. Therefore the additional condition that the corresponding matrices B and
Iq_p B must be nonnegative definite can be easily verified.

Consider the constrained problem (3.2) and let xk be a current iteration point
sufficiently close to Y(p,q). The projection matrix P(x) E(x)E(x)T onto the
space generated by the eigenvectors ep+l(X),... ,eq(x), is then differentiable at xk

and can be locally represented in a way similar to the corresponding representation
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specified in the previous section. That is, P(x) U(k)(x)U(k)(x)T with the matrix
U(k)(x) being a differentiable function of x and such that U(k)(x)TU(k)(X) Iq_p,
U(k)(x) E(x) and U()(xk)TdU(:)(xk) 0. The manifold V(p,q) can be locally
defined by (compare with (3.6))

(4.1)

Note that differentiation (linearization) of (4.1) at x xk leads to (3.10) with all
quantities calculated at the point xk.

One step in Overton’s algorithm can be described as follows. Solve the quadratic

1 dTHCd(4.2) min dTVg(x) +
d,/

subject to Diag (0, Ap+2(xk) Ap+l (x),..., Aq(x) Ap+ (xk))
m

(4.3) +Z diE(xk)TAi(xk)E(xk) #Iq_p O.
i--1

Put xk+l xk + dk+, where dk+l is the optimal solution of the above quadratic
program. The constraints (4.3) are obtained by linearization of (4.1). Variable # E IR
corresponds to db, and the current value of 5 at xk is taken 5k Ap+l(Xk). The
matrix Hk represents the Hessian matrix of the Lagrangian calculated at xk and can
be calculated in a way similar to the calculations specified in the previous section (see
(.)).

Note that

dTVg(xk) ditr (xk)TAi(xk)(Xk) + P E(xk)TAi(xk)E(xk)
i=1

q--P

where E(x) [e (x),..., ep(x)]. For d satisfying (4.3), the second term in the right-
hand side of the above equation reduces to (c-p)#-b(x), where b(xk) tr[Diag (0,
Ap+2(xk) Ap+(xk),..., Aq(xk) Ap+(xk))]. Overton’s algorithm [12], [13] was
derived for the case c 1 (p 0), and uses # instead of dTVg(x) in (4.2). Also
additional inequality constraints are imposed in [12], [13] to prevent dk+l from having
too large norm. A linearization similar to (4.2)-(4.3) was suggested in [27] and [28].

It should be noted that (4.1), as well as their linearization (4.3), are related to
the eigenvectors of the matrix A(x) calculated at the point x xk. Therefore, al-
though the feasible set V(p, q) of the constrained problem is fixed, at least locally, the
corresponding equations (4.1) can change from iteration to iteration. In particular
this means that the current value of the Lagrange multipliers, used in the calculation
of the Hessian matrix Hk, cannot be taken from the previous iteration and should
be calculated at every iteration, say, by the least squares method (cf. [13], [28]).
Consequently Overton’s algorithm is not the standard Newton’s method. The name
"sequential Newton method" probably will be more appropriate for that type of al-
gorithm. With a little bit of additional effort it is still possible to show that typically
the method has a locally quadratic rate of convergence (cf. [15]). For a detailed
discussion of the involved regularity conditions see the Appendix.

In [6], Fan proposed a quadratically convergent algorithm for solving the con-
straint problem (3.2) (for the case c 1). His algorithm is also applicable to a more
general class of problems [11]. We now describe Fan’s algorithm in the context of

(x)

program
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solving (3.2) for general c > 1. Another treatment of (3.2) using Fan’s algorithm can
be found in [11].

Consider the function (x) defined by

q

(x)
i,j--pq-

In a sense this function measures a distance between x and the manifold V(p, q). It
is clear that in a neighborhood of x*, x e Y(p, q) if and only. if (x) 0. It can
be shown that (x) is analytic at x* [11]. Moreover, its Hessian matrix V2(x) can
be written as the sum of two symmetric matrices (I)l(x) and (I)2(x), satisfying the
following properties: (i) (I)l(X) is nonnegative definite, (ii) the range space of (I)l(X)
coincides with the linear space generated by vectors vii(x), p + 1 < < j < q;
vii(x) vqq(x), p + 1,..., q 1; and (iii) (I)2(x) 0 if (x) 0 (cf. [11]).

Let us consider matrices N(x) and R(x) formed by a set of orthonormal col-
umn vectors such that the column vectors of N(x) and R(x) generate the null and
the range space of (I)l(x), respectively. Note that it follows that R(x)TN(x) 0
and R(x)R(x)T + N(x)N(x)T Im. Moreover, because of the above property (ii),
the linear space generated by the columns of N(x) coincides with the tangent space
TV(p, q) provided x E V(p, q). Consequently the first-order necessary conditions for
the constraint problem (3.2) can be written in the form N(x*)TVg(x*) --O.

Now it is not difficult to see that V(x) 0 if x V(p, q). Moreover, using the
Taylor expansion V(x + h) q?(x)h + o(llhll), at x e Y(p,q), and the fact that
1 (x)h 0 if h gd TY(p, q), we obtain that, in a neighborhood of x*, R(x)TV(x) 0
if and only if x Y(p,q). That is, equations R(x)TV(x) 0 locally define the
manifold V(p, q). We obtain that the optimal solution x* can be derived as a solution
of the following system of m equations

(4.4) N(x)TVg(x) 0 and R(x)TV(x) O.

One step of Fan’s algorithm consists in linearization of the nonlinear system (4.4), at
a current iteration point x, and consequent updating of xk by the solution of the
obtained system of linear equations.

It can be shown that the matrices N(x) and R(x) can be chosen as smooth
functions of x and their differentials can be calculated as

dN(x) -’/’ (x)[d(I) (x)]N(x),

dR(x) N(x)N(x)T[dq?l (X)](I) (x)R(x),
where (I) (x) denotes the Moore-Penrose generalized inverse of (I) (X) [11]. By using
these formulas it is possible to construct the required linearization of the system (4.4).
Take then xk+ xk + hk+l, where hk+l is the solution of the linearized, at x xk,
system. It follows then from the standard convergence theory for the Newton method
(cf. [5]) that if we choose the starting point sufficiently close to the minimizer x*,
then the algorithm converges to x* quadratically.

5. Sensitivity analysis. Consider now a situation when the mapping jt de-
pends on a parameter vector 7r H. That is, let H be an f-dimensional linear space,
F" lRm x H Sn be a smooth mapping and let t(.) F(., 7r) be the associated
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parametric family of mappings A lRm --, Sn. We assume that for some r0 E H,
4(.) F(., r0), i.e., the considered mapping 4(x) belongs to the specified parametric
family. The optimal value and an optimal solution of the considered optimization
problem can be viewed as functions of r. Denote the corresponding optimal value
function by (r) and the optimal solution by 2(r). In this section we discuss how
(zr) and 2(r) vary under small perturbations of the parameter vector r. More specif-
ically we study differentiability properties of (r) and 2(r) at r zr0.

For the sake of simplicity let us consider the problem of minimization of the
largest eigenvalue Al(X, zr) of the matrix F(x, zr). This problem can be formulated as
the semi-infinite programming problem

(5.1) minx, A
subject to yTF(x, r)y <_ 0, y e ][:n, IlYll--" 1.

Let (x*,A*) be an optimal solution of (5.1) for zr r0. Note that x* (zr0) is
the minimizer of A1 (., r0) and A* ----/1 (X*, 71"0) )(71"0) is the corresponding optimal
value. Note also that yT.A(x*)y A*, I[Y[[ 1, if and only if y is an eigenvector of
j[(x*) corresponding to the largest eigenvalue.

First-order (Fritz John) necessary conditions for the semi-infinite program (5.1)
are well known (e.g., [17]). After some algebraic manipulations (cf. [21]) these condi-
tions can be formulated in the form of (3.4). That is, let q be the multiplicity of the
largest eigenvalue of jr(x*). Then there exist multipliers/3ij such that

q o,
El-"1 ii 1,ij ji, i,j 1,,.. q, and q

and the q q matrix B [3j] is nonnegative definite. (Note that here the condition
B <_ Iq holds automatically.) Suppose that the minimizer x* is unique. It is known
then that, under certain regularity conditions specified below, the optimal value func-
tion of the semi-infinite program (5.1) is directionally differentiable at r r0 and its
directional derivative is given by the maximum of the directional derivatives of the
Lagrangian corresponding to (5.1) at x x* and taken with respect to the associated
set of Lagrange multipliers (see [24], [25], [29] for details). The corresponding formula
for the directional derivatives can be written then in the form

P’(r0; d) max dTV,[trF(x*, ro)QBQT],
BEt3

where Q is the n q matrix formed from a set of orthonormal eigenvectors of jr(x*)
F(x*, r0) corresponding to the largest eigenvalue and B is the set of nonnegative
definite symmetric matrices satisfying optimality conditions (5.2).

In general, formula (5.3) holds under certain second-order sufficient conditions
associated with the program (5.1) (see [24]). Verification of these conditions, however,
may be not easy. Nevertheless there are two situations when applicability of formula
(5.3) can be easily verified. One such case is when the program (5.1) is convex. For
instance, let the mapping F be affine in x,

F(x, A) A + xlA1 q- -b x,Am,

and .4(.) F(.,Ao). Then the program (5.1) is convex and formula (5.3) holds,
provided the minimizer x* does exist and is unique and the Slater and the so-called
inf-compactness conditions hold; see [25] and [29]. (The inf-compactness condition is
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needed to ensure that 2(77) tends to x* as 77 770.) In that case formula (5.3) takes
the form

(5.4) ’(Ao; D) maxtrDQBQTo

Another case when (5.3) holds is if the inf-compactness condition is satisfied and
the set B is a singleton, i.e., there is a unique matrix B satisfying (5.2). Recall that
the matrix B corresponds to Lagrange multipliers of the problem (5.1) and that B
is unique if the corresponding transversality condition holds. In that case (77) is
differentiable at 770 and

V(770) V[trF(x*, 770)QBQT].

Consider now the optimal solution 2(77). Suppose that the transversality condition
holds and that 2(77) tends to x* as 77 77o. It follows then that the Lagrange multi-
pliers matrix B satisfying (5.2) is unique. Suppose further that the matrix B is non-
singular and hence is positive definite. By the arguments of continuity we obtain then
that the Lagrange multipliers matrix is nonsingular, and hence the largest eigenvalue
of F(2(77), 77) has multiplicity q, for all 77 in a neighborhood of 770. Therefore locally, for
all 77 near 770, the considered optimization problem is equivalent to the smooth prob-
lem of minimization of the function Eq i(X, 7r) subject to ,1 (x, r) ,q (x, 77)i--1

It follows by the Implicit Function Theorem that, under the corresponding second-
order sufficient conditions, 2(77) is continuously differentiable at 770 and its differential
d2(77o)() is given by the optimal solution of the quadratic program (cf. [8], [22])

mind dTHxxd + 2dTHx +TH=
(5.6) subject to -sm= deT Aej + E= teT ZteY O, 1 <_ < j <_ q,

E-- dseT Aei + E--1 teTi ztei 5, 1, "",q"

Here el,...,e is an orthonormal set of eigenvectors of the matrix A(x*), A8
OF(x*, 7ro)/Oxs, s 1,... ,m; Zt OF(x*,77o)/O77t, t 1,... ,t; 5 is an additional
parameter and Hxx, Hx, H are the respective Hessian matrices of the corre-
sponding Lagrangian calculated at (x*, 770) (see (3.11)). Moreover, under the above
conditions, the optimal value function (77) is twice continuously differentiable at 770
and (770 +) (770)--T7@(770)-- 1/2N()--O(11112), where () is the optimal value
of the program (5.6).

6. Appendix. In this Appendix we discuss regularity conditions required to en-
sure locally quadratic rate of convergence of a sequential Newton’s algorithm.

Suppose we want to minimize a smooth function f(x) over a smooth manifold
V C ]R". Suppose further that in a neighborhood of the optimal solution point x*
the manifold V can be explicitly defined by a system of smooth equations gi(x)
0, 1,...,p. In this case the standard Newton method can be applied. That is, let
xk be a current point generated by the algorithm and ak be a corresponding vector
of Lagrange multipliers. Then the next iteration is calculated as xk+ xk + dk+,
where dk+ is the optimal solution of the quadratic programming problem

min

subject to

dTVf(xk) + 1/2dTHkd
gi(xk) + dTVgi(xk) O, 1,. .,p.
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Here Hk VxxL2 (xk, ok) is the Hessian matrix of the Lagrangian

P

L(x, a) l(x) +
i--1

Note that XTM and the corresponding vector CkT1 of Lagrange multipliers can be
obtained as a solution of the linear equations

(6.2) F(z + VF(z )(z- z O,

where F(z) (VxL(x, c), g(x)), g(x) (gl(x),..., gp(X)) and z (x, a).
It is well known that if the algorithm starts at a point sufficiently close to the

optimal solution x* and the second-order sufficient optimality conditions hold at x*,
then the algorithm converges quadratically. Consider now a situation when there is
an additional complication that the system of equations which defines the manifold V
depends on the point xk and can change from iteration to iteration. That is, let Nx. be
a neighborhood of the point x* and gk), 1,... p, be smooth functions associated

with the iteration point x, such that VNN. {x e N. gk)(x) 0, 1,... ,p}.
The above Newton procedure is then modified by employing the functions gk) at kth
iteration. Let us briefly discuss the obtained algorithm, referred to as the sequential
Newton method.

Given a current iteration point xk and a corresponding Lagrange multipliers vec-
tor ak the algorithm calculates Xkd-1 Xk 2r-dk+l, where dk+l is a solution of the
quadratic programming problem (6.1) with the functions gk) replacing the corre-
sponding functions gi and Hk V2L(k)(xk, ozk) being the Hessian matrix of the
Lagrangian

P

L(k) (x, () f(x) - ig}k) (x).
i---1

Similar to (6.2), xk+ can be obtained as the first component of the solution zk+

(xk+l, ck+l) of the linear equations

(6.3) F(k)(z) / VF(k)(zk)(z z) O,

where F(k) (z) (VL(k) (x, a), g(k)(x)). Note, however, that the calculated Lagrange
multipliers vector ak+ cannot be used for the next iteration and this is because it
is calculated with respect to the functions gk), which can be changed at the next
iteration. Note also that by the first-order necessary conditions for every k there is
a Lagrange multipliers vector a*k corresponding to the optimal solution x* such that
VxL(k)(x*,oz*k) O. Consequently F(t:)(z*k) --O, where z* (x*, *k).

Consider the Taylor expansion

+ z +

of F(k) at zk with the remainder term R(k) (z). It follows from (6.3) and (6.4) that

Now let us make the following assumptions.
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(i) There is a constant y such that I111 <_ and I1*11 <_ for n k.
(ii) The remainder term R(k)(z) is of order O(llz zkll 2) uniformly in k. That is,

there is a constant K such that

(6.6) IIR()(z)ll <_ Kllz- zll 2

for all x in the neighborhood Nx*, all a such that IIll <_ and all k.
(iii) The matrices VF(k)(zk) are uniformly bounded from being singular. That

is, there is a constant c such that

(6.7)

for all w and all k.
(iv) The Lagrange multipliers vector ak is chosen in such a way that

is of order O(llx x*ll ). That is, there is a constant a such that

(6.8)

for all k.

It follows then from (6.5) that

cllzk+ z*ll KIIz* zll.
Consequently,

and hence

(6.9) IIx+ x*ll _< c-lK(1 + 2)llxk x*ll
for all xk sufficiently close to x*. We obtain that assumptions (i)-(iv) imply locally
quadratic rate of convergence of the algorithm.

A few remarks about the regularity assumptions (i)-(iv) are now in order. Since
L(k) (x, a) is linear in a, assumption (ii) is satisfied if the remainder term in the first-
order Taylor expansions of g}k) and (k)vg 1,...,p, at xk is of order O([[x-xk[[ 2)
uniformly in k. This holds, for example, if--2 (k)v gi 1,...,p, are Lipschitz continu-
ous in the neighborhood Nx. with the corresponding Lipschitz constant independent
of k. Consider now (4.1) defining, locally, the manifold V(p, q). The matrix U(k)(x)
is given there by a matrix in the manifold Jl(x), defined in (3.5), which minimizes
the distance from E(xk) to jl(x). Again, since AzI(x*) is compact, it follows from
the Implicit Function Theorem that U(k)(x) is a smooth function of x and E E(xk)
for all x and E sufficiently close to x* and A/l(x*), respectively. It follows then by
continuity arguments that the neighborhood where (4.1) define the manifold V(p, q)
can be chosen independently of k for all xk sufficiently close to x* and that, say the
third-order, derivatives of u(k)(x) are bounded in a neighborhood of x* uniformly in
k.

Assumption (iv) suggests that a should be sufficiently close to the Lagrange
multipliers vector a*k corresponding to the optimal solution point x*. It is natural
to choose ak by the least squares method, i.e., to calculate ak as the minimizer

of the function (a) IiVf(xk) .. p (k) 2avg (xk)ll Such choice of ck ensuresi--1
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assumption (iv) provided (k)
vgi i 1,... ,p, are Lipschitz continuous on Nx. with

the Lipschitz constant independent of k. Finally let us remark that

k

VF(k)(zk) GkT

where Hk V2xL(k)(xk, ak) and Gk Vg()(x). It is not difficult to show then
that the matrix TF(k)(zk) is nonsingular if Gk has full column rank p and xTHkx >
0 for any nonzero x such that GkTx O. Recall that the second-order sufficient
conditions here can be formulated in the form xTH*kx > 0 for any nonzero x such
that G*kTx 0, where H* 2 () ,k G, Vg()VzxL (x*,c )and (x*), [7].

Acknowledgments. We are indebted to the editor, Michael L. Overton, and
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REFERENCES

[1] T.J. ABATZOGLOU, The minimum norm projection on C2 manifold in Rn, Trans. Amer. Math.
Soc., 243 (1978), pp. 115-122.

[2] V.I. ARNOLD, On matrices depending on parameters, Russian Math. Surveys, 26 (1971), pp.
29-43.

[3] J. CULLUM, W.E. DONATH, AND P. WOLFE, The minimization of certain nondifferentiable sums
of eigenvalues of symmetric matrices, Math. Programming Study, 3 (1975), pp. 35-55.

[4] M. GOLUBITSKY AND V. GUILLEMIN, Stable Mappings and their Singularities, Springer-Verlag,
New York, 1973.

[5] J. GOODMAN, Newton’s method for constrained optimization, Math. Programming, 33 (1985),
pp. 162-171.

[6] M.K.H. FAN, A quadratically convergent local algorithm on minimizing the largest eigenvalue
of a symmetric matrix, Linear Algebra Appl., to appear.

[7] A.V. FIACCO AND G.P. McCORMICK, Nonlinear Programming: Sequential Unconstrained Min-
imization Techniques, Wiley, New York, 1968.

[8] A.V. FIACCO, Introduction to Sensitivity and Stability Analysis in Nonlinear Programming,
Academic Press, New York, 1983.

[9] R. FLETCHER, Semi-definite constraints in optimization, SIAM J. Control Optim., 23 (1985),
pp. 493-513.

[10] T. KATO, Perturbation Theory for Linear Operators, Springer-Verlag, New York, 1984.
[11] B. NEKOOIE AND M.K.H. FAN, A quadratically convergent local algorithm on minimizing sums

of the largest eigenvalues of a symmetric matrix, Comput. Optim. Appl., to appear.
[12] M.L. OVER.TON, On minimizing the maximum eigenvalue of a symmetric matrix, SIAM J.

Matrix Anal. Appl., 9 (1988), pp.256-268.
[13] , Large-scale optimization of eigenvalues, SIAM J. Optim., 2 (1992), pp. 88-120.
[14] M.L. OVERTON AND R.S. WOMERSLEY, Optimality conditions and duality theory for minimizing

sums of the largest eigenvalues of symmetric matrices, Math. Programming, to appear.
[15] , Second derivatives for optimizing eigenvalues of symmetric matrices, preprint, March

1993.
[16] E. POLAK AND V. WARDI, Nondifferentiable optimization algorithm for the design of control

systems subject to singular value inequalities, Automatica, 18 (1982), pp. 267-283.
[17] B.N. PSHENICHNYI, Necessary Conditions for an Extremum, Marcel Dekker, New York, 1971.
[18] n. SCHRAMM AND J. ZOWE, A version of the bundle idea for minimizing a nonsmooth function:

conceptual idea, convergence analysis, numerical results, SIAM J. Optim., 2 (1992), pp.
121-152.

[19] A. SHAPIRO, Weighted minimum trace factor analysis, Psychometrika, 46 (1982), pp. 201-213.
[20] , On the unsolvability of inverse eigenvalue problems almost everywhere, Linear Algebra

Appl., 49 (1983), pp. 27-31.
[21] , Extremal problems on the set of nonnegative definite matrices, Linear Algebra Appl.,

67 (1985), pp. 7-18.
[22] , Sensitivity analysis of nonlinear programs and diferentiability properties of metric

projections, SIAM J. Control Optim., 26 (1988), pp. 628-645.
[23] A. SHAPIRO AND J.D. BOTHA, Dual algorithms for orthogonal Procrustes rotations, SIAM J.

Matrix Anal. Appl., 9 (1988), pp. 378-383.



ON EIGENVALUE OPTIMIZATION 569

[24] A. SHAPIRO, On Lipschitzian stability of optimal solutions of parametrized semi-infinite pro-
grams, Math. Oper. Res., 19 (1994), pp. 743-752.

[25] Directional dijCferentiability of the optimal value function in convex semi-infinite pro-
gramming, Math. Programming, Series A, to appear.

[26] J.M.F. TEN BERGS, Orthogonal Procrustes rotation for two or more matrices, Psychometrika,
42 (1977), pp. 267-276.

[27] G.A. WATSON, An algorithm for optimal 12 scaling of matrices, IMA J. Numer. Anal, 11 (1991),
pp. 481-492.

[28] Algorithms for minimum trace factor analysis, SIAM J. Matrix Anal. Appl., 13 (1992),
pp. 1039-1053.

[29] P. ZENCKE AND R. HETTICH, Directional derivatives for the value-function in semi-infinte
programming, Math. Programming, 38 (1987), pp. 323-340.



SIAM J. OPTIMIZATION
Vol. 5, No. 3, pp. 570-589, August 1995

() 1995 Society for Industrial and Applied Mathematics
006

DATA PARALLEL QUADRATIC PROGRAMMING ON
BOX-CONSTRAINED PROBLEMS*

MIKE P. MCKENNAi, JILL P. MESIROVt, AND STAVROS A. ZENIOS$

Abstract. We develop designs for the data parallel solution of quadratic programming problems
subject to box constraints. In particular, we consider the class of algorithms that iterate between
projection steps that identify candidate active sets and conjugate gradient steps that explore the
working space. Using the algorithm of Mor and Toraldo [Report MCS-p77-05 89, Argonne National
Laboratory, Illinois, 1989] as a specific instance of this class of algorithms we show how its components
can be implemented efficiently on a data-parallel SIMD computer architecture. Alternative designs
are developed for both arbitrary, unstructured Hessian matrices and for structured problems.

Implementations are carried out on a Connection Machine CM-2. They are shown to be very
efficient, achieving a peak computing rate over 2 Gflops. Problems with several hundred thousand
variables are solved within one minute of solution time on the 8K CM-2. Extremely large test prob-
lems, with up to 2.89 million variables, are also solved efficiently. The data parallel implementation
outperforms a benchmark implementation of interior point algorithms on an IBM 3090-600S vector
supercomputer and a successive overrelaxation algorithm on an Intel iPSC/860 hypercube.

Key words, large-scale optimization, conjugate gradient algorithm, data structures
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(1)

1. Introduction. We consider the box-constrained quadratic program (BQP)"

1 cTMinimize q(x)=xTHx+ x

Subject to g_<x_<u.

H is an n x n positive definite matrix and c, , u are given vectors in Rn. We use l to
denote the feasible set { xlg _< x <_ u} and Vq(x) to denote the gradient vector.

Models of this form arise in several areas of application, especially in prob-
lems from optimal control and engineering. Other significant areas of application
include computerized tomography (see Herman [12]), linear least squares problems
with bounded variables, and portfolio optimization; see, e.g., the papers in Zenios [23].
References to the many diverse engineering and optimal control applications are given
in the introductions of Dembo and Tulowitzki [7] and Mor and Toraldo [19].

Several authors proposed algorithms for solving large scale instances of BQP. A
popular approach is to use an active-set algorithm that solves a sequence of subprob-
lems of the form

(2) Minimize q(xk + d)

Subject to di -0 for all E Wk.
Here Wk is the index set of active constraints, indicating the set of variables that
would remain fixed at one of their bounds. Within the active set framework the
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algorithm needs a step that identifies a candidate active set and a step that solves
(2). Bertsekas [2] and others, e.g., Dunn [10], Dembo and Tulowitzki [7], Mor and
Toraldo [18], [19], and Wright [22], proposed the use of a gradient projection method
as the active set identification step. Gradient projection identifies the optimal active
set in a finite number of steps under a nondegeneracy assumption, but it requires
exact solutions of (2). A Newton-type projection algorithm with superlinear rate of
convergence was proposed by Bertsekas and Gafni [3]. The algorithm still requires
the exact solution of an equality-constrained quadratic program at each step.

Dembo and Tulowitzki [7] developed a framework that allows inexact minimiza-
tions with increasing level of accuracy on consecutive working spaces. Fur-
thermore, this algorithm would modify the working space by several constraints at
a time. Modifications to their scheme and convergence results were established by
Wright [22] who also applied this algorithm with some success to the optimization of
augmented Lagrangians. Mor and Toraldo [19] blended gradient projection and con-
jugate gradient algorithms into a general convergent framework. Their algorithm has
finite convergence for nondegenerate problems, and permits inexact minimizations on
the working space. Mor [20] showed that this algorithm vectorizes and parallelizes
well for structured test problems.

More recent work specializes interior point algorithms for BQP. Han, Pardalos
and Ye [11] applied a primal-dual interior point algorithm to solve large instances of
BQP. They conducted extensive numerical experiments on an IBM 3090-600S vector
supercomputer. Their results indicate that the algorithm requires very few steps
and is very efficient. De Leone [15] specialized iterative successive overrelaxation
(SOR) methods for BQP, showed that they can be easily implemented on a distributed
memory hypercube, and reported encouraging results solving large scale problems on
an Intel iPSC/860. Other recent work on the solution of BQP is the paper by Conn,
Gould, and Toint [6].

In this paper we study the box-constrained quadratic program, with a view to-
wards data parallel computing on massively parallel architectures. This paradigm of
parallel computation uses a large number of processing elements potentially mil-
lions of them to operate on multiple data elements of the problem concurrently. It
has been shown that data parallel computing can be used to efficiently execute row
action algorithms for optimization problems with network structures; see Zenios [24]
and references therein.

Our objective is to develop massively parallel designs for sparse and unstructured
BQP problems. It is shown that gradient projection conjugate gradient (GPCG)
type algorithms, like those of Dembo and Tulowitzki [7] and Mor and Toraldo [19]
can be mapped very effectively onto a data parallel single instruction multiple data
(SIMD) architecture. Alternative implementations on the Connection Machine CM-2
are evaluated empirically by solving the obstacle problem of Ciarlet [5] as given in
Dembo and Tulowitzki [7]. An implementation for sparse, unstructured problems on
the CM-2 is competitive with structured implementations of interior point algorithms
on the IBM 3090-600 and parallel SOR methods on an Intel iPSC/860. Further
specializing the implementation the structure of the obstacle problem results in a code
that outperforms significantly the competing algorithms/computer architectures.

GPCG has been shown, by the earlier studies, to be a robust and efficient algo-
rithm for solving BQP. For the suite of test problems solved, Mor and Toraldo [18]
report:
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"Algorithm GPCG satisfies the convergence criteria in a few iter-
ations (less than 15), and with a reasonable number of function-
gradient evaluations and Hessian-vector products per iteration."

Our paper takes this line of research a step further by showing that GPCG can be
implemented in such a way that its steps can be executed at a very high computing
rate (measured in flops) on a massively parallel computer, and in a way that scales
very well with an increasing number of processors. The implementation compares
favorably with the two benchmark implementations of Han, Pardalos, and Ye [11]
and De Leone [15].

Section 2 gives an overview of the GPCG algorithm and develops the data par-
allel implementation. Readers may first wish to consult Appendix A that introduces
concepts of data parallel computing before they study 2.2-2.3. Results of the com-
putational experiments are reported in 3 and concluding remarks are given in 4.

2. The quadratic programming algorithm for box-constrained prob-
lems. The GPCG algorithm proceeds as follows.

Phase 1. Execute gradient projection (GP) iterates until a candidate active set
is identified or the objective value is decreased sufficiently.

Phase 2. Execute conjugate gradient (CG) iterates to solve the locally uncon-
strained problem on the candidate active set identified in Phase 1. The conjugate
gradient algorithm need only solve the unconstrained problem approximately.

During both phases of the algorithm we employ a projected linesearch. This has
the advantage that the active set can be modified by adding or dropping from it
more than one constraint at a time. Both phases of the algorithm and the projected
linesearch are described in detail below.

2.1. Gradient projection step. The GP algorithm starts from some iterate
y0 xk with the active set denoted by 4(y). We use 4(y) to denote the set of
indices of the active constraint variables, i.e.,

or i=

The algorithm then generates a sequence (yd} until a point yg is found that satisfies

(3) ,A(yJ) A(yJ-i) or

(4) q(yg-1) q(yg) <_ 7" max{q(Yd-) q(YJ) 1 <_ j <_ J}.

< 1 is a user-specified parameter that determines the termination criteria for the
gradient projection algorithm. Once the yg that satisfies (3) or (4) is identified,
the algorithm proceeds to use conjugate gradient to explore the face of the polytope
defined by ,A(yg).

The gradient projection iterative step is defined by

yd+l pn[y:i dVq(yj)],

where y0 xk. Here, pn[z] is the projection of a point z into the feasible set f:

(6) pn[z] max{f, min{u, z}}.

The max and min in the projection operator are taken elementwise. The parameter

d > 0 is computed using the linesearch of 2.3 such that q(yd+) < q(yJ).
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2.2. Conjugate gradient step. Now let xk yJ and .A(xk) be the current
active set. The following problem is locally unconstrained in the free variables, i.e.,
variables that do not belong to the set Ji(xk)

(7) Minimize (q(xk + d) d 0 for all

If jt(xk) ,4(x*), i.e., if the optimal solution to BQP lies in the same face as xa,
then the solution of (7) solves the original quadratic program.

Problem (7) can be expressed in terms of the free variables, denoted by w. We
assume that there are mk free variables; that is, the cardinality of .4(x) is (n- mk).
Let Hk be the m m matrix obtained from H by removing rows and columns
E Jt(xk) and let g (c+Hxk)k Rm be the subvector of the gradient of

q(xk) obtained by removing components of the gradient vector such that 4(xk).
(Hk and gk are called the reduced Hessian and reduced gradient, respectively.) The
unconstrained minimization problem on the current active set is

1
(8) Minimize qk w -wrHkw + g-w.

The CG algorithm starts with some w R" and generates a sequence of
conjugate vectors w, wl,.., until an iterate wJ, J <_ mk, is produced that satisfies

(9) qk(wg-) --qk(wJ) <_ e max(qk(wj-) --qk(w) 1 <_ <_ J}.

This test detects whether the CG algorithm is making sufficient progress, e is a user-
specified termination parameter. The inverse of the diagonal of the reduced Hessian,
diag(Hk), is used as a preconditioner in the CG algorithm.

Upon termination of CG we obtain the descent direction d as follows: Set di 0
if 4(xk) and set di equal to the element of wg that corresponds to the ith free
variable. The algorithm now takes a step:

(10) xk+ pn[x + oad].

Again k > 0 is a steplength parameter computed using the projected linesearch of
2.3 such that q(xk+) < q(xk).

At this point, the algorithm may execute a gradient projection step, starting
from xk+ in order to identify a new active set. However, if xk+ appears to be in
the optimal face, then we repeat the conjugate gradient algorithm starting from xk+.
That is, if the current active set is such that for all i ,4(x+) either (Vq(xk+))

_
0

and x or (Vq(xk+l))
_

0 and x u, then the conjugate gradient is restarted,
If for some with x g we have (Vq(xk+)) < 0, then the ith active variable
could be released from the lower bound. Similarly, variables that satisfy xi ui and
(Vq(xk+l)) > 0 can be released from the upper bound. In either case, the active set
would change and the algorithm continues with gradient projection steps.

2.3. Projected linesearch. Both gradient projection and the conjugate gra-
dient algorithm produce a descent direction d. In the former case d is the negative
gradient, in the latter case d is obtained from the conjugate direction that satisfies (9).
Both algorithms need to determine a step k > 0 such that Ck() q(P[xk -t-d])
is sufficiently reduced. Sufficient reduction is achieved when the Armijo condition is
satisfied, Luenberger [16], i.e.,

(11) Ck(a) _< Ck(0)+ #k(0)a, # e (0, 1/2).
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Under this condition, Ck will decrease if Ck(0) < 0.
We describe here the linesearch used to compute an acceptable ak. The devel-

opment follows Mor(! and Toraldo [19], which is based on the projected linesearch of
Dembo and Tulowitzki [7]. The linesearch algorithm will produce a sufficient decrease
in Ck(a) while identifying the set of constraints that will become active (possibly more
than one). It is possible that no constraints will become active, in which case the line-
search just takes a single Newton step.

First, we identify the minimum step length/ beyond which one or more con-
straints become active. This is computed as

(12) f-- min
xj if dj > 0, xj if dj < 0

(The stepsizes for which some constraint becomes active are termed breakpoints. is
the smallest breakpoint.)

The first trial point of the linesearch is computed as the Newton step

(13) ,(0)

It can be easily verified that 1 for the conjugate gradient step, and

-r Hkrkrk

for the projected gradient step. Here rk denotes the projection onto f of the gradient
vector Vq(xk), given by

(14)
(Vq(x))i

(rk)i min{(Vq(x))/, O}
max{ (Vq(x))i, 0}

if gi < xi < ui,

if x
if x ui.

0 </, then the linesearch algorithm terminates. The point xk + kd produces aIf k
sufficient decrease in Ca(a) and does not change the active set. Ifa >/ the sufficient
decrease condition (11) is violated, and the linesearch proceeds as follows.

THE PROJECTED LINESEARCH ALGORITHM:

WHILE -blCk(OZk > Ck(O) -{- p(/)k(0)O+1 DO"
Step I. Quadratic interpolation of Ck(0), Ck(0), Ck(ak) to get the minimizer ak as

follows:
For the conjugate gradient algorithm

where rk is the reduced gradient.
For the projected gradient algorithm

ak 2
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where rk is the projected gradient.
Step II. Backtracking:

END DO.

ak+l=max{,max{ ak min{ -}}}-, Ok,

Step I performs a standard quadratic interpolation of the piecewise quadratic function
Ck and analytically computes its minimizer a. If the minimizer is smaller than then
the new iterate (xk+c) does not change the active set, and the projection p[xk+ad]
does not effect any changes to the projected point. The quadratic interpolation is a
good estimate and the calculated minimizer is acceptable. Otherwise, the projection
operator is effective and the "effective" direction given by (pa Ix +ad] xk) may not
be sufficiently steep. If this is the case the algorithm backtracks from the estimated
step a to a smaller value towards as suggested in Step II, until an "effective"
direction is obtained which is sufficiently steep. At the extreme case the algorithm
backtracks all the way to , in which case the "effective" direction is exactly the
direction obtained by the conjugate gradient or projected gradient algorithm. In this
case only one active constraint will change. The backtracking linesearch compromises
between finding a new iterate with large decrease in the objective against finding a new
iterate that significantly changes the active set. Several investigations (Bertsekas [2],
Dembo and Tulowitzki [7], and Ahlfeld et al. [1]) have shown backtracking linesearches,
such as the one described here, to be very efficient in practice.

3. Data parallel designs. We discuss now data parallel implementations of
GPCG on the Connection Machine CM-2. Alternative designs are considered for
problems when the matrix H is (i) sparse without any detectable structure; (ii) uni-
formly sparse; and (iii) structured, as obtained from the obstacle problem. The im-
plementations are designed in such a way as to facilitate efficient utilization of the
processing elements during all phases of the algorithm: the projected linesearch, com-
putation of projected gradients, and the conjugate gradient solver. At this point,
readers who are not familiar with concepts of data level parallelism and the CM-2
should consult the Appendix for a description of virtual processing (VP) sets and
geometries.

The GP algorithm and the linesearch operate on the full problem of size n n. The
conjugate gradient (CG) algorithm operates on the reduced problem of size mk mko
In either case, we need to operate on the coefficients of the Hessian matrix (either the
full or the reduced matrix), as well as the current iterate xk.

The most general mapping of the BQP to the CM processors requires four VP
sets. One pair of VP sets holds the full matrix H of size n n and a full vector of size
n. We denote these sets by H and v, respectively. The second pair holds the reduced
matrix Hk of size mk m and a reduced vector of size mk. We denote these sets by
RH and Rv, respectively. All VP sets are set up as one-dimensional geometries.

Both H and Hk are stored row-wise. The nonzero entries of each row are stored
in a contiguous set of processors that are designated as a segment (see Appendix A)o
This representation is akin to the data structures used in the row-wise representation
of sparse matrices (Blelloch [4]). One significant difference, however, is that even if
the matrix is symmetric, we assign processors to both the upper and lower triangu-
lar elements. This representation deviates from current sparse-matrix practices, but
utilizes more efficiently the CM processors.
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FIG. 1. Data parallel representation of the sparse Hessian (H) and reduced Hes:ian (H) on
the Connection Machine.

Each processor of the H (or RH) set holds the numerical value for an element,
hij, of the corresponding matrix and its column number, j. The column number is
actually a pointer to the processor in the v (or Re) set that holds the corresponding
vj. Thus the appropriate vector elements can be fetched by the matrix elements for
the execution of matrix-vector multiplications. Figure 1 illustrates the representation
ofH, Hk, v., and Vk.

We discuss parallel implementations of the linesearch and CG algorithms. The
GP algorithm merely requires the calculation of the gradient vector and its projection
(cf. (5)). These calculations are also used in the linesearch procedure so the data
parallel implementation of GP is not treated separately.

3.1. Data parallel projected linesearch. We consider now the data parallel
implementation of the projected linesearch using the virtual processor configuration
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illustrated in Fig. 1. The implementation is efficient since at every step of the line-
search algorithm the required calculations can be performed simultaneously by mul-
tiple processors. If there are as many virtual processors as there are variables then
calculations of the algorithm, such as the projection operator or the evaluation of the
reduced gradient norm, can be executed in just one step.

Consider, for example, the projected linesearch for the GP step. Each processor
in the VP set v corresponds to a variable xj. It has local memory fields to hold the
bounds uj and gj, the search direction dj, the cost coefficients cj, and the current

k The linesearch algorithm (see 2.3) first needs to evaluate the breakpointsiterate x.
and identify the smallest one,/. The breakpoint/j for the jth variable is calculated
by the jth virtual processor of the set v. A global-min operation identifies/, which
is then broadcast to all processors. The reduced gradient rk needed to calculate

a is evaluated by applying the projection operator (14) componentwise at each
processor. A local multiplication of (rk)j by itself- executed by the jth virtual
processor for all j simultaneously and a scan-with-add calculation, computes the

The only remaining nontrivial step of the linesearch is the evaluation of
at each trial point a. The projection y p[xk + +ld] is again computed compo-
nentwise by multiple processing elements. Once the vector y is computed, we need to

lyHy + cy The inner product cy is computed on thecompute (a) q(y)
vector VP set v using local multiplication cj.yi followed by a global-add operation.
The product Hy requires the communication of data from the vector VP set v where
elements of y are stored to the matrix VP set H. Recall that each VP, hij, of H
h a pointer to the VP, vj, of v corresponding to its column number. Hence a get
operation will move vector elements yj to the VP of H corresponding to entries of
the column j of matrix H. A local multiplication followed by a segmented-spread-add
operation will then complete the matrix vector product, Hy. The results are stored in
set v for later use by the first VP in each segment of the H set which corresponds
to the diagonal entries hiy using a send operation to the jth VP of the v set. A
local multiplication with the local copy of yy followed by a global-add completes the
computation yHy.

3.2. Data parallel conjugate gradient solvers. We consider now three al-
ternative designs for implementing the conjugate gradient algorithm. This is the most
time-consuming part of GPCG. We need efficient ways to execute matrix-vector prod-
ucts Hkvk on the reduced space and inner products vk vk. The vector Vk is dense and
is treated as such in all designs. The reduced Hessian matrix Hk is sparse. The
preconditioner used in the CG algorithm is the inverse of the diagonal of the reduced
Hessian matrix, which is a dense vector. The implementation of the preconditioner
does not pose any difficulties.

The first design (3.2.1) assumes that Hk has no detectable structure and carries
out the implementation at a high level using virtual processing. The second design
(3.2.2) makes the assumption that the number of nonzero elements in Hk is uniform
across rows. The implementation is carried out using the hypercube model of the
CM-2 more explicitly. Finally (3.2.3), we exploit the special structure of the Hessian
matrix arising from the obstacle model. The algorithm is implemented using a two-
dimensional nearest-neighbor communication grid. Alternative implementations of a
CG algorithm for finite element optimization on an SIMD machine are reported in
Dixon and Ducksbury [8].
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FIG. 2. Overlay of a sparse matrix on the Connection Machine processors: each processor holds
(roughly) the same number of nonzero elements.

3.2.1. General matrices. This design uses the sparse representation for Hk
illustrated in Fig. 1. The computation of matrix-vector products of the form Hkvk
is identical to the computation of Hv as already explained in the context of the
linesearch algorithm. The only difference from the description of 3.2 is that we work
on the reduced VP sets RH and Rv, instead of the full matrix set H and the full
vector v. Inner vector products are similarly computed on the set Rv.

3.2.2. Uniformly sparse matrices. In this section we discuss our approach
for matrix-vector multiplication when the matrix is uniformly sparse (i.e., all rows
have roughly the same number of nonzero elements, as illustrated by the x in Fig.
2). For this implementation we use the slicewise programming model of the CM-2
(see Appendix A). Thus, for the purpose of this section, a "processor" is the ensemble
of a floating point unit and the 32 local memories of the corresponding single bit
processors.

Let the number of processors P 2d be an even power of two, so that v/-fi 2d/2

is an integer power of two. To store the matrix, we treat the machine’s processors as
a 2d/2 2d/2 grid, where each processor PI,J of the grid resides at location 2d/2I + J
of the hypercube. Note that, in this configuration, row I of the grid consists of the
processors 2d/2I J where J varies from 0 through 2d/2- 1; i.e., row I occupies
a d/2-dimensional subcube of the hypercube. Similarly, a column of the grid also
occupies a subcube.

Let the full vector be of size n, and let the sparse matrix hold nc nonzero coef-
ficients. If we overlay the 2d/2 2d/2 grid over the sparsity pattern (as in Fig. 2),
then each grid cell CI,j "captures" roughly nc/P coefficients. For our matrix-vector
multiplication we let each processor PI,J hold the coefficients that are captured by
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FIG. 3. Spreading a vector along the diagonal of a matrix to compute the matrix-vector product,
and spreading partial results back to the diagonal to accumulate the result vector.

cell CI,j. Let the matrix row and column coordinates vary from 0 through n- 1,
and let the processors’ grid coordinates vary from 0 through 2d/2 1. Processor PI,J
holds the nonzero coefficients mi,j such that

[n/2d/2I
_

< Wn/2d/2(I + 1) and [n/2d/2J <_ j < n/2d/2(g + 1).
Within each processor, we sort the coefficients in row major order and place them
contiguously in memory (as in Fig. 1).

The ordering of the coefficients is similar to the ordering used in the matrix-
vector multiplication procedure for unstructured matrices. Of course there is an
important difference: In the context of the uniformly sparse matrix-vector multiplier,
the ordering describes how the coefficients for cell CI,j are laid out within the memory
of a floating point node, processor PI,J. In the context of the router-based matrix-
vector multiplier for unstructured matrices, the ordering defines how the coefficients
are laid out across the bit serial processors.

A vector v involved in the uniform sparse matrix-vector multiplication is stored in
the diagonal processors of the grid (as shown in Fig. 3). Each diagonal processor Pj,g
holds the vector elements V[n/2/2g,... ,V[n/2d/21(J+l)_ 1. Let vg denote the portion
of the vector v stored in processor Pj,j.

We can now describe the matrix-vector multiplication. We want to perform the
sums

n-1

hij fori 0,.. n-V Vj 1
j=O

When the matrix is not uniformly sparse we may still be able to roughly capture nc/P coefficients
per cell CI,j and therefore process the same number of nonzero coefficients per processor PI,j. This
can be achieved by randomly permuting the rows and columns of the matrix. If dense rows/columns
are grouped together with very sparse rows/columns it is possible that each cell CI,j will hold roughly
the same number of nonzero coefficients.
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and we want each portion

vvs r//lS,..., vr,l:,ll(S+.)_.)

of the result vector to be placed in the diagonal processor Px,x.
For the first step of the matrix-vector multiplication, each diagonal processor

Pj,j broadcasts subvector vj vertically to the processors Po,J,..., P2d/2_l,j of grid
column J (as shown by the vertical arrows in Fig. 3). More precisely, the processors
of grid column J act in concert to distribute the elements of subvector vj throughout
column J. The processors of grid column J occupy a d/2-dimensional subcube of
the hypercube. Therefore the processors in column J can use a one-to-all broadcast
algorithm (Lennart and Ho [14]) to distribute the elements of subvector vj among
themselves in O([n/2d/2] + d/2) O([n/x/ + log(P)) time. After the broadcast
operation, each processor PI,j holds the coefficients and vector elements that are
required for the matrix-vector multiplication in cell Cx,j.

In the second step of the matrix-vector multiplication, each processor PI,j calcu-
lates locally the partial sums

[n/2d/27(jd-1)--I

j--n/2d/21J

for n/2d/2I,..., n/2d/2(I + 1) 1.

The partial sums are calculated in roughly O(n,::/P) time. Let v denote the resultingI,J
vector (V[n/2d/2i,j,... v[n/2/l(+l)_l,j) of partial sums in processor PI,J. In Fig.
3, each vector v of partial sums is shown as an array in cell Ct,jI,J

of the desired result vector v Observe thatNow consider an element v

n--1

v:
j=O

2d/2_ Fnl2d/2(J/l)--I

=o =[n/e/-] j

2dl2_

hijvj

The equation generalizes to portions v of the solution vector:

2d/2_I

VI,J
J--O

For the third and last step of the matrix-vector multiplication, we implement the
latter equation by summing the subvectors v’I,J across each grid row I (as shown by
the horizontal arrows in Fig. 3). Each row I places the result subvector v in processor
P,I. The processors of grid row I occupy a d/2-dimensional subcube of the hypercube.
Therefore the processors in row I can use either the algorithm described in McKenna
and Zenios [17] or a time-reversed variant of the one-to-all broadcast in Lennart and
Ho [14] to sum the subvectors in O(n/2d/2] + d/2) O([n/v/-fi] + log(P)) time.
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vf] x(i-l)+j

FIG. 4. Computing Hx for the obstacle problem.

This third step completes the matrix-vector multiplication. The three steps of the
multiplication require a total of O(nc/P+ [n/v/-fi] 4.log(P)) time. If nc t(P log(P))
(i.e., the number of coefficients is asymptotically at least a multiple of P log(P)), then
nc/P dominates log(P), so that the log(P) term drops out of the execution time. If
n/n Ft(v) (i.e., the number of coefficients per matrix row is asymptotically at
least a multiple of v/-fi), then n/P dominates [n/v/-], so that the [n/vf-fi] term also
drops out. In this final case, the execution time is O(n/P). This execution time is
optimal in that the best possible execution time for a single processor is divided over
the P parallel processors.

3.2.3. Structured matrices: the obstacle problem. We consider now the
implementation of the algorithm for the solution of the obstacle problem of Ciarlet [5].
The H matrix of the obstacle problem is obtained from a difference approximation to
the Laplacian operator of some potential function defined over a two-dimensional grid
of size n n. The grid is subdivided into pixels. Within each pixel with coordinates
(i, j) we have a uniform potential vi,j that needs to be estimated by solving the
quadratic programming problem. (Boundary conditions are specified by the presence
of obstacles on this grid, and those give rise lo the upper and lower bounds of the
quadratic program.) Using a lexicographic ordering of the variables we get the vector
x E Rn2 such that x vi,j for t (i- 1)n 4-j. The sparsity pattern of H
is determined by the interaction of xt with the elements of vector x in all adjacent
pixels. Hence, the matrix is pentadiagonal, i.e., it has five bands, with nonzero entries
along the diagonal and two nonzero entries above and two nonzero entries below the
diagonal. Further details on the structure of the matrix are given in 4.1.
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The product Hx can be computed using the two-dimensionM grid of size n n
without the need to construct the matrix H which is of dimension n2 n2 (see Fig.
4). The result vector y Hx, of dimension n2 is stored on the two-dimensional grid,
such that y is stored at (i, j), for t (i 1)n / j. The result vector is computed
by y 4vi,j vi-l,j vi+, v,j_ v,+. This is a standard calculation for
pentadiagonal matrices, referred to as a five-point stencil. The vector components
vi_,j,v+,j,vi,y_,v,j+ are fetched first to virtual processor (i,j) using nearest
neighbor grid communications (NEWS). The vector y can be computed using four
NEWS communications and five floating point operations. Special routines on the
CM-2 take advantage of the full communication bandwidth of the hypercube, and
were used to fetch the data.

The inner product of two vectors x-x can also be computed directly on the
two-dimensional grid. Each processor computes the product xx. and a global-add
operation completes the inner product.

4. Computational results. The GPCG algorithm was implemented on a Con-
nection Machine CM-2. The implementations for the unstructured sparse and uni-
formly sparse, matrices were carried out using PARIS release 6.1 in double precision
arithmetic (52 bits in the mantissa). The implementation for the structured matrices
arising from the obstacle problem was done in CM Fortran. For all three implemen-
tations the algorithm was executed using a SUN front-end and a CM-2 with 64-bit
floating point accelerators and 32K byte local memories. Operations on the CM-2
accounted for 83-98% of the total execution time. The number of processing elements
used depends on the implementation and the problem size, and is reported together
with the computational results. The various parameters of the algorithm were set as
follows:

Termination parameter for projected gradient (cf. (4)) r- 0.25.
Termination parameter for conjugate gradient (cf. (9)) 0.1.
Sufficient decrease parameter for the linesearch (cf. (11)) # 0.1.
The GPCG algorithm terminates when IIPaVq(x)II <_ 10-511Vq(x)ll, where
x is the starting point.

The performance of the GPCG algoritlam for different problem characteristics has
already been studied extensively in Mor and Toraldo [19]. In general we found that
our implementation behaves (almost) identically to the results reported in Mor and
Toraldo with respect to number of steps, number of function/gradient evaluations,
and number of matrix-vector products. Hence, we start with an implementation that
is as efficient as the algorithm implemented serially in previous studies. The objective
of our experiments is to establish the efficiency of the parallel implementations as
measured in solution times. The test problems are identical to those used in Han,
Pardalos, and Ye [11]. Hence, we can compare the massively parallel implementation
of the GPCG algorithm with the vector implementation of interior point algorithms
on the IBM 3090-600S vector supercomputer. We also compare our results with those
obtained by DeLeone [15] using parallel SOR on an Intel iPSC/860.

The first question we want to address with our experiments is the efficiency of
the alternative parallel implementations. This question is addressed by examining
two performance metrics: computing the rate with which calculations are executed,
i.e., the flop rate of the algorithm, and examining the change in solution time when
solving bigger problems on proportionally larger machines. The second question we
address is: How does the massively parallel implementation of GPCG compare with
implementations of competing algorithms on alternative parallel architectures and
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vector supercomputers? This question is addressed by comparing the solution time of
our code with benchmark results obtained using other state-of-the-art algorithms on
other computer platforms, namely, a vector supercomputer and a distributed memory
hypercube.

4.1. Test problems. We discuss now the characteristics of the test problems
used in the computational experiments. The code was tested on both randomly
generated problems, and on problems derived from an engineering application.

Dense problems. Dense test problems are generated according to the problem
generator of Mor and Toraldo [19]. The matrix H is defined by

(15) H QBQ, where Q I
2 T

VV

The elements of v E Rn are randomly generated in the interval (-1, 1). I is the
identity matrix and B is defined as diag(b), where the diagonal elements are given by

lgb= (i-1)cndn-1 i=1,2,...,n,

where the parameter cond specifies the condition number of H.
The number of active constraints at the optimal solution na(x*) is also a user-

specified parameter. We first determine the optimal active set by choosing na(x*)/n
indices of variables that belong to the optimal active constraint set jr(x*). Then
we determine the amount of degeneracy by specifying the magnitude of the gradient
vector components at the optimal solution. Let d I= 10-t(i)deg for E jr(x*), where
t(i) are randomly generated numbers in (0,1) and deg is a user-specified parameter.
The sign of the gradient vector components is also chosen at random, hence half of
the active variables have positive gradient at the solution, and the other half have
negative. We now choose the optimal point x* based on the active set .A(x*) and the
signs of d"

If jr(x*) choose x e (0, 1) and set d 0.
Else if d > 0, x 0.

*-1.Else x
Finally we set c -Hx* + d. We can easily verify that x* is the optimal solution of
a BQP with input data H and c and with the prescribed characteristics.

The dense test problems for our experiments were generated with the following
input parameters: cond 6, deg 6, na(x*) n/2. These parameters are identical
to those used by Han, Pardalos, and Ye [11] to generate test problems of size up to
800 800.

Sparse problems. Sparse test problems were generated using the obstacle problem
of Ciarlet [5] as explained by Dembo and Tulowitzki [7], and were subsequently used
by Mor and Woraldo [19] and Han, Pardalos, and Ye [11]. The matrix H for the
obstacle problem is pentadiagonal. Entries on the diagonal are equal to 4. The off-
diagonal entries h,+l,h,-l,hi,+n,h,-n are all equal to -1, and remaining entries
are 0. The linear component of the cost function c is given by

c : 1
where m v/.
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[ABLE
Performance of the data parallel implementations.

extrapolated.
The flops rates for the 64K CM-2 are

Routine

Matrix-vector
8K CM-2

(unstructured matrices) 4.94
Matrix-vector

(uniformly sparse matrices) 113.8
Matrix-vector

(structured matrices) 207
Conjugate g:dient

(unstructured matrices) 10.6
Conjugate gradient

(uniformly sparse matrices) 104.2
Conjugate gradient
(structured matrices) 264

Mflops
64K CM-2 (peak)

39.5

910.4

1656

84.8

833.6

2112

We generated two sets of obstacle problems. For Problem I we generate the bounds
as follows:

(6)
(17)

li (sin(9.2ai) sin(9.37i))3,
ui (sin(9.2ai) x sin(9.3/i))2 + 0.02.

For Problem II the bounds are generated by

(18) li (sin(3.2ai) sin(3.3")’i)),
(19) ui 2000.

The coefficients for both problems are given by

ai=(i-[i-1]xm) (1/m + 1)
m

r- l x(1/m+11, i=1,2,...,n.

i 1,2,...,n.

4.2. Efficiency of the parallel implementations. The implementation of the
algorithm for structured matrices is the most efficient, followed by the implementation
for uniformly sparse matrices and the implementation for unstructured matrices. All
implementations achieve high flops rates (up to 2.1 Gflops) in the conjugate gradient
solver. The flops rates for the matrix-vector multiplication and the conjugate gradient
solver are summarized in Table 1.

To illustrate the scalability of the algorithm we solved a series of problems of
different sizes on an 8K, 16K, and 32K CM-2 using the structured implementation.
Table 2 gives the solution time for each problem size. We also report the number of
PG steps. For the largest problem sizes, we observe that the solution time is reduced
by a factor slightly greater than three when moving from an 8K system to a 32K
system. We also note that the time per iteration increases very slowly when the size
of the problem increases proportionally to the size of the machine. For example,
the 10,000 variable problem takes 0.298 sec/iteration on the 8K CM-2. The 40,000
variable problem takes 0.320 sec/iteration on the 32K CM-2.
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TABLE 2
Scalability of the algorithm with increasing number of processing elements. Execution times are

in CM seconds.

Siz n
i0C D0 8
40C DO I0
90000 11
115600 13
160000 13
250000 13
360000 15

PG itns. 16K CM-2 32K CM-28K CM’2
2.39
5.03

11.12
15.34
22.97
39.86
59.87

2.i8
4.27
7.15

10.71
15.11
22.23
36.36

1.99
3.20
4.81
6.66
8.89

12.45
19.47

4.3. Comparisons. In this section we compare the results of the massively par-
allel implementations with the interior point algorithm implemented by Han, Pardalos,
and Ye [11] using vectorization on the IBM 3090-600S. Their implementation exploits
the structure of the quadratic matrix by using optimized subroutines from the ESSL
library. Hence, a fair comparison can be made with our implementation for structured
matrices. In the following tables we summarize the results for the sparse, unstructured
implementations as well. We also compare with the results reported by De Leone [15]
using a parallel implementation of SOR on an Intel iPSC/860 hypercube.

In order to evaluate the performance oi each implementation viz a viz the perfor-
mance of the underlying hardware platform, we cite the performance characteristics
of each machine. The. CM-2 has a cycle time of (approx.) 140 nsec. Each node
has a peak computing rate of 14 Mflops. The IBM 3090 with vector units has a
clock cycle of (approx.) 15 nsec. Each processor has a peak computing rate of 140
Mflops. A single node of the Intel iPSC/860 has a peak computing rate of 40 Mflops.
In benchmark testing, with the solution of a dense system of linear equations, the
single-processor IBM 3090 achieved a computing rate of 16 Mflops and the iPSC/860
4.5 Mflops. Both benchmark results are for the solution of 100 x 100 systems using
LINPACK, and without any tuning of the codes; Dongarra [9].

Table 3 compares results for the dense problems.2 This is an unfair exercise
for GPCG since the sparse implementations are specially tailored to sparse data.
Much better performance could be obtained by a code written specifically for dense
problems. We chose to include these timings because even the uniformly sparse code is
seen to be very efficient, especially for the larger problem size ranges. The explanation
for the high performance of the uniformly sparse code is simple: Since the matrix is
dense it has the same number of nonzero entries per row, and this number is large.
Hence, a large number of nonzero entries are packed and processed at each processor
as explained in 3.2.2. The cost of communication is amortized as evidenced from the
high flops rates reported in Table 1. The uniformly sparse code outperforms for this
class of problems the dense code of Han, Pardalos, and Ye even when the latter is
vectorized on an IBM 3090-600S vector supercomputer (Table 3).

Tables 4 and 5 compare results for the two obstacle problems when using PGCG
on the 8K CM-2, SOR on an Intel iPSC/860, and the interior point algorithm on an
IBM 3090-600S. Results are consistent across the two tables: The implementation of

2 In order to eliminate noise in our experiments due to variations in the random number genera-
tors, we generated five instances of two of the test problems. The performance of the algorithm was
identical for all five instances. No changes were observed in the number of PG steps and only minor
changes in the number of CG steps. Solution times varied by less than 1%. The results in Table 3
are for the solution of a single problem instance.
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TAILE 3
Solving dense problems with the massively parallel implementations of GPCG on the CM-2 and

the implementations of interior point algorithms on the IBM 3090-600S. Results reported in CM and
CPU seconds respectively. NEM not enough memory. NA not available.

Size n

100
200
4OO
5O0
8OO
1024

Connection Machine CM-2 (8K)
Unsruct{ired’ Uniformly

sparse
13.’88
23.71
88.48
92.62
134.35
NEM

IBM 3090
Scalar Vectorized

1.24 1.57 0.20
1.54 11.83 0.85
2.26 199.12 4.84
2.64 267.20 9.07
7.18 NA 34.46
5.69 NA NA

GPCG that exploits problem structure is one to two orders of magnitude faster than
the two competing algorithms/computer architectures. (Both competing implementa-
tions exploit the problem structure as well.) Even more interesting is the observation
that the unstructured implementation of GPCG is still faster than the algorithm on
the IBM 3090, and is slower than the algorithm on the iPSC/860 only by a factor
Of 2-5. These results support the claim that, for the solution of BQP problems, the
massively parallel Connection Machine CM-2 can outperform by a large factor the
vector supercomputer and distributed memory hypercube.

Of course it is possible that even better performance could be achieved on the
CM-2 with a data parallel implementation of either one of the other two algorithms.
However, implementations of the GPCG on either one of the other two architectures
would not be competitive with the CM-2 implementation: none of the other computer
architectures could execute the algorithm with the flop rates achieved on the CM-2
(Table 1). For example, the peak computing rate of the IBM 3090-600S structured
linear algebra subroutines is around 70 Mflops; compare this number to the 2.1 Gflops
achieved with the structured solver on the full-size CM-2. Overall we observe that,
without the results of this paper, the large scale problems would take from 15 minutes
to more than an hour to be solved, while with our approach the same problems
are solved within 1-2 minutes. We also solved a test problem with 2.89 million
variables, which is an order of magnitude larger than any other problem reported in
the literature. The solution time for this problem was under 10 minutes on the 32K
CM-2.

The benchmark results reported in Tables 4 and 5 are meant to be indicative
of the size of the problems one can solve usng alternative combinations of algo-
rithms/parallel architectures. Such benchmarks provide one performance metric to
guide users in selecting an algorithm or a computer architecture for a specific appli-
cation.

5. Conclusions. We have reported on alternative approaches for the implemen-
tation of a GPCG algorithm for BQP on data-level parallel computers. The imple-
mentations were shown to be very competitive with state-of-the-art implementations
of interior point methods on vector supercomputers and SOR methods on distributed
memory hypercubes. An implementation of the algorithm that takes advantage of the
structure of the obstacle test problems achieves computing rates of 2.1 Gflops and is
substantially more efficient than competing methodologies. It is also very interesting
to note that even the implementation for sparse but unstructured problems remains
quite competitive.
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TABLE 4
Solving the obstacle Problem with the massively parallel implementations of GPCG on the

CM-2, with the parallel SOR of De Leone on the Intel iPSC/860 and the vector implementation of
interior point algorithms of Han, Pardalos, and Ye on the IBM 3090-600S. Results reported in CM
and CPU seconds, respectively. Solved on 32K CM-2. NEM not enough memory. NA not
available.

Size n

10000
40000
90000
115600
160000
250000
360000
2890000

Connection Machine CM-2 (8K)
Unstructured Unif. sparse’ ’Structured

12.76
68.36

286.63
377.03
490.20
NEM
NEM
NEM

15.82
107.09
NEM
NEM
NEM
NEM
NEM
NEM

2.39
5.03

11.12
15.34
22.97
39.86
59.87

*482.00

Intel iPSC

10.5
49.1
112.8
156.7
245.9
518.9

1047.6
NA

IBM 3090

16.3
131.1
437.6
700.3

1035.8
2110.5
4090.3
NA

TABLE 5
Solving the obstacle Problem II with the massively parallel implementations of GPCG on the

CM-2, with the parallel SOR of De Leone on the Intel iPSC/860 and the vector implementation of
interior point algorithms of Han, Pardalos, and Ye on the IBM 3090-600S. Results reported in CM
and CPU seconds respectively. NEM not enough memory.

Size n Connection Machine CM-2 (8K) Intel IBM 3090
Unstructured unif. sparse Structured

10000 29.34
40000 157.67
90000 525.51
115600 1534.06
160000 1082.26
250000 NEM
360000 NEM

36.69
223.51
NEM
NEM
NEM
NEM
NEM

3.62
8.72
19.27
72.86
40.31
73.05

110.55

5.9
53.4

130.8
201.3
394.9
911.8
1873.4

25.4
203.9
699.9
1018.7
1534.7
3141.9
5312.4

Appendix A. The Connection Machine environment. We briefly intro-
duce the characteristics of the Connection Machine CM-2 (Hillis [13]) that are rele-
vant to our parallel implementations. See also [21]. The CM-2 is a fine-grain SIMD
(i.e., single instruction stream, multiple data stream) system. Its basic hardware com-
ponent is an integrated circuit with sixteen processing elements (PEs) and a router
that handles general communication. A fully configured CM has 4,096 chips for a to-
tal of 65,536 PEs. The 4,096 chips are interconnected as a 12-dimensional hypercube.
Each processor has 32K bytes of local memory, and for each cluster of 32 PEs a float-
ing point accelerator handles floating point arithmetic. Thus, a CM-2 with P 2d

processors can be viewed as a d- 5 dimensional hypercube with 2d-5 floating point
processors each with correspondingly larger local memories. This is often referred to
as the slicewise version of the machine, since the data is stored in slices across the
associated 32 local memories.

The CM-2 provides the mechanism of virtual processors VPs that allows one
PE to operate in a serial fashion on multiple copies of data. VPs are specified by
segmenting the local memory of each PE and allowing physical processors to operate
serially and in lock step fashion on these segments. The number of segments is called
the VP ratio (i.e., ratio of virtual to physical PEs). Looping by the PE over all the
memory segments is executed in linear time. The set of virtual processors associated
with each element of a data set is called a VP set.

The CM-2 supports two addressing mechanisms for communication. The send ad-
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dress is used for general purpose communications via the routers. The NEWS address
describes the position of a VP in an n-dimensional grid that optimizes communication
performance. The send address indicates the location of the PE (hypercube address)
that supports a specific VP and the relative address of the VP in the VP set that is
currently active. The NEWS address is an n-tuple of coordinates that specifies the
relative position of a VP in an n-dimensional Cartesian-grid geometry. A geometry
is an abstract description of such an n-dimensional grid. Once a geometry is associ-
ated with the currently active VP set, a relative addressing mechanism is established
among the processors in the VP set. Each processor has a relative position in the
n-dimensional geometry and NEWS allows the communication across the north, east,
west, and south neighbors of each processor, and enables the execution of operatior/s
along the axes of the geometry. Such operations are efficient since the n-dimensional
geometry can be mapped onto the underlying hypercube in such a way that adjacent
VPs are mapped onto vertices of the hypercube connected with a direct link. Parallel
primitives can be invoked to execute operations along some axis of the geometry (us-
ing NEWS addresses), operate on an individual processor using send addresses, or to
translate NEWS to send addresses.

Parallel primitives that are relevant to our implementation are the scans and
spreads of Blelloch [4]. The Q-scan primitive, for an associative, binary operator (R),
takes a sequence {x0, xl,..., xn} and produces another sequence {Y0, Yl,..., Y,} such
that y x0 (R) x (R).-. (R) x. For example, add-scan takes as an argument a parallel
variable (i.e., a variable with its ith element residing in a memory field of the ith VP)
and returns at VP the value of the parallel variable summed over j 0,..., i. A scan
can be applied only to preceding processors (e.g., sum over j 0,..., 1) or it can
be performed in reverse. The (R)-spread primitive, for an associative, binary operator
(R), takes a sequence {xo, x,... ,x} and produces another sequence {Y0, Yl,..., yn}
such that yi x0 (R) x (R)..- (R) xn. For example, add-spread takes as an argument a
parallel variable residing, in the memories of n active data processors and returns at
VP the value of the parallel variable summed over j 0,..., n. A variation of a
scan primitive, denoted as segmented-Q-scan, allows its operation within segments of
a parallel variable. It takes as arguments a parallel variable and a set of segment bits
that specify a partitioning of the VP set into contiguous segments.
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Abstract. We analyze sequential quadratic programming (SQP) methods to solve nonlinear
constrained optimization problems that are more flexible in their definition than standard SQP
methods. The type of flexibility introduced is motivated by the necessity to deviate from the standard
approach when solving large problems. Specifically we no longer require a minimizer of the QP
subproblem to be determined or particular Lagrange multiplier estimates to be used. Our main focus
is on an SQP algorithm that uses a particular augmented Lagrangian merit function. New results
are derived for this algorithm under weaker conditions than previously assumed; in particular, it is
not assumed that the iterates lie on a compact set.

Key words, nonlinearly constrained minimization, sequential quadratic programming, quasi-
Newton method, large-scale optimization
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1. Introduction. The problem of interest is the following:

NP minimize F(x)
xE
s.t. c(x) >_ O,

where F n _+ and c n _+ m. Since we shall not assume that second
derivatives are known, computing x*, a point satisfying the first-order Karush-Kuhn-
Tucker (KKT) conditions for NP is the best that can be achieved. Such points are
feasible and satisfy the following conditions"

(I.i) VF(x*) Vc(x*)TA*, ,)icj(x*) 0 j 1,...,m

for some nonnegative multiplier vector A* E m. Whenever the term "KKT point"
is used in the following sections, it will mean a point satisfying the first-order KKT
conditions for NP. Despite this theoretical limitation, we prefer some KKT points to
others to try and satisfy our real purpose of finding a minimizer. For example, if the
initial estimate is feasible we do not wish to converge to a nearby KKT point if at
that point the objective function is higher.

We use the term stationary point to denote a point that is feasible and satisfies
(1.1) for some multiplier vector A E m that is not necessarily nonnegative.

Typically SQP algorithms generate a sequence of points {xk} converging to a
solution, by solving at each point, xk, a quadratic program (QP) of the form
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QP minimize
pE
Soto

VF(xk)Tp + 1/2pTHkp
C(Xk) + VC(Xk)p >_ O,

for some positive definite matrix Hk. Let Pk (referred to as the search direction)
denote the unique solution to QP. We define Xk+l =-- xk / OkPk, where the steplength
ak is chosen to achieve a reduction in a merit function.

SQP algorithms are viewed by many as the best approach to the solution of NP
when n is small < 200 ). As the size of the problem grows, usually so does the relative
importance of the effort to solve QP when compared to the total effort. Indeed, for
many large problems the effort to solve QP dominates the total effort.

When the minimizer of QP is used to define the search direction, it is not necessary
in any theoretical discussion of an SQP algorithm to define how the QP subproblem
is solved. Most implementations of SQP methods currently available use an active-
set method to solve the QP subproblem. For a comprehensive survey of active-set
methods see [18], [13], and [17]. The potential number of iterations to solve a QP using
an active-set method grows exponentially with n. In practice the number of iterations
grows much more slowly than exponential (if this was not the case active-set methods
would be hopelessly inefficient). Nonetheless, the number of iterations required to
solve a large QP is usually large. In any implementation of an SQP method it is
necessary to limit the number of iterations allowed to solve a given QP subproblem.
If the QP solution process is terminated prematurely the SQP algorithm may break
down. It is in part for this reason that the development of SQP methods for large-
scale problems has been inhibited. Even for small problems there are occasions when
the number of QP iterations is excessive. Since the definition of "small" continues to
increase as computers become more powerful we can expect the cost of solving the
subproblems to grow in importance.

In the algorithms presented here we have endeavored to improve the efficiency
of SQP methods by circumventing the need to determine the minimizer of QP. We
show that a suitable search direction may be computed from information available at
any stationary point of QP. Stationary points occur as iterates within most active-set
methods to solve QP and for such methods the number of iterations to determine a
stationary point increases only linearly with the size of the problem. Consequently,
the search direction may be found by applying an active-set method to QP and ter-
minating the procedure early.

It may be thought that by expending much less effort to compute the search
direction, the number of iterations for the outer algorithm may increase. However,
it has been observed that large numbers of QP iterations are required only when xk
is a poor approximation to x*, that is, when the QP subproblem does not model
the nonlinear problem well. We hypothesize that a search direction based on the
minimizer of such subproblems is little better than using information at a stationary
point. Our preliminary results reported in 6 support this hypothesis.

Not solving the QP subproblem also implies that we do not know the QP mul-
tipliers, which are often used to estimate the multipliers of NP. In general, SQP
methods usually use some specific estimate of the NP multipliers in the definition
of the method and hence in the proof of convergence. When solving large problems
specific definitions of multiplier estimates are not always computationally attractive.
In our analysis we allow for flexibility in how multipliers are defined by requiring only
that the multiplier estimates satisfy certain conditions.
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1.1. Incomplete solutions for QP subproblems. There have been other pro-
posals to define the search direction for an SQP algorithm other than as the minimizer
of the QP subproblem. In Dembo and Tulowitzki [9] an algorithm is analyzed for
which the search direction Pk has the property that

where p denotes the minimizer for the kth QP subproblem, (unless stated otherwise
all norms in the paper are g2-norms).

We follow a different approach and define a search direction for which the effort
to compute it has a guaranteed bound. A different algorithm, but using the same ap-
proach, was suggested by Gurwitz and Overton [20]. However, no global convergence
results were given for their algorithm.

In the course of solving a QP an active-set method generates iterates that are sta-
tionary points. We show that such points may be used to construct a suitable search
direction. The step to the stationary point is not generally an adequate search direc-
tion. However, if the stationary point is not a minimizer then there exist nonoptimal
multipliers. We show how an auxiliary direction may be constructed using informa-
tion about the nonoptimal multipliers. This auxiliary direction, when combined with
the step to the stationary point, gives a suitable search direction.

Terminating the QP algorithm prior to obtaining a solution impacts the SQP
algorithm in a number of critical ways. Not only is the search direction different,
but also the QP multipliers will not be available. The merit function of principal
interest requires the definition of a search direction in the space of the multipliers. In
the past, this search direction has been defined using the QP multipliers. The fact
that such multipliers are positive was crucial in the analysis of these algorithms. The
consequences of terminating the QP solution process early are therefore far reaching.

The remainder of this paper is organized as follows. Section 2 describes the form
of the general algorithm, and the definition of the search direction. Section 3 studies
the convergence properties of the algorithm; it is shown that such an algorithm is
globally convergent. In 4 we show that the algorithm converges superlinearly. We
also show that the penalty parameter used in the merit function is bounded. Section 5
considers the use of alternative merit functions. Finally, 6 presents numerical results
obtained from an implementation that uses the merit function of principal interest.

2. Description of the algorithm. The search direction we propose could be
used with most of the merit functions analyzed in the literature. However, our primary
interest is the following merit function:

(2.1) LA(x, A, s, p) F(x) AT(c(x) s)+ 1/2P(C(X) s)T(c(x) s),

where s _> 0 are slack variables, and the scalar p is known as the penalty parameter.
This merit function was suggested by Gill et al. [16] and is used in the SQP code

NPSOL. It is similar to merit functions proposed by Wright [34] and Schittkowski
[32]. Although our primary interest is this specific merit function, we also show (5)
how the ideas discussed can be extended to the use of other merit functions. The
reason for our focus on this merit function is due to the success in practice of NPSOL.
The merit function is also used in a new SQP code, LSSQP [10], designed to solve
large problems.
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The search is performed on an expanded space, including the Lagrange multiplier
estimates A, and the slack variables s. The symbols p, , and q will be used to denote
the components of the search direction on the corresponding subspaces. In this case,
the value of the merit function as a function of the steplength will be denoted by

((; x, p, :k, , s, q, p) LA (x + p, )t + c, s + cq, p).

The explicit reference to the parameters will be omitted in what follows. The deriva-
tive of with respect to c is denoted by ’. Also, Ck(C) and (c) will be used to
indicate the values of and ’ evaluated at (Xk, Pk, Ak, k, Sk, qk, Pk).

The following conventions will be used in the rest of the paper:

gk VF(xk), Ak =-- Vc(xk), Ck =--C(Xk),

and the symbols k and k will be used with the same meaning as Ak and ck, but
restricted to the set of active constraints at the given point. The term active constraint
will be used to designate a constraint that is satisfied exactly at the current point
(cj(x) 0 in NP, or ap -cj in QP), and the set of all constraints active at a given
point will be referred to as the active set at the point.

The objective function for the QP subproblem will be denoted by Ck(P),

(2.3) TCk(P) g[P + P Hkp.

Sometimes, will denote the function of one variable

For any vector v, the notation v- will be used to denote the vector whose jth
element is defined as

v- min(0, vj).

Also, the symbol e denotes the vector (1,..., 1)T, and symbols of the form abc
denote fixed scalars related to properties of the problem, or the implementation of
the algorithm, where "abc" identifies the specific scalar represented.

Finally, throughout the paper we will use the symbol ]lull to denote the g2-norm
of the vector u, unless we explicitly indicate that a different norm is being considered.

2.1. The algorithm. We first present an outline of the algorithm. Given H0
positive definite, x0 and 0, select
fig > I1011 and tip > 0.
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ALGORITHM ETSQP

k+-0
repeat

Obtain the search direction Pk from the QP subproblem

minp Ck(P) g[P + 1/2pTHkp
s.t. Akp + ck >_ 0

Compute #k, an estimate of A* such that

if Pk- 0
Compute sk from (sk)j max(0,

else
Compute sk from (Sk)j max(0, (ck)j

end if
qk +-- AkPk -+-Ck- Sk

Tif Ck(0) <_ -pkH}p}
Pk +- Pk-1

else

( +
Pk max.2p_, liCk Skll 2 /

end if
if Ck (1) _< Ck (0) +a(0)

else
Select & e (0,1) to satisfy

(a) < (0)+.a(0), I(a)l <-(0)
end if
while c(xk + Pk) --ce or Ck(&) > Ck(0)+ a&(0) do

a +-- a12
end do
ck +--- &

Compute 9k+1, Ak+l and c+
Update Hk to form Hk+l
k+-k+l

until convergence

The following are some comments on the steps of the algorithm.
(i) At each point xk, we form the QP subproblem

lpT(2.4a) minimize g’p + 5pE}

(2.4b) subject to Akp >_ --ck,

and determine a stationary point for QP, that is, a point ihk satisfying

(2.5a) gk + Hkk ATkrk,
(2.5b) Akk + Ck >_ O, r[(Akk + Ck) O,

for some vector rk E m (the QP multipliers at i5}).
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From information available at the stationary point we construct a search direction

Pk and #k an estimate of )*. The precise conditions that Pk and #k need to satisfy
are given later in this section. If Pk -0, we set Ak #k and terminate. Otherwise,
we compute the search direction in the space of the multiplier estimates k as

(2.6) k #k Ak.

(ii) The slack variables sk are computed from

max (0, (ck)j)
(,kk)j

otherwise.(Sk)i max O, (ck)j
Pk-1

These values minimize the merit function (2.1) at (Xk,k,Pk-1) with respect to the
slack variables. The slack variables sk appear in the merit function (2.1) as part of
the term ck Sk. From (2.7), this term takes the value

if Pk- 0,min (0, (Ck)))(2.8) (ck)j -(sk)j min((ck)j, p-_]
otherwise.

The following inequality will be useful in the analysis of the algorithm:

To simplify the notation in the justification of this result, we drop the subscript k.
If cj sj cj then clearly Ic sjl-Icl _> Ic-I.
If cj sj ?t cj and cj >_ O, then c 0 <_ Icj sjl. Otherwise, cj sj t cj and

cj < 0. From (2.8) we get cj- sj < cj < 0, and hence Icj -sjl > Icjl >_ [c- I. We have
shown Ic-l <_ Icj -sjl under all circumstances, implying (2.9).

(iii) The search direction in the space of the slack variables qk is set to the vector
of slack variables for the QP subproblem, i.e.,

qk Akpk -t--ck Sk.

For a linear constraint this choice keeps the corresponding slack variable at its opti-
mum value.

(iv) The penalty parameter will not be modified if the condition

is satisfied, where Ck(c) is defined in (2.2). Otherwise, we define the penalty param-
eter as

(2.12) p max(2p_,,/k, p),

where fp is some positive constant,
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k(Pk) "+- (2Ak #k)T (Ck St:)P I1 11

and Ok was defined in (2.3). It will be shown that the definition (2.12) ensures that
(Pk,k, qk) is a sufficient descent direction for the merit function, in the sense that
condition (2.11) holds for this value of the penalty parameter.

(v) The steplength ak > 0 is computed to reduce Ck(a) while keeping the con-
straint violation bounded. The termination conditions for the linesearch are as follows:
If

() ,(0) < I(0),

set & 1. Otherwise, find an & E (0, 1) such that

(2.15a)
(2.15b)

(a) (0) < ai(0),
I() > I(0),

where 0 < a < r < 1.

If the condition

(2.16) c(xk + &pk) >_ -ce

holds, we define ak &; otherwise we compute ak by performing a backtracking
linesearch from & until (2.15aa) and (2.16) are both satisfied. It will be shown later
that such a steplength always exists, and that Algorithm ETSQP is well defined. This
definition of the steplength ensures that c(xk) >_ --ce for all k. A more sophisticated
algorithm could be used to determine ak when (2.16) does not hold. However, we
anticipate such events will be rare.

(vi) Finally, xk and Ak are updated from

(217)

2.2. The definition of the search direction. At each iteration of Algorithm
ETSQP an inner iteration is performed to determine the search direction by solving
the QP subproblem (2.4a) using an active-set method. The following is an outline of
a suitable algorithm to determine the search direction. The outer iteration subscript
has been omitted, and the subscript refers to the inner iterations.

We assume that positive constants/p,/b, /M have been defined (/b _< 1).
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ALGORITHM SD

Compute p0 satisfying:

Apo + c > 0, Ilpo   llc-II, BTRo   llc-II
Form 0, the active-set matrix at p0, as the set of all rows in A corresponding
to
active QP constraints at p0

i.--0
repeat

()0Compute/3i from fi.i

7i min(1 infj{ -cj +ap6-- aT-

Pi+l Pi +
Set i+l to be the active-set matrix at
ii+l

until p is a stationary point. p
if>0
pp

else

"), .-- min(- (g + H)Td
dTHd

if [[i5 + q/d[[ > 11i5[I
p+--+Td

else
p+-p

end if
end if

Set vr - 1 if #r < b mini #j, otherwise set vr *- 0
Compute by solving: min{r .i v}
d d/[[d[[

inf,{ c + a’i5 O} )a"d a"d < ’M

Some comments on this procedure are presented below.

(i) An initial feasible point p0 of the QP subproblem is obtained. When the
minimizer of the QP is used as the search direction, then, given the uniqueness of p,
the choice of P0 is irrelevant. If we determine the search direction from a stationary
point that is not a minimizer, the sequence of stationary points that we compute
depends directly on the value of p0. We wish to define the initial point in such a
manner that all stationary points are satisfactory points at which to terminate the
solution process. It will be seen that the following conditions on p0 are sufficient to
ensure our objective.

For some constant p > 0,

(2.18) Ilpoll  pllc-II and gTpo

(ii) A sequence of feasible descent steps are taken, for example, by first computing
the unique step i to the minimizer of the QP on the current working set as the least-
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length solution of the system of equations

(2.19) Ai 0 -# 0

where Pi i8 the current estimate. A step /i i8 taken, where i is obtained a8 either
one or the step to the nearest constraint,

(2.20) 7i min(1 ipf -cj + aypi aT_

The QP algorithm may be terminated at any stationary point . (Algorithm SD
is terminated at the first stationary point.) It will be seen in the proof8 that to alway8
use as the search direction will not in general ensure convergence.

(iii) If i8 the minimizer of the QP 8ubproblem the search direction p i8 defined
p , else

+ f 1111 < I1 + dll,(.1) P otherwise,

where the vector d and the scalar are computed with the following properties:
u8eu A 0, d I111 X.

The rate of descent along d is "suciently" large. By this we mean d satisfies

where 0 < d 1, H + g and d* solve8

min
(.a) s.t. Ad o,

There are many procedure8 for computing a suitable vector d. For example, if the
singular values of are bounded above and below and i ha8 full row rank then a
suitable d may be computed follows. Define a vector v to 8atis

1 if i < 0,
vi 0 otherwise.

We then compute the least-length solution of iy v and define d

For this direction d we have

1 n.(.24) Td T Tv

Under the sumptions made on it follows I]]] is bounded. We shall now show
d is a "sucient" descent direction. Let u* denote the 801ution of the problem

minu Tu
s.t. 0, IIll 1.
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We have #Tu* > m mini #j. Define z Aid*. We get

(JTd* Td* 77T( > mllll m.in
3

since z2 > 0. If liAII is bounded it follows IIll is bounded. From .(2.24) and the above
inequality we get

I
rn?j<

I ffTd,ffTd 7?T"id 7?Tv --< ildll mll ll Ildll
Lemma 2.1 presents some properties of the solutions of (2.23). These properties

are based on the observation that the cost vector and the coefficients of each constraint
can be normalized without affecting the feasible region or the solutions of the problem.
Since we are concerned with sequences we reintroduce the outer subscript. Define
k - k/llkll and a matrix Bk whose jth row is the normalized jth row of i. The
problem

mind
(2.25) s.t.

ATgkd
Bkd > 0,

has the same feasible region and the same solutions as (2.23). We tacitly assume
no row of .zii is a zero vector, otherwise it could be omitted from both problems.
Likewise, if IIk 0 it implies/hk is the minimizer of the QP.

LEMMA 2.1. Given a subsequence of iterates (Xk}, generated by Algorithm ET-
SQP and such that for all of them k Pk, the directions dk obtained as solutions of
(2.23) at each point satisfy -Tz.y tk < 0 and Ildk I1 1. Furthermore, if gkdk* -- 0 along
the subsequence, then either k --* 0 or for any limit (t, B) of the sequence { (k, Bk)},
defined as in (2.25), it holds that BT, with > O.

Proof. Since Pk --Pk is a feasible descent direction of (2.23) at d 0 it follows
that d 0 is not optimal, and the solutions of (2.23) satisfy gkdk* < 0 and I]dk* IIc 1.

Consider now the sequence of problems of the form (2.25) and the problem ob-
tained from a limit of the sequence { (k, Bk) }. The feasible regions of all problems are
compact convex polytopes; if we denote the vertices of the polytope corresponding to
problem k by {d}, where the index takes a finite number of different values, it holds
that for each l, d --. dl, a vertex for the polytope corresponding to the feasible region
of the limit problem (assume without loss of generality that the convergent subse-
quence has been chosen so that the number of vertices is the same for all problems in
the subsequence).

Any feasible point of the limit problem, d, can be written as a convex combination
of the vertices dl, d Yt tdr" We can then construct for any feasible d a sequence
{dk}, where each point dk is defined as dk =_ t ldk, having the properties that dk

is feasible for the kth problem (2.25), and dk d.
Ifk 0 then _-T. ^T *g dk ---* 0 implies gk dk 0 and it must hold that d 0 is

an optimal solution of the limit problem, implying that there exists a vector > 0
satisfying BTI. FI

Note that gk dk O, if and only if kdk --+ O, where dk is a sufficient descent
direction.

The scalar is given by

(2.26) min(9,-, 7M),
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where "7M is a specified upper bound on the steplength,

(2.27) " in.f{ cj + @’15 }
3 ayd

is the largest feasible step from/5 along d, and

(a + S )rd(2.28) -- drHd

is the step to the minimizer of (/5 / d).
2.3. The multiplier estimates. Equation (2.6) defining the search direction on

the ,multiplier space k requires the computation of an estimate #k for the Lagrange
multipliers. The estimates {#k } are then used to update {Ak }, the Lagrange multiplier
estimate used in the merit function. To allow flexibility in algorithm design we have
chosen to specify conditions on the multipliers estimates k rather than give explicit
definitions.

It will be shown that the following conditions on k are sufficient to ensure that
the algorithm is globally convergent.

MC1. The estimates #k are uniformly bounded in norm, that is ]]#k]] < .
MC2. The complementarity condition #(Apk + ck) 0 is satisfied at all itera-

tions.
We may satisfy these conditions by choosing #k 0. Condition MC2 is made

for convenience; condition MC1 and the form in which the multiplier estimates are
updated imply that {Ak} are uniformly bounded.

LEMMA 2.2. If condition MC1 holds, then ] for all k.
Proof. The proof is by induction. We select to satisfy A0 fl. om (2.17),

(2.29) "k-bl "k -[-Ol’k(#k "k), k

_
O.

Using norm inequalities and 0 < ak

_
1, we have

as required.

2.4. Second-order information. We choose the matrices {Hk} to be positive
definite and bounded, with bounded condition number. In practice, such matrices
may be generated (see [15]) by updating a quasi-Newton approximation to the Hessian
of the Lagrangian function or the Hessian of the augmented Lagrangian function in
each iteration together with certain safeguards (for example, if the factors of Hk are
updated, by enforcing bounds on the size of the elements, and ensuring sufficiently
positive diagonal elements). These conditions can be written as follows:

HC1. H < oc is the largest eigenvalue of {H}.
HC2. .H > 0 is the smallest eigenvalue of {Hk}.
3. Global convergence results. The results in this section establish global

convergence properties for Algorithm ETSQP, under certain assumptions on the prob-
lem NP. We first introduce these assumptions, and then, under the condition that they
hold, we prove the following results:

(i) The iterates {x} lie on a compact set.
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In Lemma 3.1 we show that the quantities associated with the algorithm
are well defined at all points.
In Lemma 3.2 it is shown that if IlXkll is large then IlPkll cannot be
arbitrarily small.
In Lemma 3.3 we show that p computed using Algorithm SD satisfies

T(p) gTp + p Hp <_ -lpTHp +/211c- sll

where/1 and/2 are positive constants.
Lemma 3.4 proves that the sequence {xk} lies on a compact set.
Lemma 3.5 shows that the sequence {p} also remains bounded.

(ii) The sequence {llPkll} dominates the sequence {llxk-x*ll}, where x* denotes a
KKT point closest to xk. The main implication of this result is that IIP -- 0
is sufficient to ensure that xk --* x*, a KKT point of NP.

It is shown in Lemma 3.6 that the KKT points for problem NP are
isolated.
Lemma 3.7 shows that if Ilxk --x* 0 along a subsequence then along
the same subsequence 117rk * -* 0.
Lemma 3.8 introduces another preliminary result, proving that ifp - 0
along a subsequence then along this subsequence Ilxk x* --* 0, where
x* is a KKT point for NP nearest to x. Moreover, for large enough k,
Pk is the minimizer of the QP subproblem, and the correct active set at
x* is identified.
The proof that IlPkll dominates Ilxk x*ll is given in Lemma 3.9.

(iii) Bounds on the growth of the penalty parameter Pk. We cannot prove that Pk
will remain bounded in the algorithm without stronger conditions on the mul-
tiplier estimate #k, but we can show that its growth is bounded by certain
quantities related with the algorithm, and that is enough to prove conver-
gence.

We show in Lemma 3.10 that at all the iterations where the penalty
parameter is modified the following bounds hold,

In Lemmas 3.11 and 3.12 we show that similar inequalities hold at all
iterations.

(iv) The steplength ak is bounded away from zero if we are not close to a solution.
We first need a bound on the second derivatives of (c). In Lemma 3.13
we prove that (ak) _< N for some positive constant N.
In Lemma 3.14 we show that, if IlPk is large enough, there exists a value
> 0 independent of the iteration such that ak >_ (.

(v) In Theorem 3.15 we show that xk x*.
(vi) Finally, we prove that Ak -- A*.

This result requires stronger conditions on the multiplier estimate #k
than just MC1 and MC2. We start by introducing a third condition
MC3.
Lemma 3.16 strengthens the result in Lemma 3.14 showing that, under
the new conditions on the multipliers, ck is uniformly bounded away
from zero.
In Theorem 3.17 we show that )k A*.
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3.1. Assumptions. Some of the following assumptions make use of the concepts
of stationary points and KKT points at infinity. We will say that NP has a stationary
point at infinity if there exist sequences (xk} and (k} such that Ilxkll oc and/or
IIrkll-- c, and

ck- -- 0, AkTrlk gk --+ 0, rlck O.

As before let Ba denote a matrix whose rows are the normalized rows of Ak and k
denote the normalized gradient vector. Define k so that TAk rlk--gk (B[Pk--k)llgkll.
If in addition to the preceding conditions we have p >_ 0, where indicates the limit
of some subsequence (k}, we then say there is a KKT point at infinity.

Finally, we will say that strict complementarity does not hold at some stationary
point at infinity if for the preceding sequences and some constraint j we have

(ck)j -- 0 and ()j - 0.

We make the following assumptions.
A1. For some constant c > 0, the global minimum of the problem

minimize F(x)
s.t. c(x) >_-13e,

is bounded below.
A2. There exist no KKT points at infinity for problem NP.
A3. F, cj, and their first and second derivatives are continuous and uniformly

bounded in norm on a compact set.
A4. The Jacobian corresponding to the active constraints at all KKT points has

full rank.
A5. A feasible point Pko exists to all the QP subproblems, satisfying

for some constant/p > 0.
A6. Strict complementarity holds at all stationary points of NP, including sta-

tionary points at infinity, if they exist.
A7. The reduced Hessian of the Lagrangian function is nonsingular at all KKT

points. The larger the value of 3c, the stronger is assumption A1. There will be
problems, for example F(z) f(x)Tf(x), where it is known a priori that Assumption
A1 holds with/ oc. Also, if A1 does not hold with 3c 0 then it is possible for
any reasonable algorithm to diverge.

Assumption A5 imposes conditions, on the initial point for the QP. It is possible
that no point satisfies these conditions; this would be the case for example if one
of the QP subproblems generated by the algorithm is not feasible. Nevertheless, by
introducing an additional variable it is possible to construct a modified problem for
which satisfying the conditions on Pko is trivial. Consider the problem

minimize ’(x,
(3.1)

s.t. c(x)+e>_O and >_0,

where E and w E [0, 1]. The KKT points for this problem are also KKT points
for NP if NP is feasible and w is sufficiently close to one. The modified problem is
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always feasible, and the corresponding QP subproblem takes the form

minimize
(p,)en+
Soto

(1 -)[++ 1/2 )H
ck + Akp + ke +e

_
0,

2+p>_O.

For this QP subproblem the point

( o

is feasible since we can ensure that 2k _> 0. Therefore there always exists a feasible
point that satisfies A5 with p 1 since IIP0[I [[(c + "2ke)-II and

V’kTp0 (1--W)gkT

implying that the conditions on Pko in Assumption A5 are trivial to satisfy for (3.1)o
3.2. Existence of the iterates. We start by showing that all the quantities

associated with the algorithm are well defined. In particular, we show that the choice
of penalty parameter ensures (2.11) is satisfied and that the steplength exists.

LEMMA 3.1. Under Assumptions A3, A5 and conditions HC1, HC2, the proce-
dures given in the algorithm to compute the values of the penalty parameter Dk and
the steplength ak are well defined.

Proof. We drop the subscript k denoting the iteration number, to simplify the
notation.

Consider the gradient of the merit function LA, defined in (2.1), with respect to
x, , and s,

g(x) A(x)TA + pA(x)T(c(x) s)
VLA (x, , s) -(c(x) s) )- p((x) )

It follows from (2.6), (2.10), and (2.2) that ’(0) is given by

(3.3)

where g, A, and c are evaluated at x.
If IIc- sll 0, from (2.9) and (2.18) we have P0 0, and since (p) pTg +

1/2pTHp _< (Po) 0 it follows that _
TH’(O) pTg <_ p p,

implying that p does not need to be modified.
If IIc- sll > 0, we obtain from (3.3) that for p- t (defined in (2.13))

’(o) gTp + (2A )T(c- ) ,llc- *II --’lpTrr’/-’/P’

which implies the desired descent condition (2.11) is satisfied for all p > o
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An immediate consequence of (2.11) and the properties of Hk is the following
bound on the directional derivative:

(.) (0) <-1/2.1111.
It follows from the procedure to increase the value of the penalty parameter (see

(2.12)) that ,ok --o oo if and only if the parameter is increased an infinite number of
times.

We also need to prove that the value of k introduced in the algorithm is well
defined. We show that if condition (2.14) is not satisfied, a steplength &k (0, 1) that
satisfies conditions (2.15) always exists (see, for example, Mor and Sorensen [23]).

Define the functions

() _= () (0) ’(0),
() ’() ’(0),

and note that from a < r/and ’(0) < 0, implied by (2.11), we have

(3.5) X’(a) ’(a) he’(0) < ’(a) ’(0)
for any a.

If (2.14) does not hold,

(1)- (0) > he’(0) = X(1) > O,

and we also have x(O) O. om hese wo results and he mean-value heorem, here
will be a point & e [0, 1] such that X’() > 0, and from (3.5), (5) > 0.

From b’(0) < 0 we have (0) < 0, and the continuity of (Assumption A3) will
imply the existence of a zero of in (0, ). Let & denote the smallest point in (0, &)
such that ((c) 0, that is,

(3.6) ’(c) ’(0),
and condition (2.15b) is satisfied at &.

From (0) < 0 we must have

(3.7) (a) < 0 Va e [0,&) : ’(a) < re’(0) Va e [0, a),
implying that condition (2.15b) is not satisfied for any point in [0,

Finally, from (3.5) and (3.7), we have

x’() < 0 w e [0,),
and this together with X(0) 0 implies X(8) < 0, that is,

(3.s) ()- (0) < ’(0),
showing that & satisfies both conditions (2.15) simultaneously.

We still need to consider condition (2.16). For the function h(a) c(x+ap)+e
we have from (2.4b)

h’(O) Ap >_ -c.

If-1/2fl _> cj >_ -/3, we have hi(O) >_ 0 and hi(O) >_ 1/2c > 0; if cj >_ -1/23c then

hi(O)

_
1/2c > 0 and in any case there exists a value > 0 such that hi(a) >_ 0

(implying cj(x + ap) >_ -/3c) for all j and all a [0,&], implying that for
[0, min(&, &)] both conditions (2.15a) nd (2.16) hold simultaneously.

This lemma implies that all the quantities associated with the algorithm are well
defined.
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3.3. Boundedness of the iterates. To prove global convergence we show first
that if Assumptions A1 and A2 hold, all points in the sequence (xk} generated by
the algorithm lie on a compact set. We start by showing that for Ilxkll large enough
we cannot have IlPk arbitrary small.

LEMMA 3.2. Under Assumptions A2 and A6 and condition HC1, there exist
positive constants M and e such that IlXkll >_ M = IlPkll >-- e.

Proof. Assume this result does not hold. Then, for any.positive constants M and
e we can find iterates such that Ilxkll >_ M and IlPkll < e, and we could construct
a sequence (xk}, and its associated sequence (Pk}, along which Ilxkll --+ oc and
IlPkll -- O. For this sequence, from IlPkll --+ 0 and (2.4b), we must have IIc-II --+ 0.
Also, from the definition of Pk, (2.21), it must hold that Ilihkll 0, and from (2.5a)
and MC1, we must have

Since IIpll ---’ 0 and [liSkll 0, using (2.21) and IIdll 1, we also have either k
0 or -k 0 for k large enough. It then follows from (2.26) that either min(k, "k) --+ 0
or k k 0 for k large enough. If k --+ 0 along a subsequence, then (2.27) implies
for some constraint j that (rk)i 0 and c(xk) 0, but this would contradict
Assumption A6. If ;),k --+ 0 along a subsequence, then from (2.28) and Lemma 2.1
we get >_ 0 in the limit, where is now defined as a limit point of (k}, where

The properties of this sequence,

together with ihk --4 0 and u >_ 0, imply that there exists a KKT point at infinity,
which violates Assumption A2, so the lemma must hold. Q

Another result we need for the compactness proof is a bound on the value of the
QP objective function at the incomplete solution for the QP.

LEMMA 3.3. Under Assumption A5 and conditions HC1, HC2, for p computed
by Algorithm SD there exist constants 1 > 0 and/2 > 0 such that

pTH_ < --lpTHp d- 2 [Ic [[(p) =_ gTp d- - p_

Proof. The result will be shown by considering first the initial point for the QP,
p0, and then the descent achieved in each QP iteration.

By definition

--Po Hpo + gTpo + pTo Hpo.

Since lip011  / pllc-ll and gTpo <_  pllc-ll (Assumption Ah), condition HC1 on H
implies

T(po) - po Hpo +  pllc-II +    H p211c- II 2

Consider the quadratic function b7 + 1/2c72, where b < 0 and c > 0; then for all
[0,-b/c] (between 0 and the minimizer), we have

b
(3.10) 7<_-- = -y(b+c/)<_0 =c b + 1/2 C"2 < 2

--C7
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The change in the QP objective function at any intermediate QP iteration i can
be represented as

(.1) (p+,) (p,) 1/2"dHd +(+ Hp)d,

where d is used to denote the QP step obtained from (2.19) or the final step d defined
in (2.22), and 7 is a feasible steplength bounded by the steplength to the minimizer
along v, as defined in (2.20) or (2.26). We have dTHd > 0 (from condition HC2)
and (g + Hp)Td < 0 (from (2.22)), implying that we can apply the bound (3.10) to
(3.11) to obtain

<_

If we have taken N iterations to compute p (the search direction), by adding the
inequalities (3.12) for i= 0,..., N and using (3.9) we obtain

N

(P) )(Po) "- E(2(Pi) --)(Pi--1))
i--1

(3.13) < -1 Hpo + E 72dTi Hd + PllC-II + flt’Hfl2P IIc-112"
i=1

We can use the convexity of the function pTHp (implied by property HC2) to
write

P’HP+E 7dT Hdi >- N + 1 o + E 7idi H o + E 7idi N + 1
pTHp"

i=1 i=1 i=1

This result together with (3.13) implies

1
(3.14) (P) -< -2’N( 1)+

pTHp +  pllc-II +  Z H p211c- 2

Since c- _> flee the desired result follows from this inequality and (2.9). [3

We can now prove the main result of this section.
LEMMA 3.4. Under Assumptions A1, A2, A3, A5, and A6, and conditions MC1,

HC1 and HC2, the sequence {xk} generated by the algorithm lies on a compact set.
Proof. First we show the set of points at which the penalty parameter is modified

lies on a compact set. If Pk remains bounded it follows from the manner the penalty
parameter is nodified, (2.12), that there is only a finite set of such points. Therefore
we need only study the case when pk x. Consider the iterations k where the
penalty parameter is modified. From condition MC1 and the boundedness of the
multiplier estimates )k (Lemma 2.2), we have

This result, together with Lemma 3.3 and the definition of the penalty parameter
(2.13), gives

T I_THPkllCk 8kll 2 gkPk " -Pk kPk + (2Ak k)T(ck
fllPk HkPk.<: (ill + 3fltt)llCk  kll T
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As we have assumed pk -* o, (3.16) implies [[Ck Skll --* O, and from (2.9) also

From Lemma 3.3 and (3.15) we have

(3.17a)
(3.175)

[ + (e ,)r( )
1..TH T<-- --t’k kPl llPk HkPk + (/31 + 3/3)11ck sk]l.

If IIpll >- > 0 along an infinite subsequence, then it follows from I1 11 0
and MC2 that there exists an index K such that for all k >_ K in the subsequence,

From (3.17b) we obtain the following bound on wk,

T(3.18) wk <_ --Pk Hkpl,

for k >_ K. From (3.17a) and the bounds (3.18) and (3.3), we have for sufficiently
large k

This last inequality implies that Pk is not modified for all k >_ K, which contradicts
our assumption that the penalty parameter was modified an infinite number of times.

We have shown that IlPkll "+ 0 along the subsequence at which the penalty pa-
rameter is modified. The boundedness of Ilxkll along this subsequence follows from
Lemma 3.2.

We now consider those points corresponding to iterations where the penalty pa-
rameter is not modified. From condition (2.16) on the linesearch and Assumption
A1, we have F(xk) _> /3F > -oc for all k. Also, from Lemma 2.2 IIAkll is bounded,
implying that

(3.19) LA(Xk,.k, Sk, Pk) >_ F max (p,m/c) > --oo.

Since Ilxk[I is bounded when Pk P- and Ln(xk, Ak, sk, pk) is reduced when Pk
Pk-1 it follows that L(xk, Ak, sk, Pk) is bounded. Moreover, for a sequence of itera-
tions for which Pk is not changed the reduction in L(Xk, A,Sk,pk) is bounded. Let
I denote the index at which Pk is modified and let I _< k _< K denote the iterates for
which Pk remains fixed. It follows from the above reasoning that there exists N such
that

K

(3.20) )l CK Z(qk Ck-I N,
k--I

where to simplify the notation we have used Ck Ck(0).
From the termination condition for the linesearch (2.15a), (3.4) and (3.20), we

also have

K K

(3.2) 1/2Z=H (llpll <_ -(- Ck-I-1)

_
N.

k--I k’--I
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This result implies that akllPll is bounded. Hence if IIxll is not bounded there
must exist sets of iterates with indices, say st < k < rt for 1, 2,..., such that

Ilxst <- M, Ilxk > M for M large enough, limt_ rt c, and
It follows that if M is chosen so that M 3, max{llxiII } then Pk is constant in the
interval st < k < rt. The existence of an index such that Ilxs < M is assured since
we have Ilxxll _< M and at least one index in the interval for which [Ixk[I > M. From
these assumptions and definitions it follows that

rt --1

k--st

It follows from Lemma 3.2 that ]]pa > e for st / 1 _< k <_ rt. From (3.22) we get

j-’st j--stq-1

but this contradicts (3.21), implying that the points generated by the algorithm must
lie on a compact set.

To complete this section, we show that the search direction computed from the
QP subproblem is bounded.

LEMMA 3.5. Under the assumptions of Lemma 3.4, the sequence {Pk } is bounded.

Proof. We drop the subscript k in the proof.
As all the steps taken in the solution of the QP subproblem are descent steps, we

have from (2.3),

lpT.. 1/2 1/2 2(P0) >-- (P) gTp + - p 1/211H p + H- gll 1/2gTH-lg,

implying from HC2 and Ilall Ila + bll + Ilbll,

V/,H’Ilpll < IIn1/2Pll < IIH-1/2gll / IIH1/2p/ H-1/2gll < IIH-1/2gll + V/2(p0) + gTH-lg

The boundedness of Ilpll follows from this result, Lemma 3.4, conditions HC1 and
HC2 and the bound (3.9). []

It is tacitly assumed in the remaining proofs that the Assumptions A1-A7 and
conditions MC1, MC2, HC1, and HC2 hold.

3.4. The sequence of search directions {pk}. In this section we relate the
behavior of the sequence {x x*}, where x* denotes a KKT point closest to xk, to
that of the sequence {pk}. In particular, we show that IlPkll -- 0 implies xk --+ x*,
and so it is enough to prove that IlPk -- 0 to establish global convergence.

Although the KKT point x* introduced above may nog be unique, the assumptions
made on the problem, and more specifically Assumption A7, imply that if IlXk- x* is
sufficiently small then x* is unique, as the following lemma shows. This result allows
us to work with a well-defined sequence {Xk --x*}, at least close to a KKT point;
it will also imply that the limit point of the sequence generated by the algorithm is
unique.

LEMMA 3.6. The KKT points .for problem NP are isolated.

Proof. Assume that the result does not hold, and let x* denote a KKT point
for NP that is not isolated, that is, for any e > 0 there exists a KKT point y x*
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satisfying IIx* --YII < e. Consequently, there exists a sequence {Yk} such that Yk is a
KKT point for all k, yk : x* and Yk x*.

For sufficiently small IIx* -Ykll the active sets at yk and x* must be the same;
otherwise we would have for some constraint j that cj(x*) 0 with both cj(yk) > 0
and (A)j 0 along some subsequence, where A is the multiplier vector at Yk. From
Assumptions A3 and A4 and (1.1) we have Ak A*, the multiplier vector at x*, but,
this would imply cj(x*) ,Xj 0, contradicting Assumption A6.

Let Zk denote a basis for the null-space of 7((yk), the Jacobian of the active
constraints at Yk, and Z* denote the corresponding basis at x*. Among all possible
bases, Z is selected to have continuous first derivatives in a ball around x*. It follows
from Assumption A4 and the fact the active set is constant that such bases exist.

For any element of the sequence Yk and for x* we have from (1.1)

TZ VF(y) 0 and TVF(x*)
The Taylor series expansion of Z[VF(yk) around x* gives

(3.23)

0 zTkVF(yt)= Z[(VF(yk)- Vc(yk)T,x*)
Z*T(VF(x*) Vc(x*)TA*) + (VZ(x*)(VF(x*) Vc(x*)T,x*)
-t-- z*T72L(x*, A*))(y x*) + o(llyk

where L(x,,) is the Lagrangian function of NP. Using (1.1) in (3.23), and dividing
by [[Yk- x*]l gives

Yk x*
(3.24) z*Tv2L(x*,,X*)hk o(1), where 5 [lY x*ll"

Let denote the subset of constraints active at x* and Yk. If e is sufficiently small
then 6k satisfies

(3.25) e(y ) 0 x*) / o(lly  *11) o(1).

Finally, for any convergent subsequence of the bounded sequence {5}, with limit
we have from (3.24) and (3.25),

re(x*)5 0,

contradicting Assumption A7. []

This result, together with Assumption A2, implies that the number of KKT points
lying on any compact region is finite. The distinctness and finiteness of the KKT
points implies the existence of e* > 0 such that for any two KKT points, say x and
x, we have I]x xl > 2*. It follows that if Ilxk x*ll < *, where x* is a KKT
point nearest to xk, then x* is unique.

The next result presents some properties of the QP multipliers that will be useful
for the analysis of the convergence and rate of convergence of the algorithm.

LEMMA 3.7. Given a sequence of iterates {x} and the associated sequence of
search directions {Pk } such that Xk -- x*, a KKT point for NP with multiplier vector

* and Pk -- O, then
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where rk are the QP multipliers at the stationary point . Furthermore,

if IlXk -x*ll <_ Kllkll for some constant K.
Proof. We first show that for any constraint j such that cj(x*) 61 > 0 we

must have (r)j 0 for large enough k. If Pk -- 0 it follows from (2.21) that
iSk 0. Consequently, it follows from Assumption A3 that for k sufficiently large
I1  11 <_ I1  11 > 0.   ough

+ >_ > 0,

implying that the multiplier for this constraint is zero.
Let .* and k denote the corresponding Jacobian matrices restricted to the active

set at x* and let * and #k denote their respective multipliers. From (1.1) and (2.5a)
we have

implying

(3.26) ,T(* #k) g* gk HkPk (.* .k)T#k.

From Assumption A4 that
will also have full rank for large enough k, implying that #k is bounded in norm, and
these results together with (2.21), Pk -+ 0 and HC1 yield rk ---* A*.

Using Taylor series expansions in (3.26), we obtain

(3.27) t*T(7k

where L(x, ) denotes the Lagrangian function for NP. The required result follows
from (3.27), the condition we have imposed on the sequences {ihk} and {Xk- x*}, the
boundedness of [[#kll, Assumptions A3 and ha and condition HC1.

We now analyze the sequence of search directions {Pk }. The following result shows
that as Pk ---+ 0 we get close to KKT points of NP and we only need to consider values
Pk obtained as the minimizers for the corresponding subproblems. We complete this
result by showing that a small value of IlPk also implies that the correct active set at
x* is identified, in the sense that the active QP constraints at Pk correspond to the
active NP constraints at x*.

LEMMA 3.8. If along a subsequence pk --, 0 then along this subsequence IlXk
x*ll -- O, where x* is a KKT point nearest to xk. For k large enough, x* is unique,

Pk is the QP minimizer and the correct active set at x* is identified.
Proof. A subsequence such that Pk --* 0 exists if and only if a subsequence exists

such that Pk - 0 and the active set at Pk is constant. Let {r} denote the sequence of
indices for such a subsequence.

From the definition (2.21) of Pr it follows immediately that Arp + c >_ O. From
p --, 0 and Assumption A3 it must hold that c- --, 0 and i5 - 0.

From (2.5) we have

(3.28) ATrr g,. H,./?,. 0 and rT(AD / Or) O.
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Since 15r - 0 it follows that

(3.29) ATrr g -- 0, T
rrCr - 0 and c- --, 0.

We now show that for large enough r that Pr must have been computed as the
minimizer for the QP. It follows from pr -* 0 and IIdll 1 that either there exists
K such that for all r > K we have ’r 0 or ’r -- 0 (see (2.26)). If we assume the
latter it follows that

min(r, /r) O.

(i) If -, 0 along a subsequence, then from (2.27) along this subsequence we
will have for some constraint j

Vcj(x)T(r + /dr) + cj(x) 0 and (r)j 0,

where (r)j 0 follows from the fact that the QP constraint j is limiting the step,
and so it cannot be active at i5. These equations imply

c(x,.)---O and (r)j 0,

contradicting Assumption A6.
(ii) If - 0 along a subsequence, then from (2.28),

dT H.d.
which implies from condition HC1 and Ildrll 1 that (0) (H,.,. / g.)Tdr ---, O. If
the condition number of -i along the subsequence is bounded, condition (2.24) will
hold and for some constraint j we have (rr)i < 0, (r)j 0 and Vcj(xr)Tr/c(x,.)
0, giving

cj(Xr) 0 and (rr)/ 0,

again contradicting Assumption A6. Otherwise, from Lemma 2.1 in the limit we have
that Vc(x*)T,* VF(x*) with * >_ 0, implying that x* is a KKT point with a
rank-deficient Jacobian matrix for the active constraints, violating Assumption A4.

We conclude therefore that " 0 for r > K and this together with (3.28) implies
pr is the minimizer of the QP subproblem. For r large enough >_ 0, which together
with (3.29) and Assumption A3 implies IIx x*ll 0, where x* is the nearest KKT
point to Xr. For r large enough x* is unique.

Finally, we prove that for r large enough the active set of the QP coincides with
the active set of NP at x*. First note that for r large enough the active set of the
QP must be a subset of the constraints active at x*, otherwise Pr is a step to a
nonactive constraint implying IlPrll > > 0. Assume that for the subsequence we
have Vcj(x)p + cj(x,.) > 0 and cj(x*) 0. From (2.5b) we must have (rr)j 0,,
implying from Lemma 3.7 that Aj 0, but this violates Assumption A6, and for r
large enough the correct active set is known.

This result shows that there is an e > 0 such that if IlPkll < e, then Pk is the
solution of the QP subproblem, and the correct active set is known.

We have just shown that if Pk 0 along a subsequence, then Xk x*. To
show Pk 0, we need a stronger result, giving a relationship between the rates of
convergence of the sequences {Xk x*} and {Pk}.
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LEMMA 3.9. If x* denotes a KKT point closest to xk, then there exists a constant
M such that

Proof. If IIpkll > e for all k then the result holds trivially since IIxk and ]Ix* are
both bounded. Again let {r} denote the indices of a subsequence such that Pr --* 0
and the active set at Pr is constant. From Lemma 3.8, for this subsequence we have

Ilxr x* II 0. We assume for the rest of this proof that r is large enough so that x*
is unique, p is the minimizer of the QP and the correct active set has been identified.

Let , A, and # denote the corresponding quantities restricted to the constraints
in the active set. From Assumption A4 we know that * has full row rank, and we
assume that r is large enough so that also has full rank.

Let Z denote a basis for the null space of r, with uniformly bounded norm and
continuous first derivatives. From the optimality conditions for p, (2.5), we get

( )(3.30) h(x) Ar Pr e
AT*) ).Cr

Since h(x*) 0, we have from the Taylor series expansion that

hj(x) Sj((O)j)(xr x*),

where Sj((O)j) Vhj(x* + (O)j(x x*)) and 0 < (O)j <_ 1. We have therefore

(3.31) (ZTgr)=-S(O)(x-x*)
From (3.23) we get

S(O)--( Z*TV2L(x*’A*)

and Assumptions A4 and A7 imply that S(0) is nonsingular. It follows that for
sufficiently large values of r, S(8) is also nonsingular. It then follows from (3.31)
that for some positive constant

(3.32) lix,. x*lJ < MI(IIzT g,.II +
From Assumption A3, property HC1 and (3.30) it. follows that

for some positive constant M2.
Since the subsequence {p}} such that p} --. 0 is composed of a finite number of

subsequences for which pr -- 0 and the active set at Pr is constant, the required result
follows from (3.32) and (3.33). []

3.5. Bounds on the penalty parameter. The conditions we have imposed on
the algorithm (and more specifically on the multiplier estimate) are not sufficient to
ensure that the penalty parameter is bounded. However, bounds on Pk are related to
the behavior of different quantities in the algorithm, and in particular to IlPkl[ and
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lick Sk I1" The following lemmas introduce bounds on the size of Pk in terms of these
quantities. We start by presenting the results for those iterations where the penalty
parameter is modified, and then we extend the results to general iterations.

The notation kl is used in all that follows to indicate iterations at which the value
of the penalty parameter needs to be modified.

LEMMA 3.10. For any iteration kl in which the value of p is modified,

for some constant N.
Proof. All quantities in the proof refer to iteration k, and so this subscript is

dropped.
From the definition of/5, (2.13), and Lemma 3.3 we get

Tllc_ sl]2 gTp + 5P Hp + (2 #)T(c- s)
<_ --DlpTHp+ 21]c-- sll + (2- #)T(c-- S) <_ (/2 + ]12- #ll)l]C-- S.I],

where/31 and/32 are positive constants. From (3.15) and the above result we obtain
the first bound in the Lemma,

(3.34)

If the penalty parameter needs to be modified, condition (2.11) cannot hold for
Pkz-, and (3.3) implies

’(0) gTp + (2A- #)T(c-- s) llc- s]l 2 > --1/2pTHp.
It follows that

lpT (2A T 8) > 0.(3.35) gTp + p + #) (c

Replacing in (3.35) the bound for gTp 4- 1/2pTHp given in Lemma 3.3 we obtain

(2A- #)T(c- 8) 4- 2]1c- 81] > pTHp,

which together with Lemma 2.2 implies

(3.36) 3/3 + lie- > pTHp.
jl

From condition HC2 we have I[pll <_ (1/fl.H)pTHp. If we multiply both sides
of this inequality by/5 and use (3.36) to bound pTHp, we obtain

1 3fl +f12IIPlI2 - SVH
pTHp <_

lsvH
llc_ sl _< (33 + 2)2

where the last inequality follows from (3.34). The second desired bound then follows
from

We now extend these results to all iterations. To simplify notation, we shall use
I and K to denote kl and k+ respectively. Thus, the penalty parameter is increased
at xx and XK in order to satisfy condition (2.11), and remains fixed at px for iterations
I,...,K- 1.
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LEMMA 3.11. There exists a constant M such that for all l,

kt+l --I

(3.37) Pk, IlakPkll2 <c M.
k--k

Proof. For I _< k <_ K- 1, property (2.15a) imposed by the choice of ck, and the
fact that the penalty parameter is not increased, imply that

Summing these inequalities for k I to K- 1, 0 <_ a 1 together with (3.4) gives

K-1

(3.38) lsvg {kPk]2 <__ 1- CK.
k:I

Consider the term p,(,- ). From (2.1) and (2.2),

F- T(o_ )+]_.
This equation, together with the boundedness of p[[c- sl and p[cK -s (implied
by p > p and Lemma 3.10), and that of the multiplier estimates (Lemma 2.2),
implies that for some M1 > 0,

(3.39) p(-) M1 + p(F- F).

Consider now iterations for which []p][ e, so that Lemma 3.8 applies and
p has been obtained the minimizer for the subproblem (for all other iterations
Lemma 3.10 implies that p is bounded, and the result follows from Assumption A3,
(3.39), and (3.38)).

Expanding F and c about x, we get

(.40) F F, (z x,), + O([lz, ),
(.40b) , d,( x,) + O(]x, x[).

From Lemma 3.9 we have

(3.41) ]x,- Mp[[p[ and [[x- Mp[[p[I.

As p was obtained as the solution of the QP, condition (2.5a) must hold with mul-
tiplier vector 0. This condition together with (3.40ha), (3.40ab), and (3.41)
implies

F, F (i c),, + O (m(,Ill, ll)).(.4)

Using again (2.5),

cIT T--pTA I _gTp_ pTHp"

Since p is increed at iteration I, we must have that condition (2.11) cannot hold at
that iteration, implying

’(0) gTp + (2A, )T(c S) p_,I[C S,2 > --pTHp.
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The previous two results imply

pTrTcx < -px-p Hp + p s

and this, together with the positive-definiteness of H (condition HC2), the bound-
edness of the multipliers (condition MC1 and Lemma 2.2) and Lemma 3.10, gives

(3.43) flcTi < p(2A,- )T(c- 81) M2,

for some M2 > 0.
Consider now the term cT in (3.42). om 0 we must have

T
--pCg pcT

and from (2.9) we have c; c -s]. Using p < p and Lemma 3.10, we
conclude that there exists a constant M3 such that

(3.44) pcT, < M3.

Finally, consider the third term on the right-hand side of (3.42). It follows om
Lemma 3.10 and the relation p < p that there exists Ma and M5 such that

p[p]2 < M4 and p]p]2 < Ms,

and hence for some constant M6

(3.45) p,O(max(llp, IIp l  )) < M6.

Combining (3.43), (3.44), and (3.45), we obtain the bound

p(F Fr) < M2 + M3 + M6,

which, together with (3.39) and (3.38) implies the desired result.
LEMMA 3.12. There exists a constant M such that, for all k,

(3.46) Pk ]]c Sk M.

Proof. As in the preceding Lemma, let I k and K kt+. om Lemma 3.10,
(3.46) is immediate for k I and k K.

To verify a bound for k I+ 1,..., K- 1 we analyze some intermediate iterations
k nd k + 1. We drop the iteration subscript; also let quantities evaluated at Xk+ be
denoted with a tilde.
om (2.8), p( ) min(p, ). Consider the following two cses:
(i) Ifp -, then

(3.47) p, le - IX I.
(ii) Assume now that p,j < -Ij I Expanding the jth constraint function around

xk gives

cj + aafp + o(ll pll ).

Rewriting the previous expression, we obtain:

(3.48) j (1 a)cj + a(ap + cj) +
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Adding and subtracting (1 -a)sy on the right-hand side of (3.48) gives

(3.49) (x )(aj ) + (x c)y + (ap + ) + O(llpl12).

Since sy, ap + cy, a and 1 -a are all nonnegative, we get

(1 a)sy + a(ayp + cy) >_ O,

and using this bound in (3.49) we obtain

Since we assume pxSj < -lAy[ we have 5y y -gy < 0.
1- a < 1 in (3.50) we get the following inequality:

Using this bound and

-y Iyl Iy jl -(1 a)(cy sy) + O(llPll 2) Icj- jl + O(IIPlI2)

Multiplying both sides by pl gives

For a given iteration k < K- 1 and constraint j we have one of the following two
situations.

(i) For some iteration l, I < < k, pi(ct)y >_ -[(At)j]. If we add (3.51) for
iterations r =/,..., k- 1, and use (3.47), we get

Pl(ck)j (sk)Jl <- Pz[(Cl)j (Sl)Jl W PzO (

The boundedness of p,l(ck)y -(sk)yl then follows from Lemmas 2.2 and 3.11.
(ii) For all iterations l, I < <_ k we have p(ct)y < -I(At)yl. We add (3.51) for

r I to k- 1, to obtain

Pz[(Ck)j (Sk)jl <-- Pz[(Ct)j (8t)J[ q- PxO (
and now the desired result follows from Lemmas 3.10 and 3.11.

3.6. Boundedness of ak. Given the result of Lemma 3.11, all that is left to
establish the global convergence of the algorithm is to show that the steplength is
bounded away from zero. As a consequence of the weak assumptions imposed on the
multiplier estimate #k, it is not possible to show that such a bound exists. However,
it can be proved that the bound does exist if there is no subsequence along which

IlPk II-- O. This is enough to prove convergence.
We first derive a bound on the norm of the second derivative along the linesearch.
LEMMA 3.13. For 0 <_ 0 <_ , there exists a positive constant N such that

(0) _< N.
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Proof. We again drop the subscript k. From (3.2),

V2F- -j(Aj p(cj si))V2cy + pATA -AT

V2LA -A 0
-pA I

--pAT
I
pI

From the definition of , given in (2.2), we get

"(0) w+ E((0)- (0))p v (o)p

(3.52) + p(A(O)p- q)T(A(O)p- q) 2T(A(O)p q),

where the argument 0 denotes quantities evaluated at x + Op, except for s(O) =_ s + Oq
and

w vF(0)- E( + 0)v(0).
We now derive bounds on the terms on the right-hand side of (3.52). For the first

term we can write

(3.53) pTWp < NIlIP M1,

for some constant M1, using Assumption A3, the boundedness of I111 and I111 (con-
dition MC1 and Lemma 2.2), and the boundedness of IlPll (Lemma 3.5).

Expanding cj in a Taylor series about x gives

(o) () + o,(x)p +

where 0 < Oj < 0. Using (2.10) and multiplying both sides by p gives

p(cj(O) (sj(O)) p(1 O)(cj(x) sj) + p 1/202pTV2cj(Oj)p.

Lemma 3.12 implies that plcj(x)- sjl is bounded, Lemma 3.11 implies that pllOpll 2
is bounded for 0 < c, and Assumption A3 implies that IIV2cj(Oj)ll is also bounded.
Consequently,

p l(cj(O) sj(O)) < N,

where N is a constant. This result and Lemma 3.5 imply the second term in (3.52)
is also bounded, that is,

(3.5a) Ip(cy(O) sy(O))pTVcy(O)pl <_ N:llPll _< M,

where N2 and M2 are constants.
Consider now pllA(O)p- qll 2, the third term on the right-hand side of (3.52).

Using Taylor series, we have

(.) (+ op)p + OpV()p,

where 0 < 0j < 0. From (2.10) and Lemmas 3.11 and 3.12, we obtain

(3.56) plIA(O)p- qll < Ma,
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where M3 is a constant.
From (3.55), (2.10), Assumption A3, and the boundedness of I111 (Lemma 2.2),

the final term on the right-hand side of (3.52) is also bounded,

(3.57)

2T(A(O)p q) --2T(Ap q) + iOpTV2ci(j)P

< 2T(c- s) + X4llpll z < M4,

where N4 and M4 are constants.
The desired bound follows from (3.52), (3.53), (3.54), (3.56), and (3.57). [3

LEMMA 3.14. For any > O, if IlPk[I > there exists a value () such that
ck > (e) > O, where is the steplength computed by the algorithm.

Proof. We drop the subscript k corresponding to the iteration number. We start
by proving that & (as defined in (2.14) and (2.15)) is bounded away from zero if

IlPll > e. If condition (2..14)is satisfied at a given iteration, then & 1, trivially
bounded away from zero. We assume therefore that & is chosen to satisfy (2.15).

In the proof of Lemma 3.1 it was shown that the linesearch procedure was well
defined, and in particular, that there exists a value C) E (0, 1] satisfying (2.15) and
such that condition (2.15b) is not satisfied for any value of a e [0, C)); see (3.6), (3.8),
and (3.7).

From the Taylor series expansion of i at C) we have

’() ’(0) + "(0),

where 0 < 0 < C). Therefore, using (3.6) and noting that r/ < 1 and b’(0) < 0, we
obtain

(z.s) ,,(0) ( ) ,,(0---S

(Since C) > 0, 0 must be such that "(0) > 0.)
If IlPll > e, then from (3.4) we have that I’(0)1 > 1/2svHe2, and from Lemma 3.13

we also have 1/(0) < N, implying

If condition (2.16) is satisfied for C), then the previous bound holds for c. Oth-
erwise, for some constraint j we must have hi(c)) ci(x + c)p) + tic < 0 (using the
notation introduced in Lemma 3.1). If hi(0 > 1/2tic > 0, from the continuity of h
there exists a value C) < & such that hi(c) 0 and hi(a > 0 for all c [0, 6]. From
the mean-value theorem

hi(&)-hi(O) hi(O)
h(O) Ih(0)l’

for some /9 e [0,6]. But as Ih(0)l laj(x + Op)Tpl K for some K > 0 (from
Assumption A3 and the boundedness of IIPlI, Lemma 3.5), we have

(3.59) c) > fie
2K"
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If hi(0) < 1/2c, we must have from (2.4b),

ap> 2hj(O) -cj c hy(O) > -.
From hy(0) > 0 and hi(d) < 0 there must exist a value & < d such that hi(&) < 0,
implying the existence of & < & such that h() 0 and h(c) _> 0 for all c E [0, &]
(also, h() > 0 for all e [0, &]). From the mean-value theorem,

for some 0 e [0, 0]. But h(0) _> 1/2/c, and Ih(0)l IpTV2c(x + OP)Pl < [( for some
K > 0, from Assumption A3 and the boundedness of IIPlI, Lemma 3.5, implying again

(3.60) 0 > 2R"

The procedure to construct a will ensure that a >_ 1/2, and so the result presented
in the lemma will hold.

We can now prove the global convergence theorem for the algorithm.
THEOREM 3.15. The sequence {Xk} generated by the algorithm converges to a

unique KKT point for NP.
Proof. It follows from Lemma 3.9 that to prove Ilxk x* O, it is sufficient to

show

(3.61) lim IlPkll -+ O.

If (3.61) is true then there exists K such that IlXk --x*ll < (*/2 and IlPkll < * for
all k > K, where 2(* is the minimum distance between two KKT points. It follows
that x* is unique for k > K (the sequence converges to the unique KKT point nearest
to xK), otherwise it implies that for some k > K that either Ilxk --x*ll > (*/2 or

IlPkll > (*- Consequently, to prove the theorem it is sufficient to show (3.61) is true.
If IlPk 0 for any k, the algorithm terminates and the theorem is true. Hence

we assume that IlPk # 0 for any k. If Pk L 0, there must exist a subsequence {Pl},
and a positive constant (, such that IlPlll > ( for all 1. In this case, from Lemma 3.14
there will exist a uniform lower bound on hi, al > > 0, but then

contradicting the fact that pllapll is bounded (Lemma 3.11).
In the bounded case, we know that there exists a value t5 and an iteration index

K such that p- for all k > K. Again, the proof is by_ contradiction. Consider only
indices such that >/. Every such iteration after K must yield a strict decrease
in the merit function because the termination condition for the linesearch (2.15a),
together with the boundedness of the steplength (from Lemma 3.14 and IlPtll > ()
and (3.4) imply

_< _< --1/2aaZ .HIIP ll = < 0.

The adjustment of the slack variables s in (2.7) can only lead to a further reduction
in the merit function, as LA is quadratic in s and the minimizer with respect to sj
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is given by cj Aj/p. From the fact that the penalty parameter is not modified, for
iterations from the subsequence we have

(x+) () < -1/2o.
Therefore, since the merit function with p t5 decreases by at least a fixed quantity
at every step in the subsequence, it must be unbounded below, contradicting (3.19).
It follows that (3.61) must hold.

Having established the global convergence of the algorithm, the next step is to
show that the multiplier estimate Ak A*. In order to prove this result, we need to
strengthen our conditions on the multiplier estimate #k (if #k does not converge then
A will not converge either). Following is the additional condition.

MC3. II#k--,k*ll- O(llxk--x*ll), where * denotes any multiplier vector associated
with a KKT point closest to xk.

This condition requires that in condition MC1 be chosen so that

(3.62)

Estimates satisfying MC1, MC2, and MC3 may be obtained by computing a mul-
tiplier for the "active" constraints (say, least-squares estimates of least length), and
expanding to the full multiplier space by augmenting this vector with zeros corre-
sponding to the inactive constraints. If such an estimate does not satisfy MC1, then
a suitable estimate may be determined by appropriate scaling. The multipliers at the
stationary point of the QP also satisfy the three conditions. Note that if x* is not
unique then from Lemma 3.6, Ilxk -x* > e for some e > 0, and MC3 holds for any
vector #k that is bounded.

We first show that under the stronger conditions on # the steplength ak is
uniformly bounded away from zero.

LEMMn 3.16. Under MC3 and all earlier assumptions and conditions,
O.

Proof. We again drop the subscript k. We first tighten the bound on b"() given
in Lemma 3.13. From (3.53) and (3.54), we have that the first two terms on the
right-hand side of (3.52) are bounded by a multiple of Ilpll 2. For the remaining terms,
from (3.55) and (2.10)we obtain

(p(A(t?)p-q)-2)T(A(O)p-q) E(OpTVcy(y)p--cy+sy--2j)(0pTVcy(y)p--cy+sy).
J

Expanding this expression, and using Lemmas 3.11 and 3.12 to bound the terms
p(cj sj)OpTVcj(j)p and p82(pTVc(j)p)2, we obtain

(.6) IIA() 11 2(A(0)p
for some constant M.

Observe that from (3.3) and MC2,

p (c- )r(_ ) + 2(c_
(3.64) -b’ (0) + pT(g_ AT.) #Ts.
Using Taylor expansions and Lemma 3.9 it follows that

pT(g AT#) pT(g* A.T#)
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From this result and MC3 there exists a constant such that

(3.65) pT(g_ AT#)<_

From #k --* A*, strict complementarity at a KKT point (Assumption A6), and
the fact that the correct active set is identified for ]JpJJ small enough (Lemma 3.8),
we eventually have # >_ 0 and #Ts >_ 0. Consequently, it follows from (3.52), (3.53),
(3.54), (3.63), (3.64), and (3.65)that

(9)

_
-k(0) + Yllpk 2

for some constant N > 0. This result and (3.4) can be used with (3.58) to imply that
there exists a value & satisfying (2.15) such that

>_ (1 +  i)ll  .ll + > 0.

The desired result then follows from an argument identical to that given in the final
part of Lemma 3.14.

This lemma also implies that the effort needed to compute the value for the
steplength is uniformly bounded in the algorithm. We now establish the convergence
of the multiplier estimate.

THEOREM 3.17. Under MC3 and all other assumptions and conditions,

lim Ak A*.

(3.66)

where

Proof. From (2.29),
k

j=O

k

(3.67) /kk a, ’tk a H (1 a), < k,
r--l+l

with a 1 and a at, 1. (This convention is used because of the speciM initial
condition that A0 0.) From Lemma 3.16 and (3.67), we observe that

(3.68a) 0 < a 1 for all l,
k

(3.68b) ,tk 1,
/=0

(3.68c) tk (1- )k-t, < k.

From condition MC3 we have

(3.69) k * + Mkhtk,

with ]Mk M, 5k ]]Xk X*] and ]]tk]] 1. om Theorem 3.15, for any e > 0 we
can choose a value K1 so that, for k K,

(3.70) M5k] .
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Given any e > 0, we can also define an iteration index K2 with the following
property:

(3.71) (i- ()k _<
2(k + i)(i + 2)

for k _> K2 + I. Let K max(Kt,K2). Then, from (3.66) and (3.69), we have for
k_> 2K,

K k

/=0 l=K+l

Hence it follows from (3.68b) that

K k

/=0 l=K+l

From the bounds on IIll (condition MC1), IIll, and (3.62), we obtain

K k

l=O l=K+l

Since we assume k _> 2K, it follows from (3o68a) and (3.68c) that

K K K

0’k _< (1- )k- _< -(1- )2K-I <_ (K + 1)(1- )g.
/=o /=o

Using (3.71), we thus obtain the following bound for the first term on the right-hand
side of (3.72)"

K

(3.73) 2/g
/=o

To bound the second term in (3.72), we use (3.6Sb) and (3.70)"
k k

(3.74)   klM 61 <_ <_
/=K+I /=K+I

Combining (3.72)-(3.74), we obtain the following result: given any e > 0, we can find
K such that

<_ for k _> 2K + 1,

which implies the desired result. [:3

4. Rate of convergence. In this section we shall show under additional as-
sumptions on the multiplier estimate that the algorithm converges at a superlinear
rate, independently of the asymptotic behavior of the penalty parameter.

Since Pk -+ 0, we may assume without loss of generality that Pk has been obtained
as the minimizer for the QP subproblem, and that the correct active set has been
identified.

We again start by presenting an outline of the steps taken.
(i) Bounds on the rate of growth of the penalty parameter introduced in
Lemmas 3.10, 3.11, and 3.12 are tightened.



A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM 623

In Lemma 4.1 we prove that at all iterations at which Pk is increased (if we
have an infinite sequence of such iterations)

Pllck skll 0 and pkllPkll 2 --, O.

In Lemmas 4.2 and 4.3 these results are extended to all iterations.

(ii) In Lemma 4.4 it is shown that #Tsk 0 for sufficiently large k.
(iii) Lemma 4.5 proves the superlinear convergence of the sequence {xk +Pk-x*},

under certain assumptions on Hk.
(iv) For k sufficiently large, ak 1.

Lemma 4.6 gives the relationship between the descent in one iteration Ck(1)-
Ck(0) and the initial derivative in the linesearch (0).
Theorem 4.7 shows that ak 1 for all sufficiently large k, implying superlin-
ear convergence.

(v) Finally, Theorem 4.8 shows that under an additional condition on the multi-
pliers, the penalty parameter remains bounded.

The first two lemmas introduce refinements on the results presented in Lem-
mas 3.10, 3.11, and 3.12, and their proofs are based on the corresponding proofs for
these lemmas.

LEMMA 4.1. If kl --* x3, where kl denotes an iteration at which the penalty
parameter is increased, then

lim p Ilck Sk 0 and lim p IIP 2 0.

Proof. We drop the subscript kt in what follows.
Since p is the minimizer of QP, condition (2.5a) holds for a nonnegative vector

From (2.4b) and (2.5a) we have gTp / 1/2pTHp _rTc and using this result in the
definition of 5, (2.13),

From (2.12) we have p _< 2, and using Theorem 3.17, MC3, and Lemma 3.7 we obtain

From (3.36) and (4.1) we have lim__, Pk IIPk 2-. O, completing the proof. l

LEMMA 4.2. For general iterations k, limk-.o pkllPkll 2 -O.
Proof. Define I _-- kt and K kg+l.
If p is bounded, the result follows from Theorem 3.15. If p is increased in an

infinite number of iterations, from (3.38) and Lemma 3.14 we only need to show that, --+ O.
From the boundedness of ]lAkll (Lemma 2.2), Lemma 4.1 and the fact that p1 <

PK we have

We also have from Lemma 4.1,
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These results and the definition of , (2.2), imply

p,(,- CK)- px(Fx--FK) 40.

We now analyze the asymptotic behavior of the term px(Fx F). We have

F F (c, c)T, + O(max([Ip, 2,

Using the same arguments as in the proof of Lemma 3.11, inequality (3.43) also holds
in this case, and from (3.15),

A second bound for this term can be obtained from r, >_ 0 and s, >_ 0, implying

Since I1,11 is bounded, it follows from applying Lemma 4.1 to (4.3) and (4.4) that

(4.5) pTrTcx ----+ O.

From (2.9), the boundedness of I111 and Lemma 4.1,

(4.6)

We can again use Lemma 4.1 to obtain

(4.7) p,O(m x(llp, IIp, ll )) 0.

From (3.42), (4.5), (4.6), and (4.7) we have that the sequence {p,(F F)} is
bounded above by a sequence that converges to zero. It then follows from
0 and (4.2) that p(x- ) --+ 0 and the desired result follows from (3.38) and
Lemma 3.16.

LEMMA 4.3. For general iterations k, limk_. Pk lick Sk O.

Proof. If p is bounded the result follows from c* >_ 0, A* _> 0, A’Tc* 0, Theo-
rems 3.15 and 3.17 and (2.8).

We assume therefore that p is increased an infinite number of times. Consider
two cases.

Case 1. If constraint j is such that c. > 0, then j 0 and from (2.8),

but from Theorem 3.17 and Assumptions A3 and A6, eventually ,j < pcj, implying

Case 2. For those j such that c. -0, implying )j > 0, consider iteration indices
large enough that the correct active set is identified (Lemma 3.8), implying ap+ cj
0. From the Taylor series expansion for cj and the boundedness of the steplengh,

C:i(Xk + okPk) Cj(Xk) + ak(ak)pk + o(ll  p, ll (1 Ok)Cj(Xk) + O(llp ll ).
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Recurring this relationship for k, I < k < K, we get

but as 0 < at _< 1 we must have

(4.8) P I(c ) I <- p’I(a’) I / P’ IIp II )
From c. 0, Assumptions A3 and A6, and (2.8), eventually it must hold that

pl(cx)j -(s)j pxlc()jl, and using Lemma 4.1, (4.8), and Lemma 4.2,

From this result, definition (2.8), Assumptions A3 and A6, and Theorem 3.17, for k
large enough

pal(oa) ]min(pk(ck), (Ak))l Ip (oa) l 0.

This completes the proof.

LEMMA 4.4. For k large enough #Sk O.
Proof. If constraint j is such that c. > 0, then for k large enough (ck)j _> e > 0,

and (ak)Pk + (Ck) >_ 1/2e > 0. It therefore follows from MC2 that (#k) 0.
If j is such that c. 0, then from Assumption A6, . > 0. Also, from Lemma 4.3,

pk((Ck)j --(Sk)j) min(pa(ck)j, (Ak)j) -- O, and for large enough k Theorem 3.17
will imply pk(Ck)d <_ (Ak)j; these two results and definition (2.7) imply

(sk)d max(0, (ck)j

completing the result.

To prove that the algorithm converges superlinearly it is necessary to assume
that Hk converges to an approximation of V2xL(x*, *) in some sense, where L(x,
denotes the Lagrangian function for problem NP.

Define Wk as

(4.9) 2Wk =-- V2=L(xk, Ak) V2xF(xk)- y(Ak)VC(Xk).
J

We impose the following additional condition on Hk.
HC3. Following Boggs, Tolle, and Wang [3], we assume

Z[(H o( IIp II),

where Zk is a basis for the null space of k, the Jacobian of xk of those constraints
active at x*, that is bounded in norm and has its smallest singular value bounded
away from 0.

The proof proceeds by first showing that the sequence (xk + Pk x* } converges
superlinearly, and then proving that a steplength of one is eventually attained.
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The following lemma corresponds to Theorem 3.1 in [3].
LEMMA 4.5. Under Assumptions A1-A7, and conditions MC1-MC3, HC1-HC3,

(4.10)

The results presented on bounds for the growth rate of the penalty parameter
allow us to obtain an asymptotic expansion for the quantities involved in the line-
search termination criterion. We want to prove that condition (2.14) is satisfied for k
sufficiently large. It is shown in the following lemma that the satisfaction of (2.14) is
directly related to the asymptotic properties of T =_ P(gk ATk#k) + pkTwkp.

LEMMA 4.6. The following relationship holds:

Ck(1) Ck(0) 1/2(0) + 1/2Tk / o(llPkll2).

Proof. In the proof we drop the subscript k, and we denote quantities associated
with Xk + Pk by a tilde, that is,/ F(xk + pk) while F =_ F(xk).

From the definition of the merit function (2.2) and (2.1) we have

(1) (0) f #T(5- s q) + AT(c- s)
p
(,_

,o(4.11) +
From the Taylor series expansion of c around x and (2.10) we have

5j sj qj j cj ayp pT,-,2

and using this result with the Taylor expansions for c and F in (4.11) we obtain

T 2 ,T(c 8)(1) (0) gTp + p V Fp -j#j pTV2cjp +
-(P P(c- s)r(c- s)+ o(llpll =)(4.12) + 8,...,j ,pTV2cjp,2- -From (2.6), condition MC3 and Theorem 3.17 we have

(4.13) # , + , + o(1).

Also, from Lemma 4.2 and Assumption A3 we have

ppTV2cjp 0(1) and p(pTV2cjp)2 o(llpl12).

Replacing these results in (4.12) and reordering the terms we obtain

(i) (o) 9 + v e- rV+
P( ,)T( ,) / o(llPll)+ 1/2,(- ,)-

Using (4.9) and (3.3) to simplify this expression,

(4.14) (1) (0) 1/2’(0) + 1/2 (gTp + pTWp + #T(c s)) +
Finally, from condition MC2 we have #Tc --#TAp, and from Lemma 4.4 we know
that eventually #Ts 0, implying in particular that #Ts o(llpl12), and replacing
these bounds in (4.14) we have

(1) 0(0) 1/2’(0) + 1/2 (pTWp + pT(g AT,)) + o(llPl12),
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completing the result.

The main result of this section is given in the next theorem. It is shown that,
if condition MC3 is replaced by a stronger condition, then after a finite number of
iterations a steplength of one is taken for all iterations thereafter, implying that the
algorithm achieves superlinear convergence. The new condition is

MC3’. I1 *11 o(11 *11).
It is possible to prove superlinear convergence without the need to strengthen the

conditions on the multipliers. It is shown in [29] that there exists a constant M such
that if Pk > M, condition MC3 is sufficient.

THEOREM 4.7. If MC3’ and all other assumptions and conditions hold then
eventually a unit step is always taken and the algorithm converges superlinearly.

Proof. As in Powell and Yuan [28], observe that the continuity of second deriva-
tives gives the following relationships:

(4.15) 1(F(xk + Pk) F(xk) + - g(xk) + g(xk + Pk) Pk + o(llPkll2),

C(Xk + Pk) C(Xk) + 1/2 (Z(xk) + Z(xk + Pk))Pk + o(llPkll2).

From the Taylor series expansions we have

ITV2FxF(z + p) F(x) + (x)rp + -,, )p + o(llr,ll),
lpTV2(x +) (x) + (x)r + () + o(1111),

and since (4.10) and Lemma 3.9 imply g(xk + Pk) g* + o(llPkll), ay(xk + Pk)
a.i + o(llPkll), we get from (4.15) and (4.16) that (we drop the subscript k)

(4.17a)
(4.17b)

pTV2Fp (g* g)Tp + o(llPl12),
pTV2cjp (a aj )Tp -t- O(llPl12),

Condition MC3, Theorem 3.17, and (4.13) give -:j Aj pTW2cjp - #pTW2cjp +
o(llpl12), and if we apply this bound to the result of adding (4.17a) to (4.17b) multiplied
by ,j, we have

(4.18) pTWp pT(g* A,T#) pT(g AT#) + o(llplle).

Condition MC3’, (1.1), and Lemma 3.9 imply

pT(g* A,T#) pTA*T(A* #) o(llplle),

and from (4.18),

(4.19) T pTWp + pT(g AT#) pT(g* A,T#) + o(llpil 2) o(llpl12).

From Lemma 4.6 and (4.19) we get

(1) (0) 1/2’(0) + o(llpll).

Since ’(0) < 0, the above relationship and Theorem 3.15 imply that condition (2.14)
is eventually satisfied for k sufficiently large.
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Regarding condition (2.16), we can use Taylor series expansions for cj to write

(4.20) cj(xk q- Pk) Cj(Xk) q- aj(x} q- OjPk)Tpk
for some Oj E [0, 1], and

(4.21) aj(xk - OjPk)Tpk aj(xk)Tpk + pV2cj(xk -}- jPk)Pk,
o e [0, ].

Using Theorem 3.15 and the boundedness of IIV2cj(xk /jPk)ll (from Assumption
A3 and Lemma 3.4) in (4.21), for k large enough

aj(xk q-Ojpk)Tpk
_

aj(xk)Tpk 1/2c,
and from (2.4b),

1 > _()_ 1/2.aj(xk + Oypk)Tpk > aj(xk)Tpk 2

Replacing this bound in (4.20), we obtain for all k large enough c(xk + Pk) >_ --1/2ce,
and condition (2.16) will also be satisfied, giving Xk+l xk + Pk. The required result
then follows from Lemma 4.5.

4.1. Boundedness of the penalty parameter. The last result in this section
shows that, if condition MC3’ is replaced by a slightly stronger condition, the penalty
parameter needs to be modified in at most a finite number of iterations (and conse-
quently it remains bounded). The criterion presented will be satisfied, for example,
by the least-squares multipliers computed at xk + Pk.

THEOREM 4.8. If the multiplier estimates #k in the algorithm satisfy

(a.) I1 *11 o(llx +
and all other assumptions and conditions hold then there exists a constant M such
that Pk

_
M for all k.

Proof. We may assume k large enough so that ck 1. From (2.5), (2.4b), and

rk,-Tsk_> 0, we have

gkPk + PkHkPk pAkTrk --cTrk <_ --(ci 8k)TTrk,
where rk denotes the QP multipliers at iteration k. From (3.3), (4.23), and the fact
that a unit steplength is accepted, it follows that

(4.24) (0) <_ --pkgkpkT / tl2,- , , I1 11 pll 11.
From (4.22), HC2, and Lemmas 3.9, 3.8, and 3.7 we must have

112#k-1- #k rkll <_ M1 IlPkll <-- M2pHkpk
for some positive constants M1, M2. It then follows using a2 -F b2

_
2ab that

V/p I_.TH 2I]2#-1 # llll 11 < M2 HpII 11 < v w /MI1 11,
implying from (4.24) that

_/_/I(0) < -, , + (M
From this inequality it follows that if p >_ 1/2M22, condition (2.11) will be satisfied,
and the penalty parameter will not be increased. Given that we are using the rule
(2.12) for updating Pk, it must hold that Pk
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5. Other merit functions. Several merit functions have been proposed and
analyzed in the literature (a review can be found in Powell [27]). The question arises
if the convergence results using early termination in the solution of the QP subproblem
depend on our specific merit function, or if they are fairly independent of this choice.
We shall show in this section that the choice of merit function is not critical. What we
present is how to adapt our SQP algorithm to the use of other merit functions rather
than examine other methods explicitly to see if the particular QP subproblem posed
and the manner the search is performed can be adapted to the use of an incomplete
solution. For example, we still perform a search in the x and A spaces. Slack variables
do not appear in the merit functions we shall consider, consequently the search in the
space of the slack variables is no longer required.

We have selected as examples the study of two particular merit functions. The
first one corresponds to a class of merit functions that includes among others the
merit function analyzed in Han [21], Byrd and Nocedal [5], and Burke and Han [4].
This general merit function takes the form:

(5.1) (x, A) F(x)

where an gp-norm (1 _< p _< cx)) is used, and c-(x) =_ max(0,-cj(x)). Again, we
will omit the subscript if we refer to the g2-norm, and we will explicitly include it
whenever we refer to a general gp-norm.

The second merit function we consider is

(5.2) (x,

where we use the 2-norm. This merit function has been studied among others by
Powell and Yuan [28] (applied to the equality-constrained problems only) and Schit-
tkowski [32]. Unlike either of these algorithms, where the multiplier estimate was
treated as a function of the iterate A.(x), we do not explicitly define the form of the
multiplier estimates although the ones used in both methods satisfy the criteria MC1,
MC2, and MC3. Indeed the one used in [28] also satisfies MC3’.

We still assume A1-A7 hold for the problem. However, when the merit function
(5.1) is used, the multiplier estimate #k is only required to satisfy MC1. This condition
is trivial to satisfy. For example, we may choose 0 0 and #k 0 making the search
in the multiplier space void. Such a choice reduces (5.1) to the well-known gl merit
function and our algorithm becomes very similar to that analyzed in [21]. When (5.2)
is used, we assume conditions MC1 and MC2 hold. We have also assumed in the
proofs that A0 _> 0 and #k _> 0. We omit the proofs that the iterates lie on a compact
set. For the first merit function (5.1) this proof is relatively straightforward, since it
will be shown that the penalty parameter is bounded. The proof for the second merit
function (5.2) is very similar to that for the Augmented Lagrangian merit function.

The criteria (2.15) for the choice of steplength ak assume the merit function has
continuous first derivatives. This property does not necessarily hold for the merit
functions under consideration. Therefore we use the following criteria for determining
a value

Define

(5.3) Ak =-- [Pk + (k Xk)Tc-(Xk) PkllC-(Xk)llp.

We start by selecting a value &k satisfying

(5.4) Ck(&k) --= (Xk + &kPk, )k +
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and either

(5.5) & >_ 7 > 0

or

(5.6) & > 7k and

where 0 < 7t < 7u < 1, 0 < a < 1 and k > 0. For a discussion of these criteria
and the estence of see Calamai and Mor [6].

In addition to these conditions, we also also want to limit the size of the infei-
bilities. If 5k satisfies condition (2.16), then we let ak k. Otherwise, we compute
ak by performing a backtracking linesearch om k until conditions (5.4) and (2.16)
are both satisfied.

Our preference for the criteria given in 2 is bed on our belief that in practice
they lead to a better choice of a. In the definition of our algorithm we could have
used other steplength criteria without impacting the convergence properties.

The following basic relationships will be used to establish the convergence results,

(5.7a) c (x + ap) c(x + p) c(x) aap nin(O, c(x) + aap)
(5.7b) min(0, cj(x) + aap) (1 a)c (x),
(5.7c) --wTAp --]]c- (x)],
(5.7d) -Ap -c- (x).

In these inequalities A Vc(x). Also, is a diagonal matrix such that -Ap is
an element of the subdifferential of c-(x +
take values in [0, 1], are zero whenever cj(x) > 0 and take the value one whenever
cj(z) < 0. Finally, wTAp represents an element of 0(0), the subdifferential of
c-(x + ap)p at 0. The elements of w are given by

and have the property that wTc(x) -]c-(x)]p.
Consider now the case when has been defined from (5.1). om our assumption

that Ak 0 and (2.4b),

Ak(Akpk + ck) 0

for all k. It follows from this inequality and the relationships given in (5.7) that

(0) g[Pk + [c-(Xk) AkAp pkw[AkPk

We select Pk such that

T(5.8)

This rule is analogous to the ones used in Byrd and Nocedal [5], and Burke and Han

The first step is to establish that such a value of p exists. om (3.14) and (5.3)
we have

g + +
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If we now use (2.6), property MC1, and Lemma 2.2 to bound the multiplier term

h hud I1i1 1111,, w obtain in (5.9)

)PkHkPk + (2 +3, p)IIZiI.

Defining Pu (2 +3), for any value p p condition (5.8) is satisfied for any
k. This result also shows that the value of p will remain bounded in the algorithm.

THEOREM 5.1. The algoHthm modified to use the merit function (5.1) converges
globally.

Proof. Given the bound in Lemma 3.9, it suffices to show that ]Pk O.
As p cannot grow without bound, any strategy for increing p by a finite quantity

whenever it is required to increase p implies that there exists an iteration value K
such that Pk PK for all k K. We consider only iterations of this form. For k K,
from (5.4), (5.8) and condition MC2,

(a)- (a-l) av -uZ..allpll.
om the boundedness of (Assumption A3), it follows that

(5.10) -1I 0.

If []p 0, convergence follows from Lemma 3.9. Otherwise, if for a subsequence
]]Pk]] > e, from (5.10) we must have ak 0 along the subsequence, and from the
termination conditions for the linesearch (5.4), (5.5), and (5.6), k 0, as the step
required to satis condition (2.16) is uniformly bounded away from zero (see (3.59)
and (3.60)). Finally, from (5.6) we must also have 0.

In the following relationships we drop the subscript k corresponding to the itera-
tion number, and we denote by a tilde the value of functions evaluated at x +p (i.e.,
e (z + p)).
om the definition of the merit function (5.1),

() (0) a+ r(e- c-) + re- llc-I,
+ ( F ) + (lle- I1 (1 )llc- II,).

For the last term, from (5.7a) and (5.7b), it follows that

(,) (o) < (gTp + AT(e- c-) + CT- cwlIc-
+ ( F CgTp) + pile c AplI,,.

If we use again (5.7a) and (5.7b) on the terms associated with the multiplier estimates
(given that by assumption A 4- >_ 0), and the Taylor series expansions for F and c,
we obtain

() (0)

_
gTp / Ej(j / bj)lj cj ap 4- (1 ()ATc

ATc + (1 C)Tc ’PlI- II,, + O(II’PlI).
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After simplifying this expression we have

() (0) < (r+ ( )%- llc-iI) + vllllll- ii +
Replacing this bound in (5.6) implies

0 < (1 a)A + 2l[[c-[p + O(l[p2).

Since from (5.8) and condition HC2, A --svU]p]l 2, and we have sumed that
lipS] > e, it follows by taking limits along the subsequence that

0 -(1 a)He2.

However, this is not possible, implying ]Pk 0 for the whole sequence.

Consider now the second merit function (5.2). The subgradient along the search
direction at (Xk, Ak) is given by

g}Pk + [c-(x}) ADkA}pk pkc-(xk)TAkpk

where

=_ g[p + A )Tc- p ll -(x )ll

Note that Ak >_ 0 implies

(kik + pkc-)T(Akpk + C) O.

In this case it is not immediately evident that Pk remains bounded. The conver-
gence proof we give is similar to the one introduced in 3. The definition of p given
in that section will be preserved, except c- s is replaced by c-.

THEOREM 5.2. The algothm modified to use the merit function (5.2) converges
globally.

Proof. Again, from Lemma 3.9 it is enough to show that Pk O.
First sume that p is bounded. The argument used is similar to the one in

Theorem 5.1. om (5.4), (5.8), condition MC2 and the boundedness of , (5.10)
must hold also for this case.

If ]]pk O, convergence follows om Lemma 3.9. Otherwise, if for a subsequence
Pk > e, from (5.10) we must have ak 0, and from condition (5.6) and the
boundedness of the step to satis (2.16), Gk 0.
om (5.2), (5.7a) and (5.7b), we also have (we again drop the index k in the

following relationships, and use a tilde to indicate values at x + p)

+

and again using (5.7a) and (5.7b) on the terms associated with the multiplier esti-
mates, we obtain

(a) (0) a(gTp + ( )Tc- pllc-II 2)
+  211c-II (11511 +  pll -II) + O(ll pll )
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Replacing this bound in (5.6) implies

0 < (1 --o’)&A 4" =ll-II (ll :ll + 1/2pll -II) + o(ll p[l=).

Since from (5.8) and condition HC2, z _< --/.gllpll, and we have assumed that

IlPll > e and p is bounded, it follows by taking limits along the subsequence that

0 <_ -(1 a)/l,He.2.

However, this is not possible, which implies Ilpa II 0 for the whole sequence.
Assume now that pk grows without bound. In this case we have that for all

iterations where the value of the penalty parameter is increased

The proof of this result is basically that of Lemma 3.10.
possible to show that we must also have

From these bounds it is

for all k (the proof is similar to the one for Lemma 3.11), implying p --+ 0 and the
convergence of the algorithm. D

6. Numerical results. In this section we present numerical results obtained
from an implementation of our algorithm. As a first step we have modified the code
NPSOLo We have called the modified routine INPSOL. Apart from the definition of
the search direction all other aspects of INPSOL are identical to those of NPSOL. A
detailed description of NPSOL is given in Gill et al. [15]. It should be noted that
NPSOL does not incorporate linear constraints into the merit function. An initial
point is obtained that is feasible with respect to the linear constraints and thereafter
feasibility is retained (by incorporating the linear constraints in the QP subproblem).
On many practical problems the feasible region with respect to the linear constraints
is compact. On such problems this approach ensures Assumption A2 is satisfied, and
Assumption A1 is implied by Assumption A3.

The purpose of the testing reported is to demonstrate that the efficiency and
robustness of the modified algorithm are comparable to those of NPSOL. Naturally,
we can only test the hypothesis on the domain of problems NPSOL is designed to
solve, namely, problems having a small number of variables and constraints, although
on these problems the opportunities for improvement are limited, as we discuss later.
What this implementation really tests is whether the introduction of flexibility in the
determination of the search direction has a significant cost. The parameter/c was
set to infinity to avoid differences with NPSOL arising due entirely to the linesearch.

6.1. The search direction. The algorithm described in 2 allows for consider-
able flexibility of design. We describe here the specific choices made in our implemen-
tation. The search direction pk is computed according to the following steps. (The
subscript k is dropped from now on.)

1. An initial feasible point for each QP subproblem, P0, is obtained following the
same procedure as NPSOL. No special effort was made to satisfy conditions (2.18)
since on the problems tested no failure was detected that could be attributed to the
size of
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2. The active-set method used in NPSOL was terminated at i5, the first stationary
point. The multipliers r at 15 are then computed. Define {r as #j rj Ilaj II.

3. Let {M denote machine precision. If

(6.1) Vj, j >_--V/M,

then/5 is taken as the search direction.
4. If (6.1) does not hold a step that moves off a subset of the active constraints

is computed. To identify the set of active constraints to be deleted, define 71"min

min #, and introduce a vector e, as

(6.2) (ex)j -= { Ilaj[10 otherwise.ifj _< 10-37rmin,

5. There is also a limit of 50 on the maximum number of constraints to be
deleted. If (6.2) is satisfied by more than 50 active constraints, only the ones having
the smallest multipliers are deleted. For most problems this limit has no effect, since
the total number of constraints is less than 50. This limit was introduced to limit the
cost of refactorization for the Jacobian matrix.

6. The direction d that moves off the selected constraints is obtained as the
least-length solution of the system Au e that is, we define

d Y(AY)-lex,

where Y denotes a basis for the range-space of AT.
7. We obtain the search direction p from (2.21), as

P 5 otherwise,

where was defined as in (2.26) with /M 101 and slp 100 (with this value the
step/5 + d is accepted in nearly all cases).

8. Finally, the multiplier estimate used to define the linesearch is taken to be r
if p =/5. Otherwise, it is taken to be the least-squares estimate #L obtained from

AAT#L Ag.

6.2. Test problems. The two algorithms, NPSOL and INPSOL, have been
compared by solving a collection of 114 problems from the literature. The problems
have been obtained from the following sources.

(i) Problem 1 is the example problem distributed with NPSOL; its description
can be found in [15]. Problems 3 and 4 are slight reformulations of the same problem,
where the bounds -1 _< x3 _< 1 have been replaced by.the constraint x _< 1. Problem
3 uses the starting point

(1 2 11 2 2 I)3 3 I0 3’ 3 3 3 3 3

(ii) Descriptions for problems 6 and 12-15 can be found in [25]. The version of
problem 6 considered is the one corresponding to a value T I0. Problems 12 and
13 start from point (d) for Wright No. 4 as indicated in the reference, while problems
14 and 15 start from points (a) and (b) for Wright No. 9, respectively.

(iii) A description of the SQUARE ROOT problems (17-20) and of EXP6 (9) can
be found in Fraley [14].
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(iv) Problems 21-30 were obtained from Boggs and Tolle [2].
(v) All problems having names starting with HS are from Hock and Schittkowski

(vi) Problems 85-95 can be found in Dembo [8].
All the above problems have been used in the past to test NPSOL. It should be

noted that the problems in this group are small; the average number of variables is
10, and the average number of constraints is 6. Nevertheless, many of these problems
are considered hard to solve. Moreover, for some of these problems the assumptions
made to establish the convergence results fail to hold; for example, in some cases the
Jacobian of the active NP constraints at x* is singular, or no feasible points exist for
some QP subproblems. In problem 42 no feasible point exists for NP.

The algorithms have also been tested on another group of problems.
(vii) The structural optimization problems 99-114 are from Ringertz [30]. The

letters I and E in the problem name indicate if the formulation used included explicitly
the displacement variables (E) or eliminated them in advance. Also, the following
number (10, 25, 36, or 63) denotes the number of bars in the truss considered. Finally,
whenever a number is included at the end of the name (006, 040, or 060), the initial
point taken has been modified to be xj 6, 40, or 60, respectively.

These problems have been introduced due to the atypical behavior of quasi-
Newton SQP algorithms on them. For this group, the ratio of QP to nonlinear
iterations is large when compared to the size of the problem; on the first test set
(problems 1-98) the average ratio for NPSOL is 2 QP iterations per nonlinear itera-
tion, while on problems 99-114 the average ratio is 30.

The normal behavior of NPSOL on the first set of test problems is to require a

relatively large number of QP iterations in the first few nonlinear iterations. Typically,
the number of QP iterations declines exponentially until near a KKT point, when
only one iteration is required. The STRUC problems depart from this "standard"
behavior, in the sense that the number of QP iterations declines much more gradually.
(Although only one QP iteration is required in the end, most nonlinear iterations
require more.) This offers the possibility of observing the reductions that can be
achieved by using the early-termination criterion, with limited distortion from the
asymptotic behavior of NPSOL.

Finally, the problems in this second group are larger than the ones presented
above; the average number of variables is now 55, and the average number of con-
straints is 100. For all the reasons mentioned, this set of problems provides a better
environment in which to test the ability of the proposed early-termination criterion
to reduce the number of QP iterations.

6.3. Computing environment. Version 4.02 of NPSOL was used in these com-
parisons. For this test set, all parameters used in the code have been fixed at their
default values (see [15]). No attempt was made to improve the results by selecting
a different set of parameters. It would be difficult to compare the relative effort to
adjust input parameters for the two algorithms. The runs were performed as batch
jobs on a DE(:] VAXstation II with 5 Mb main memory. The operating system was

VAX/VMS version 4.5, and the compiler used was VAX FORTRAN version 4.6 with
default options.

6.4. Results. The results obtained from running both algorithms on the test set
are presented in Tables 4 and 2.

The parameters chosen to characterize the relative performance of both algo-
rithms have been: the number of outer (nonlinear) iterations for each. problem; the
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TABLE

Average behavior: NPSOL vs. INPSOL.

Problems

All 1-98 99-114

Nonlinear iterations .988 .979 1.044

Function evaluations .994 .999 .963

QP iterations 1.190 1.112 1.884

CPU time 1.043 1.022 1.200

number of calls to the routine computing the values of the objective function, the
constraint functions and their derivatives (function evaluations); the total number of
inner (QP) iterations for the problem (this includes the number of iterations nec-
essary to compute a feasible point); and the running (CPU) time needed to solve
the problem. The results corresponding to both algorithms are given as a single en-
try in the tables, with the figures separated by a slash / symbol, in the form
NPSOL result/INPSOL result.

Given that most of the problems are not convex, the algorithms may converge
to different KKT points. Three such events occurred. Another possible outcome
is failure---that is, the algorithm terminates without finding a solution, because the
iteration limit has been exceeded, because no significant progress can be made at the
current point with respect to the merit function, or because the objective or constraint
functions need to be evaluated at a point for which they are not defined in the code.
Such failures are indicated by a long dash (--).

For the set of 114 problems, NPSOL was able to find a KKT point in 107 cases,
while INPSOL was able to solve 105 problems. We should emphasize that only the
default value of the input parameters were used. Undoubtedly adjustment of the
input parameters on the problems that failed would have led to more successes. The
figures illustrate the reliability of INPSOL.

Table 1 presents a summary of the results for the four quantities monitored in
Table 2. The average values have been computed as the geometric means for the ratios
of the values for NPSOL and for INPSOL; that is, averages larger than one indicate
that the corresponding value for NPSOL is larger than the value for INPSOL. Also, the
averages exclude those problems where one of the algorithms failed. Separate entries
have been provided for problems 1-98 (the smaller problems), and for problems 99-114
(the structural optimization problems).

We now comment briefly on the implications of these results.

(i) The early-termination rule seems to behave very well regarding the numbers
of nonlinear iterations and function evaluations; even if we are now using a search
direction of "worse quality" than in NPSOL, the numbers are very close for both
algorithms.
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(ii) The number of QP iterations is reduced by 20% for the complete set. When
judging this figure we must take into account that the problems are small, implying
that the number of QP iterations required per nonlinear iteration is also small. (In
fact, the average value for the test set is 5.6 QP iterations per nonlinear iteration.)
The opportunity for improvement is correspondingly limited. Moreover, both codes
use the active set at the solution of the previous QP subproblem as a prediction
for the correct active set in the current subproblem, resulting in a small number
of QP iterations close to a KKT point. As a result, significant savings achieved
by incomplete solution of QP subproblems in the early iterations are masked by a
large number of subproblems requiring only a few QP iterations. As an example, for
problem 98 the largest number of QP iterations needed in any nonlinear iteration is
reduced from 57 for NPSOL to 15 for INPSOL. This effect is much less clear when we
look at total numbers of QP iterations (244 for NPSOL vs. 170 for INPSOL). Recall
that it is necessary in any implementation to limit the number of iterations taken to
solve the subproblem. This large reduction in the maximum number of iterations is
encouraging. Moreover, it indicates that INPSOL and NPSOL took quite different
paths to obtain a solution on many of the problems. In the light of this fact the
similarity of performance is quite remarkable. Finally, the early-termination rule still
requires a feasible point, and the feasibility phase is the same as in NPSOL. When
this phase accounts for most of the total number of iterations, as with the STRUC
problems, the possibility of improvement is further diminished.

Nonetheless, it should be noted that for problems 99-114 the improvement ob-
tained is significantly greater than 20%, as the mean ratio is now 1.88; in fact, when
we look only at the larger problems, the relative performance of INPSOL improves
markedly. This offers the promise that for even larger problems the results obtained
may be substantially better than the values shown above.

(iii) The CPU time required by INPSOL is lower than the time for NPSOL, but
by a factor that is much smaller than for the number of QP iterations. This is due
not only to the fact that function evaluations can be expensive when compared to the
effort to solve each QP subproblem, but also to some details in the implementation
that have been chosen to affect the number of QP iterations, even at the expense
of running time. For example, the multiplier estimate used for the linesearch (the
least-squares multiplier) is expensive to compute when many constraints are deleted
in the last step, as the factorization for the Jacobian of the active constraints must
be updated. There are still options to be explored that might reduce the CPU time
for the modified algorithm.

7. Acknowledgments. We are grateful to the referees for their effort at ref-
ereeing a long and difficult paper. Their care and attention to detail resulted in a
substantial improvement over the first version of this paper. The prodding of one
referee in particular led to our weakening our assumptions and including considerable
new material in the paper.
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No. Problem name

TABLE 2
Numerical results.

Nonlinear Function QP
iterations evaluations iterations

CPU
time (s)

NPSOL SAMPLE PROBLEM
2 SINGULAR
3 HEXAGON
4 HEXAGON (ALT. START)
5 LC7
6 ALAN MANNE’S PROBLEM
7 ROSEN-SUZUKI
8 QP PROBLEM
9 EXP6
10 STEINKE2
11 NORWAY
12 MHW4
13 MHW9
14 MHW9 INEQUALITY
15 MHW9 INEQUALITY 2
16 WOPLANT
17 SQUARE ROOT
18 SQUARE ROOT 2
19 SQUARE ROOT 3
20 SQUARE ROOT 4
21 BT1
22 BT2
23 BT3
24 BT4
25 BT5-HS63
26 BT6--HS77
27 BT7
28 BT8
29 BT9-HS39
30 BT10
31 BT11-HS79
32 BT12
33 BT13
34 POWELL TRIANGLES
35 POWELL BADLY SCALED
36 POWELL WRIGGLE
37 POWELL-MARATOS
38 HS72
39 HS73 (CATTLE FEED)
40 HS107
41 MUKAI-POLAK
42 INFEASIBLE SUBPROBLEM
43 HS26
44 HS32
45 HS46
46 HS51
47 HS52
48 HS53
49 PENALTY1 A
50 PENALTY1 B
51 PENALTY1 C
52 HS13
53 HS64
54 HS65
55 HST0
56 HS71
57 HS74
58 HS75
59 HS78
60 HSS0
61 HS81
62 HS84
63 HS85
64 HS86 (COLVILLE 1)
65 HS87 (COLVILLE 6)
66 HS93
67 HS95
68 HS96
69 HS97
70 HS98
71 HS99
72 HS100
73 HS104
74 HS105
75 HS108 (HEXAGON)
76 HS109
77 HSll0
78 HSlll

Failed to solve the problem.
Converged to a different minimizer.

12/13
15/15
15/16
11/11
79
17/17
8/8
8/10

416
10/10
3o/19t
28/23
41/14
/o.

9/9
2/2
12/12
6/6
15/15
31/31
17/17
13/13
s/8
9/9
27/27
32/32
23/15
12/12
34/32
6/6
7/7
4/4
11/11
19/0.

2/4
55/55
2/2
2/2
2/2
16/16
6/7
29/15
22/19
29/43
8/9

lO/26
6/8
lO/lO
8/8
/4
74
_6/7
11/8
12/12
1/1
1/1
3/3

14/14
18/18
43/--*
24/32
11/lO
6/6
41/49

16/18
16/16
21/23
16/14
9/11
18/18
11/11
9/11
35/57
--/6
5/7
18/15
56/28
38’28
58/27
29 33
36/36
9’9

19 ’19
14’14
5’5
18’18
9 ’9

21 ’21
56 ’56
19’19
1616
11’11
12 ’12
57’57
44’44
37 ’16
15 ’15
69 ’55
7’7

45/34
4/4

32/29
35/26
13/16
40/37
9/9

23/15
38/57
---/14
34/13
14/12
42/24
59/40
80/24
44/35

1111
13/13
8/8
16/16
32/32
17/17
14/14
0/0
10/10
28/28
34/34
36/23
13/1
60/40
6/6
8/8
4/4

27/18
13/13

67/32
152/65
13/10
47/60
16/16

14/25
7/9
11/11

15/15

11/11
18/14
14/14
1/1
1/1
3/3

18/18
23/23
971--
57/87
25/29
24/15
44/52

3.69/3.61
1.03/1.05
4.41/4.41
3.56/3.26
.76/.95

21.13/21.92
.81/.81

1.10/1.04
1.96/3.08
--/.87

1.23/.65
1.31/1.25
3.71/2.31
3.41/2.73
4.83/1.77
6.85/7.17

.81.83

.71/.70

.19/.19

.92/.92

.58/.58
1.52/1.54
3.36/3.43
1.25 1.44
.95/1.19
.48/.52

1.05 1.06
3.04 ’3.04
2.61 ’2.62
3.27 ’2.28
.85/.85

2.77/2.39
.44/.44

2.77/2.56
1.08/1.11

.25/.38
5.26/4.98
.1S/.14
.19/.16
.19/.16

20.01/16.49
14.77/11.77
24.35/11.65
1.29/1.22
2.34/3.33
.70/.78

3.33/--
.53/.67

1.17/2.68
.72/.90

1.15/1.15
.92/.92

1.57/1.60

.62/.64
1.63/1.23
1.36/1.38
.15/.15
.17/.15
,40/.41
.43/.44

3.99/--
2.07/2.02
3.36/3.37

27.14/
6.78/9.36
3.23/3.26
.78/.69

8.08/9.05
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TABLE 2 (cont.)
Numerical results.

Nonlinear Function QP CPU
No. Problem name iterations evaluations iterations time

79 HSll2 (CHEMICAL EQ.) 19
80 HSll3 14
81 HSll4 18
82 HSll7 (COLVILLE 2) 17
83 HSll8 (LC PROBLEM) 4
84 HSll9 (COLVILLE 7) 12
85 DEMBO 1B 281
86 DEMBO 2-HS83 4
87 DEMBO 3 9
88 DEMBO 4A 19
89 DEMBO 4C 13
90 DEMBO 5-HS106 17
91 DEMBO 6-HSl16 36
92 DEMBO 7 19
93 DEMBO 8A 33
94 DEMBO 8B 29
95 DEMBO 8C 25
96 OPF 18
97 GBD EQUILIBRIUM MOD. 5
98 WEAPON ASSIGNMENT 96
99 STRUCI10KON 18
100 STRUCE10KON 26
101 STRUCI10VAN 2.3j
102 STRUCE10VAN
103 STRUCI25006 42
104 STRUCE25006 20
105 STRUCI25DAT 11
106 STRUCE25DAT 52
107 STRUCI36DAT 23
108 STRUCE36DAT 29
109 STRUCI63040 117
110 STRUCE63040 375j
111 STRUCI63060 --*
112 STRUCE63060 63
113 STRUCI63DAT 246
114 STRUCE63DAT 52

Failed to solve the problem.
Converged to a different minimizer.

54/-- 2.78/--
38/36 3.12/3.41
36/33 3.81/3.60
96/39 6.75/5.34
20/20 1.35/1.40
41/47 4.25/5.60
296/--

4/4 .54/.54
37/20 2.01/1.78
24/24 3.53/3.31
20/23 3.10/3.20
30/31 2.90/3.04
144/248 21.84/29.65
126/68 15.54/9.82

7.52/9.17
6.51/6.45

105/99
88/73
89/65 6.19/6.o6
53/51 468.12/456.1o
37/26 6.22/6.10

244/170 120.78/114.93
65/42 13.67/11.73
87/84 17.68/20.75
54/51 16.30/13.85
--/91 /19.44
147/85 92.44/80.99
178/95 357.83/260.79
24/22 24.75/27.11

687/65 647.13/.191.44
59/46 120.79/108.02
87/90 971.16/1021.9

6116/3091 8182.1/7159.0
3545/-- 77286.6/--

/3899 /8281.0
6675/3407 25090.2/33228.4
9043/2060 12591.6/11424.5
8049/2858 41793.8/22740.7
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LOCAL CONVERGENCE OF SQP METHODS IN SEMI-INFINITE
PROGRAMMING*

G. GRAMLICHt, R. HETTICH:, AND E.W. SACHS:

Abstract. In this paper we begin with pointing out how a semi-infinite programming problem
can be reduced locally to a problem of finite dimensional programming. Such a reduction has the
advantage that efficient numerical methods like sequential quadratic programming (SQP) methods
can be applied. However, the reduced problem involves constraint functions that are defined only
implicitly. Values of these functions and their derivatives must be computed iteratively with control-
lable errors. We interpret them as perturbations of the correct constraints and apply an SQP method
with a Broyden-Fletcher-Goldfarb-Shanno (BFGS) update. Extending the convergence analysis by
Fontecilla, Steihaug, and Tapia for these methods to include perturbations of the constraints and
their derivatives, we are able to show q-superlinear convergence and at the same time to indicate at
which rate the error in the calculation of the constraints must be reduced as the iteration progresses.

Key words, semi-infinite programming, SQP methods, superlinear convergence

AMS subject classifications. 65K05, 49D39, 49D15

1. Introduction. In this paper, we consider semi-infinite programming prob-
lems of the following type:

(SIP) Maximize F(z) subject to z E Z C n,
where the feasible set Z is assumed to be nonempty and defined by

(1.1) Z (z g(z,t) <_ O for all t e B} c n

with B C m, a compact set given by

B := {t hJ(t) <_O,j J} c1Rm

for a finite set of indices J. All the functions

are assumed to be everywhere twice continuously differentiable with Lipschitz-continu-
ous derivatives. More generally, instead of only one constraint g(z, t) G 0 we could
have finitely many in (1.1) and, in addition, a finite number of equality constraints
e(z) O. Since the following algorithm and convergence theory can be extended to
this case in an obvious way, the formulation of (SIP) has been chosen for simplicity.
The same is true for so-called generalized semi-infinite programming problems, where
B also depends on z (i.e., hd hd(z, t) are considered). In this case more compli-
cated expressions for the derivatives of the Lagrangians, etc. occur (cf. [16], [11] for
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1994.
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instance). However, in principle there is no serious difficulty in dealing with these
problems in the same way as with (SIP).

It is well known (cf. [10]) that under some regularity assumptions, the problem
can be reduced locally to a finite optimization problem with constraints v(z) <_ O,
where the functions v(z) := g(z,t(z)) are C2 and are defined implicitly via the
local maxima t(z) of g(z,t), t E B. This reduction is presented in 2 and forms
the basis of so-called reduction methods in 3. A special one is discussed in 4:
The reduced problems are solved by the sequential quadratic approximation (SQP)
technique using augmented Lagrangians and quasi-Newton BFGS approximations of
the Hessian. Theorem 4.2 gives the local q-superlinear convergence of this method as
an immediate consequence of theorems in [5].

In [14] the following question was posed using the usual Lagrangian instead of the
augmented Lagrangian: If the exact maxima t(z) were replaced by approximations
(z), what are sufficient conditions on lira(z) (z)l for superlinear convergence?
Under strong assumptions on the problem it was shown in [14] that II(z)- t(z)ll-
O(llz- z, 2) is sufficient (and O(llz- z, is not).

Under common definiteness assumptions on z,, it was shown in [6] that the su-
perlinear convergence is retained under the assumption of

II(z + s) t(z + s)l + II(z) te(z)ll <_ Kmax{llz z, ll, IIz + s z, ll}llz + s

In this paper, using results from [5], we give (under the same assumptions on z, as in
[6]) a simpler proof of superlinear convergence under the following, more transparent
assumptions on the approximation of t(z) by (z):

II  (z) te(z)ll o(llz z.ll)

and (6.10) (equivalent to (6.9) in Assumption 6.4)

for z "close" to z, and "small" s (cf. Assumption 6.4). The latter bound is intuitively
clear by observing that in the second derivatives of vl (cf. (2.4)), the derivative tz(z,)
occurs. Therefore, a second order theory is likely to require good approximations such
as (6.10) for the derivative. We note that II(z) t(z)ll O(llz z, 2) follows from
our assumptions.

This paper is concerned mainly with an analysis of the convergence properties. We
note that the algorithms considered in this paper have been implemented and tested
on various problems arising in the literature, see [6]. Furthermore, these methods
have been applied successfully to the path planning problem in robotics, see [8] and
[7], a complex and highly nonlinear problem of practical interest.

2. Local representation of the feasible set. Define the parametric program-
ming problem as

(PAR(z)) Maximize g(z,t) subject to t e B.

We denote by v(z) the marginal value function of (PAR(z)), i.e.,

v(z) :-max{g(z, t) e B}.

Obviously we have

zZ if and only if v(z)<_O.
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Therefore, (SIP) can be stated equivalently as an optimization problem with only one
constraint"

(SIP) Maximize F(z) subject to v(z) <_ O.

However, as v(z) is generally a complicated, nondifferentiable function, there is no
substantial progress in this reformulation.

The goal of the following is to represent v(z) locally near almost every 2 E n by

v(z)= max{v(z) geL}

with smooth (C1- or C2-) functions vt, ILl < oc, defined on some neighborhood of
2. This can be achieved under certain regularity assumptions that are of a generic
nature.

Denote for given 2 tin with, g L, L not necessarily countable,

all local solutions of (PAR(2)). Obviously

2Z ifandonlyif g(2,) O, L.

Then we define v(z) g(z, ). This will be extended below by letting { depend also
on z. For every g L, consider the Karush-Kuhn-cker system

E o,
(KKT(2)) eg(e)

hi(t) O, j e g(2),

with

Jt(2) {j e J hj ({) 0},

where t is a local solution of (PAR(2)).
Suppose that the linear independence constraint qualification (LICQ) holds in {,

i.e.,

(2.1) h(t), j e J(2), are linearly independent.

Then a solution of (KKTe(2)) is given by 2, {t, &’J, j J(2), where ,J _> 0
are the unique Lagrange multipliers. Next, we give assumptions which ensure that
(KKTe(2)) defines implicitly functions t, a’j on a neighborhood Ue of 2 such that
t(z), a

, (z), z e Ue, are solutions and Lagrange multipliers of (PAR(z)).
DEFINITION 2.1. The local solution of (PAR(2)) is called nondegenerate, if the

following conditions hold:
(i) the linear independence constraint qualification (LICQ), cf. (2.1),
(ii) the strong second order sufficiency condition (SSOSC), which requires that

with the Lagrangian

Z/(z, t, := t)

we have
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rf,(,,)v < o fo e T \ {0},

where

Tt "= { lThJt() O, j e J(2)},

(iii) the strict complementary slackness (SCS), i.e.,

(t’J > O, j E Jt(2).

The following theorem is standard in semi-infinite programming and is easily
proved by means of the implicit function theorem (see [11], [12]).

THEOREM 2.2. Given 2 jn. Let be a nondegenerate local solution of
(PAR(2)). Then there exists a neighborhood U of 2 and continuously differentiable
functions

t’U-B, at’Y(2) "U+, jeJt(2),

with

t(2) , a’i(2) (’, j e J(2),

such that
(i) for every z U the point t(z) is a nondegenerate local solution of (PAR(z))

with (unique) Lagrange multipliers a,(z);
(ii) the derivative-matrices tz(2) mn :,J(2)lnCz(2 are the unique

solutions of the system

with

() ,()

jEj(5)

and

H() h()
jEJ(5)

(iii) the (local) marginal value function

(.) v(z) := a(z, t(z))

is twice continuously differentiable on U with derivatives

(.31 (z) (z, t(z)),
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G(z) t*(z))

The next theorem is easily proved by means of Theorem 2.2 and continuity argu-
ments (cf. [12]). We first define the basic assumption.

Assumption 2.3. For given 2 E n let all local solutions t, t E/, of (PAR(2)) be
nondegenerate and let L be a finite set of indices, := {1,2,...,nc(2)}.

Remark 2.4. Assumption 2.3 for 2 z,, z, a (local) solution of (SIP), is one of the
assumptions of Theorem 4.2. This theorem states the (local) superlinear convergence
of a special algorithm from the class introduced in 3. If one is only interested in this
theorem, it would be sufficient to assume only that all global solutions re, of (PAR(z,))
(for which g(z,, t,) 0) are nondegenerate, which implies that there are only finitely
many of them, because B is compact and nondegenerate solutions are isolated. For
numerical reasons it is necessary to take not only the global but also local solution tt

of (PAR(z)) into account. Therefore, it is more appropriate to require Assumption
2.3.

THEOREM 2.5. Suppose that Assumption 2.3 is valid for a given 2 n. Then,
with te, vt as in Theorem 2.2, we have that

(i) there exists a neighborhood U(2) of 2 such that for all z U(2) the set of local
solutions of (PAR(z)) is given by tt(z), 1,...,no(5),

(ii) a point z U(2) is feasible for (SIP) (i.e., z Z) if and only if

v(z) <_ O, t 1,...,n(2).

As an immediate consequence of Theorem 2.5, in U(2) we can replace (SIP) by the
following "reduced" problem with finitely many constraints:

(SIPred (2)) Maximize F(z) subject to z E Zred(2), where

(2.6) Zred(2) {z vg(z) <-- O, g-- 1,... ,no(2)},

(see (2.2), (2.5) for the definitions of vg and n(2)).
If the U in Theorem 2.2 are chosen as large as possible, the set

(2.7) Umax(2):-- ’ U
t=i

can be considered as the maximal set on which (SIPred(2)) is defined. For
z Umax(2), at least one of the paths t(z) is lost (or no longer describes a non-
degenerate local solution).

It is helpful to keep the following facts in mind (U(2) as in Theorem 2.5):
U(2)n Z U(2)F Zred(2), i.e., in U(2) we have the equivalence of (SIP) and
(SXPred (2));
Umax(2) fZ C Umax(2)NZred(2), i.e., consideration of Zred(2) in Uma(5) \
U(2) may lead to points z infeasible for (SIP);
for all z e V(2) the reduced problem (SIPred(Z)) is identical to (SIPred(2));
for z e Urnax(2) \ U(2), problem (SIPred(Z)) has at least one constraint more
than (SIPred (2)),
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for z Umax(2), at least one constraint of (SXPred(2)) is no longer present in
(SIPred (z)).

Thus, intuitively we may think of n as a complicated quilt with different reduced
problems (SIPred(’)) on the respective patches. Note, however, that there may be
points that are not contained in U [.J{Umax(2)]2 e/Rn}, because U contains only
points in n for which all local solutions of (PAR(z)) are nondegenerate. However,
it follows from results in [20], that points not in U may be considered as exceptional
in some specified sense.

3. Reduction methods. The considerations in 2 give rise to the following
method.

Conceptual Reduction Method

Given 2- z E n. Perform steps (i)-(iii).
(i) Determine the local solutions t, g 1,..., nc(z/), of the problem

(PAR(z/)) Maximize g(z/, t) subject to t e B.

(ii) Starting with z/’ z carry out k/steps of a nonlinear programming (NLP)
algorithm on the reduced problem

(SIPred(Z/)) Maximize F(z)s.t. Yvt(z)- g(z,t(z)) <_ 0, t-- 1,...

Denote the iterates by z/,1,..., z

(iii) Set zTM z/’k*.

The following remarks are important in deriving implementable, efficient algo-
rithms from this concept.

(a) In general, an expensive global search (i) on B is required to determine all
local solutions of (PAR(z/)) and to be able to start a new problem (SIPred(Z/)) which
remains fixed during step (ii). The ideal strategy in choosing the number k/of NLP
steps in (ii) would take z/’k as the last iterate in Umax(Z/) (cf. (2.7)) such that for
no local solution of (PAa(z/,k)), ti(zi’k*), 1,...,nc(z/), g(zi’k*,) > O,
i.e., no "new" maxima of g(zi’k t) lead to infeasibilities. However, the test that
there is no with this property, requires just a step of type (i). Therefore, in [8], k/
is taken as the largest number less or equal to a fixed kmax for which ti(zi’k can
be identified. If in the following, step (i) zTM zi,k proves to have infeasibilities in
local solutions different from the t (z/,k*), t 1,..., nc (z/), backtracking to a former
z/’k*-j is implemented to avoid serious infeasibilities. This is done in a way that a
global merit function can be defined that is reduced in every step and forms the basis
of global convergence results (cf. [8] and remark (d) below).

(b) Note that in (ii) the paths t(z), t 1,... ,nc(zi), must be followed along
z/’j, j 0, 1,..., k/. Contrary to (i), this requires only local continuation starting
from the [, which can be done much more efficiently than a global search. We discuss
the question below as to what accuracy tt(z) should be traced in connection with a
specific NLP algorithm to preserve the rate of convergence to the solution of (SIP).

(c) In principle, any NLP method could be used in step (ii). However, with
regard to an efficient control of k/ (cf.(a)), it is convenient to use algorithms with a
superlinear rate of convergence. It is interesting to note that in the literature only SQP
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methods have been considered up to now. In [12], [18], [15], [3], [17], Wilson’s method
is proposed with explicit use of second order derivatives. The SQP (augmented)
Lagrangian secant method which will also be considered in the remaining sections of
this paper is used in [14], [13], [6], and [8].

(d) To obtain global convergence for the type of method considered above, the
following must be assumed.

(1) In each point of iteration (zi; zi’j) Assumption 2.3 holds.
(2) After a finite number of steps, the reduced problems (SIPred (z)) no longer

change (i.e., no re(z) must be deleted or added).
Then global convergence results from finite programming can be applied in an obvious
way. These usually depend on the construction of a merit function that is reduced
from step to step. In [18] assumption (2) is missing; therefore it could happen that the
reduced problem and, accordingly, the merit function needs to be changed infinitely
often, destroying global convergence. The algorithm with the backtracking strategy
considered in [8] allows to define a global merit function without the assumption of

To assume (1) seems inevitable. Under strong global conditions on the problem,
(1) can be warranted for every starting point. These conditions allow a "global finite
description of Z" by finitely many constraints 9g(z) < 0, where the 9g are appropriate
extensions of ve in the reduced problems (cf. [9]).

4. The reduction method with the SQP augmented Lagrangian BFGS
method as NLP solver. Now we will give a more explicit version of a reduction
algorithm by specifying step (ii) in the conceptional method of 2.

We will use the augmented Lagrangian of the reduced problem (SIPred(2)) with
y z

Then step (ii) with the SQP augmented Lagrangian BFGS method is carried out as
follows"

Given zi, z, Bi,o Bi E :gnn negative definite.

Then, for j 1,..., ki do:

Given zi’j-1, Bi,j-1, perform substeps (iil)-(ii3):
(iil) Compute a solution sJ and multipliers Ai,J of the quadratic programming

problem:

TMaximize Fz (zi’j- T8 t. 8 Bi,j- 18

< o, e 1,..subject to ve z’-1) + %
(ii2) Compute a steplength cj see below).

(ii3) Update with the BFGS update formula

zi,j zi,j nt Ogj 8
j Bi,j B +

yj (yj)T Bi,j-1 sj (Bi,j-l SJ)T
yj rs 8j TBi,j 18J
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where

Set Bi+l Bi,k zi+l zi’k.

Since this paper deals mainly with local convergence results, we refer to common
strategies for a determination of a steplength ay (see, for instance, [2]). It is important
that a strategy is used avoiding the Maratos effect, i.e., that in case of convergence
y 1 is obtained for > i0 with some i0 E N.

For the remainder of this section, assume that z, E Z is a local solution of our
problem (SIP). Let

A, (l E (1,...,no(z,)} g(z,, t) =0}
denote the indices of those points -t for which our constraint g(z,, t) < 0 is active.

We require the following second order sufficient optimality condition to hold in
z, [19], [10].

Assumption 4.1. Let Assumption 2.3 hold at z,. Let the gradients

t t), tEA,,

be linearly independent, and assume that there are A,,t > 0, g E A,, such that (for
el.Vzz

and

for all : 0 with

z, 0
tEA

tEA

T tvz(z, O, E A,.

Note, that Assumption 4.1 is also sufficient for z, to be an isolated local solution of
the following finite, equality-constrained problem:

(SIPd(Z,)) Maximize F(z) subject to vt(z) O, E A,.

With the same arguments as in common SQP theory we make the following
conclusion from this observation.

For z in a small neighborhood of z,, the reduction method with step (ii) as above
will generate the same iterates as the SQP augmented Lagrangian BFGS method (cf.
[5]) when applied to (SIPd(Z,)). The general step of the latter is again given by
substeps (iil)-(ii3) (iterates properly renumbered) with equality constraints

t(zi,j-1 T
8vt(z’j-1) + vz 0, E A,,
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instead of inequalities in (iil).
Therefore, the following theorem is an immediate consequence of results in [5].
THEOREM 4.2. Suppose that Assumption 4.1 holds and c has been chosen such

that LZ*(z,,A,,c) is negative definite. Then the reduction method with the SQP al-
gorithm presented at the beginning of this section as NLP solver produces sequences

{( ..)} ( )ii, and {zi’j } which converge q-superlinearly to ,z* and z, resp.

5. SQP under perturbations. We consider the following reduced semi-infinite
programming problem (SIPd(z,)), where z, is a local solution of (SIP) which satisfies
Assumption 4.1"

(5.1) Maximize F(z) s. t. vZ(z) g(z, tZ(z)) 0 for all e A,,

where

and D is a proper neighborhood of z, (chosen according to Lemma 5.2 below).
For convenience we assume w.l.o.g. A, {1,..., r} and define

Vr)T.V" n ffr by v (v

We assume further that F and v are twice continuously differentiable functions with
Lipschitz-continuous derivatives and introduce the following notation: Let L +r+-- denote the augmented Lagrangian

L(z,A,c) LZ’(z,A,c) F(z) + ikTv(z) +  llv(z)ll 2

where I1" is always the Euclidean norm.
The Diagonalized Multiplier Method by Tapia is formulated as follows.

ALGORITHM 5.1. For given z E , A E r, B e nxn
set A+ L/(z, A, B),
solve Bs -Lz(z, A+, c),
setz+=z+s,
set B+ B(z, A, B), where

/[ n X jr X nxn
__
,r and B" ffn x r X ffnx n _. nxn

are properly defined mappings.

Recall that by Assumption 4.1 we have the following lemma.
LEMMA 5.2. Let z, be a local solution of (5.1) and suppose that Assumption 4.1

holds. Then
(i) the functions f and v are twice continuously differentiable in a neighborhood

Dofz,,
(ii) Vz(Z,) has full rank,
(iii) (TLzz(Z,, A,, c)( ( 0 for all :t" \ {0} with Vz(z,)T( 0 and c >_ O.
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Under these assumptions, the following update formulas (i.e., mappings L/, B) are
well defined. For L/we choose the Newton multiplier update (with B nonsingular):

b/(z, A, B):- A + (Vz(z)TB-lvz(z))-l(v(z)-vz(z)TB-Lz(z,A,c))
(vz(z)TB-lvz(Z))-(v(z) Vz(z)TB-(Fz(z) + CVz(Z)V(Z)))
U(z,B).

In this case b/depends only on z and B. The BFGS formula then can also be redefined
as a mapping depending only on z and B:

B(z,B) := B +
yyT (Bs)(Bs)T
yTS STBs

s s(z,B):= -B-L(z, bl(z,B),c),

y y(z, B) := L(z + s, ld(z, B), c) L(z, ld(z, B), c).

In [5] a complete local convergence analysis of this method has been given. In
the case of semi-infinite programming the computation of v(z) for given z requires an
iterative procedure that in itself can become quite costly. Therefore it is desirable to
carry out these inner iterations only to an accuracy necessary to maintain the overall
convergence properties. Our goal is to control these errors so that we still maintain a
superlinear rate of convergence.

For each z we denote by l(z) the perturbed value of tl(z). In the algorithm, t(z)
enters through the equality constraint vt(z) g(z, tt(z)) 0 such that we set

(.2) #(z) := (z,?(z)).

Note that it is not reasonable to assume that (z) is differentiable. Therefore the
derviative of v also needs to be approximated. Observe that by (2.3)

(z, t(5.3) v(z) =9 (z))

holds. Hence we approximate it by d (.) :5n

(5.4) dgt(z) :- gz(Z, t(z)).

In the sequel we assume for simplicity that we have only one element in A., i.e.,
there is only one te and one ve and we omit the index I. The validity of the following
results for the general case is obvious.

The smoothness assumptions on g yield for z E D and some > 0

II(z) (z)ll <_ ll(z) t(z)ll =,

IId(z) v=(z)ll _< ll(z) t(z)ll.

If one replaces the corresponding quantitities in Algorithm 5.1 by its approximations,
then we obtain the following algorithm.

ALGORITHM 5.3. For given z E ", A r, B Etnx" regular,
set A+ (d(z)TB-ldf(z))-(f(z) d(z)TB-(F(z) + c d(z)f(z))),
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solve B -Fz(z) d0(z)A+ c
set z+ z +
set Fz(z+) F(z) + (dO(z+) d0(z))A+ + c(dO(z+)O(z+) dO(z)O(z)),

r ()(B)r
set B+ B + fiT---- TB

In order to use the framework developed in [5], we define perturbed update map-
pings (note: r 1)

/,

for the Lagrange multiplier and the approximation of the Hessian. Since in [5] condi-
tions on the update maps are given that do not include any smoothness conditions,
we can directly apply their theorems to deduce convergence properties. Set

ll(z,B) (dO(z)TB-ldO(z))-l(O(z) dO(z)TB-(Fz(z) + c

/(z, B)’= B 11 (B)(B)T
TB

where a, 9 are defined by

1 l(z,B):=F(z + a) + dO(z + a)/(z, B) + cdO(z + a)O(z + a)
F(z) dO(z)ll(z, B) cdO(z)O(z),

(z,B):=-S-(F(z) + dO(z)ll(z,B) + c

Notice that in addition to the generality in [5], where/4 and B are given by update
formulas, we also need to approximate the derivative of the augmented Lagrangian in
the second step of Algorithm 5.1. We denote the approximation of Lz(z, , c) by

and

dZ,(.,., .)" .lign x " x . ---+ .ig

d,(z, A,c):= F(z) + d0(z)A + cdO(z)O(z).

In the following definition we list the assumptions on the update formulas.
DEFINITION 5.4. (i) B iS of bounded deterioration if there exist constants a and

a2 such that for each (z, B) in a neighborhood N of (z,, Lz (z,, A,, c)) and for

+ =U(z,B),
(5.7) z+ z- B-Lz(z,A+,c),

B+ (z, B),

we have

with

liB+ Lz(z,, ., c)ll <_ (1 + a15)llB Lz(z,, ., c)ll + a:a-

8" max {llz z, ll, IIz+ z, ll, II.,X+ ,X, ll}.

(ii)/ is z-dominated if there exists a constant (c) < 1 such that for all (z, B) E
N we have

IIL=(z,, ,, )-’z(z,)(+ ,)11 <- (c)llz z, ll.
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(iii) d is consistent at z, if there is e(c) > 0 such that.for all z with IIz-z, II <- e(c)
and all A we have

IId(z, , c) d(z., , c) Lzz(z., A., c)(z z.)l
o(llz- z.ll)/ o(llz z.llll),-

Note that (ii) and Lemma 5.2 imply that for some constant 2 and all (z, B) E N,

IIA/ A.

_
2 IIz z, II.

The following theorem is an extended version of Theorem 3.1 of [5] which takes
into account inexact data in the right-hand side of the equation to be solved at
each iteration. We point out that the regularity of Lzz(Z,,A,, 0), which is part of
Assumption A4 in [5], is not needed in this proof. The following theorem shows that
under appropriate conditions linear convergence with arbitrarily small rate factor
p E (0, 1) is obtained.

THEOREM 5.5. For given zj n, Aj r, Bj nxn
set zj+l U(Zj, B),
solve BjsY -dL(zJ, Aj+, c),
setzj+l--zj+sj,
t +1 (z, ).

Let Assumption 4.1 hold and let Lzz(Z,, A,, c) be negative definite. Assume that 13
is of bounded deterioration, b[ is z-dominated, and dL is consistent at z,. For each
p (0,1) there exists e(p) > 0 such that for all zo, A0, Bo with

llzo z.ll <_ ,(p), ll,Xo X.ll <_ ,(p), llBo L==(z.,,X.,)II <_ ,(p)

the sequence (zJ,Aj) generated by this algorithm is well defined and converges to
(z,, A,) with a linear rate of convergence for zj according to

zy+l z, _< pllzJ z, ll.

Moreover, By and (By)-1 are bounded.
The proof is similar to the one given in [5] if one chooses ex properly. In order to

obtain in [5] line (3.12) from (3.7) we can use the consistency of dL instead of Lemma
2.3 in [5].

6. Convergence proof. In this section we use Theorem 5.5 and results in [5]
to establish the linear convergence and then use a result of [1] to deduce superlinear
convergence. Recall that in (5.5) and (5.6) we estimated the error in the constraint
and its derivative by the error made in the evaluation of the maxima tt(z) of g(z, t) on
B. We make the following assumption on the error. In order to establish a fast rate
of convergence we assume that the error for (z) is reduced at a rate that depends on
the distance from z to the solution z,.

Assumption 6.1. For all z E D we assume that

ll(z) e(z)ll-- o(llz z. II).

This implies in particular that

(6.1) (z.) (z. ),
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and with (5.2) and (5.4)

(6.2) (z,) v(z,) and (z,) vz(z,).

LEMMA 6.2. Let Assumptions 4.1 and 6.1 hold and let Lzz(z,, ,, c) be negative
definite. Then the update for the Lagrange multipliers bl is z-dominated.

Proof. Using (6.1), (6.2), and the Kuhn-Tucker conditions, for any regular matrix
B E JRnn, we have

/(z,, B) (vz(z,)TB-lv(z,))-l(v(z,) v(z,)TB-IF(z,))
(6.) . U(z., B).

Hence

(6.4)

Using the notation

+ . (z, B) U(z,, B).

R(z) := v(z)TB-lvz(z), it(z)"= d(z)TB-d(z),
r(z) := v(z) v(z)TB-(F(z) + c v(z)v(z))),
(z) := (z) d(z)TS-(F(z) + c d(z)(z)),

we can show with (5.5) and (5.6) that for some constant 3 and all z E D

(6.5) max {ll/(z) R(z)ll, II(z) r(z)ll} _< 311(z) t(z)ll

holds. We can write

hi(z, B) R(z)-r(z), /(z, B) [(z)-(z).
With (6.5) we can estimate with some constant 4 for any z D and B in a
e-neighborhood of Lzz(z,, ,, c)

(6.6)

IIZ(z, B) U(z, B)II
-II(z)-(z) R(z)-r(z)ll
[l(z)-((z) r(z)) R(z)-((z) R(z))[(z)-r(z)ll

From [5], Proposition 4.2, it follows that the Newton multiplier update L/ is z-
dominated in a neighborhood of (z,, Lz(z,, A,, c)). Hence for some (c) < 1, we
have

(6.7) ][L(z.,A.,c)-v(z.)(Ll(z,B)- U(z., B))]I (c)llz- z.ll.
We can deduce from (6.6) and Assumption 6.1 that for a sufficiently small neighbor-
hood around z,

(6.8) IIL(z. A.,c)-v(z.)((z,B)-Z(z
2

Both (6.7) and (6.8) applied to (6.4)yield

IIL==(z,,,,c)-v=(z.)(+ ,)11
Iln=(z,,A,,c)-v(z.) ((z, B) U(z, B) /U(z,B) U(z., S))ll
(c) IIz z. II,
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where

(c) (c) + (1 (c))/2 (1 + (c))/2 < 1,

which proves that the perturbed update/g is z-dominated. [:]

LEMMA 6.3. Let Assumptions 4.1 and 6.1 hold. Then the approximation d .for
the gradient of the augmented Lagrangian is consistent.

Proof. We estimate the quantity

D(z, ), c)
:= IId(z,A,c)-d,(z,,A,c) Lzz(z,,A,,c)(z- z,)l

IlF(z) + d(z)A + cd(z)(z) Fz(z,) d(z,)A cdO(z,)(z,)
F=(z,)(z- z,) -(v(z,),)(z- z,) -((z.)v(z,))z(Z

< II&(z) Fz(z,) Fz(z,)(z z,)ll + clldO(z)O(z) Vz(Z)V(z)ll
+ cllv(z)v(z v(z,)v(z,) (Vz(Z,)V(Z,))z(Z z,)l + II(dO(z)
+ II(d(z) v(z))(A ,)11 + II(Vz(z) v(z,))(A A,)I
+ II(v(z) (z,)), ((z,).)(z

The terms involving second derivatives can be estimated with Assumption 4.1 by
O(llz- z, l12). All the others are by Assumption 6.1 of order o(llz- z, ), except for
the second last term which is of order O(llz z, llllA- ,11)- This altogether yields

D(z,.,c) o(11= z.ll) + O(llz =.1111 a.ll),

which shows that d is consistent. [:]

It remains to show the bounded deterioration property for the mapping B. Since
this concerns a statement about the precision with which the Hessian of the augmented
Lagrangian is approximated, we impose an additional condition on the approximation
of t which ensures that the difference quotient ((z+g)-(z))/llgll approaches tz(Z,)g.

Assumption 6.4. For all z E D, z z, we assume that for all s sufficiently
small and some constant a5

(6.9) II(z + ) t(= + ) ((z) t(z))ll < ,(z, )1111,

where we use the notation

a(z,s) max {llz + ,- ,11, IIz- z, ll}.

We note that (6.9) is equivalent to

(6.0) II(z + s) (z) t(z,)sll < ,(z, )1111,

with a constant 6. This assumption implies a similar statement for a composition of
functions.

LEMMA 6.5. Let Assumptions 2.3, 6.1, and 6.4 hold. If :m __, r is
continuously differentiable with Lipschitz-continuous derivative in a neighborhood of
(z,, t(z,)), then Assumption 6.4 implies for

(6.11) p(z) (z, t(z)), iS(z) (z, (z))

that there exists 7 > 0 with

II(z + ) (z) p’(z.)sll < ra(z, )1111
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.for z close to z, and s sufficiently small.
Proof. Set a :-- (z + s) (z) tz(z,)s. Then

where 3’1 is a Lipschitz constant and ?2 is a bound on Ct. Note that by (6.10) the
inequality Ilall <_ tc6cr(z, s)Ilsll holds. Furthermore, observe Ilsll < 2r(z,s) and that
by Assumption 6.1

II(z) t(z,)ll

_
II(z) t(z)ll / lit(z) t(z.)ll

_
(z, s)

holds. From these inequalities altogether the statement of the lemma follows. [3

The following inequality plays a key role for the linear and superlinear convergence
proof.

LEMMA 6.6. Let Assumptions 4.1, 6.1, and 6.4 hold. Then for all z, g g(z, B)
as in Assumption 6.4 and 1 I(z, B)

(6.12)

and for c sufficiently large

(6.13) 2)T < 0.

Proof. In order to show (6.12) we estimate

(6.14) 119 Lz(Z,, A,, )11 <

with

1 IIF,(z + a) F() F=(z,)all,
7= II(d(z + a) df(z))lft(z,B) (v,(z,)A,),all,
3 cl]d(z + )(z + ) d(z)(z) (v(z,)v(z,))]l.

Then by the mean value theorem

(6.15) 71 _< (z, )llll.

With (6.3) we use A, =/(z,, B) to derive

< II(d(z + ) d(z) Vzz(Z,))ll(z,B)l
+ IIvz(Z,)(t(z,,S)- t(z, S))ll.

We use (5.8) to estimate the second term. For the first term we can apply Lemma
6.5 with (z, .)= gz(Z, .) and obtain

(6.16) r/2 --( /’i;100"(Z, )1111"
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We can again use Lemma 6.5 with (z, .) gz(z, .)g(z, .) to estimate a by

(6.17) /3 <_ ,o-(z, )1111.

Hence (6.14)-(6.17)imply (6.12).
In order to show (6.13) observe that with (6.12) for 8 > 0

1T TLzz(z,,A,,c) / (I Lzz(Z,,A,,c))T
<_ TLzz(Z,,A,,c) + 8(z, )1111,

which is negative if c is large enough, z is sufficiently close to z,, and [Ig[I is sufficiently
small.

LEMMA 6.7. Let Assumptions 4.1, 6.1, and 6.4 hold. Then the update B .for
the approximations of the Hessian of the augmented Lagrangian fulfills the bounded
deterioration property.

Proof. Recall that for J and J the inequality (6.12) holds. It is well known; see
e.g., Theorem 4 in [4], that this implies the bounded deterioration property.

At this point all the requirements for linear convergence have been shown and we
can apply Theorem 5.5 to derive the next theorem.

THEOREM 6.8. Let Assumptions 4.1, 6.1, and 6.4 hold. For each p E (0,-1) there
exist _c(p), e(p) > 0 such that .for all c, zo, ;ko, Bo with c >_ c(p)

Ilzo z.II _< (p), I1o .11 <_ (p), IIBo Lz(Z,, A,, )11 <_ (p)

the sequence (z,A) generated by Algorithm 5.3 is well defined and converges to
(z,, ,) with a linear rate of convergence for zj according to

Ilzj/l z.ll <_ pllz z.ll,

and Bj and Bj )- are bounded.

We can also deduce the superlinear convergence from Lemma 6.6.

THEOREM 6.9. Let Assumptions 4.1, 6.1, and 6.4 hold. Then there exists c, e > 0
such that for all c, z0, A0, Bo positive definite with c >_ c,

Ilzo z, _< , I1o-.,11-< , IlBo- Lz(Z,,A,,c)ll <- e

the sequence (zJ,Aj) generated by Algorithm 5.3 is well defined and converges to
(z,, A,). The rate of convergence for zj is q-superlinear, i.e.,

lim
Ilzj+l z,

O.

Proof. From Theorem 6.8 we can deduce the convergence and the linear rate of
(z) converging to z,. In order to invoke Theorem 3.2 in [1] we must prove that

(6.18)
IIlj Lz(z,, ,, c)j

<

and

(6.19) ()TM < 0.
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We will use the fact that linear convergence holds, which implies that for some
pe (0,1)

From Lemma 6.6 we obtain

E IIj -Lzz(Z*"*’c)’ll < Epllz -z, II < oe.-- 11 j.-1

Due to Theorem 3.2 in [11, (6.18) and (6.19) imply the Dennis-Mor condition

lim
[[(Bj L(z.,A.,c))aYll O.(6.2o)

In order to prove the superlinear convergence we note that (6.20) implies the Boggs-
Tolle-Wang condition

lim IIP(B L(z.,,X.,c))Jll o,

where the projection Pj is defined as

P := I Vz(Z)(v(zJ)Tv(z))-Vz(ZJ)T.

According to Theorem 5.3 in [5] the superlinear rate of convergence is shown if

lim
Ilv(zJ) + v(zd)Tdll O.

This is true because the linear convergence yields

and d(zJ)Tj =--(zj) implies

<_ IIv(zj) (zJ)l + II(Vz(ZJ)
o(llz z, ll) + o(11 ,111111)
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TAYLOR’S FORMULA FOR Ck,1 FUNCTIONS*

DINH THE LUCt
Abstract. In this paper, using Clarke’s generalized Jacobian we establish Taylor’s formula for

functions whose kth order derivatives are locally Lipschitz. A calculus rule for generalized Hessian of
implicit functions is presented. The results are then applied to derive high-order optimality conditions
and second-order characterizations of quasiconvex functions.
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1. Introduction. Let f be a (k + 1)-time differentiable function from Rn to R.
The classical Taylor theorem states that for every couple of points a, b E Rn, there
can be found a point c in the open interval (a, b) such that

k
1 1

f(b) f(a) E -.Df(a)(b -a,..., b- a)+ (k + 1)
Dk+lf(c)(b- a,. ,b- a),

where Dif(a) is the ith order derivative of f at a. This is one of the fundamental
formulas of classical analysis that is frequently used in applied mathematics. The
fornula with k 0, known as mean value theorem, is of particular interest. In recent
years several extensions of this formula (with k 0) have been developed for larger
classes of functions due to the introduction of new concepts of generalized derivatives
in nonsmooth analysis. For instance, Wegge’s mean value theorem [34] was estab-
lished for convex functions using convex analysis subdifferential; Lebourg’s theorem
[17] was established for locally Lipschitz functions using Clarke’s subgradients; and
recent results of [11], [20], [21], [26], [32], [35] were given for lower semicontinuous
functions by means of generalized subgradients. Although these latter theorems are
formulated for general functions, most of their practical applications are restricted to
the class of locally Lipschitz functions. A smaller class, which is also very important as
shown in [12], is the class of so-called C1,1 functions, i.e., differentiable functions with
locally Lipschitz derivatives. Using Clarke’s generalized Jacobian [5], the authors of
[12] introduce the concept of generalized Hessian matrix, prove a second-order Taylor
expansion for C1,1 functions, then apply it to get second-order optimality conditions
for nonlinear constrained problems. Following this tradition, we set our aim to ex-
tend Taylor’s formula to Ck’l functions, i.e., functions whose kth order derivatives
are locally Lipschitz, and to apply it to derive high-order optimality conditions and
characterizations of quasiconvex functions.

This paper is structured as follows. In the next section we define the (k / 1)th
order subdifferential of a Ck,1 function and give a chain rule needed in the sequel.
In 3, two formulations of Taylor’s theorem are established for Ck,1 functions. In
one of the formulations the remainder satisfies the same convergence property as in
the classical forn for (k + 1)-time differentiable functions. In 4, we prove an im-
plicit function theorem and present a calculus rule for generalized Hessian of implicit
finctions of class C1,1 Section 5 is devoted to an application of Taylor’s formula in
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optimization problems with Ck,1 data. Another application is given in 6. Using Tay-
lor’s formula and an estimation formula of generalized Hessian, we extend Crouzeix’s
quasiconvexity criterion (see [6], [2]), one of the deepest results known on second-order
characterizations of quasiconvex functions, to C1, functions.

2. High order subdifferential. Throughout the paper we denote by Ck,, k >_
1, the class of k-time differentiable functions on Rn whose kth order derivatives are

locally Lipschitz functions from Rn to Rnk and by C, the class of locally Lipschitz
functions on Rn. For every f E Ck’ by Rademacher’s theorem, its kth order derivative
Dkf is a function differentiable almost everywhere. The generalized Jacobian of Dkf
at x Rn in Clarke’s sense [5], denoted by Dkf(x), is defined as the convex hull
of all (nk n)-matrices obtained as the limit of a sequence of the form JDkf(xi),
where {xi}l converges to x and the classical Jacobian matrix jDkf(x) of Dkf at
x exists.

Let us define the (k + 1)th order subdifferential of f at x as the set

Ok+f(x) :-- Dkf(x).

Elements of this set are called (k + 1)th order subgradients of f at x. They can be
considered as multilinear functions on the space R R (k / 1 times). The
space of (nk n)-matrices is endowed with the norm (see [5])

{n.IIMII-- lal2" a is the ith row of M
i--1

In [12] the second order subdifferential is called generalized Hessian matrix. It is clear
that (k / 1)th order subdifferentials enjoy all the properties of generalized Jacobian.
We refer the reader to [5] for properties and calculus rules of the latter (see also [12]
for the case k 1.) The following chain rule will be needed.

LEMMA 2.1. Let x and u be two points of Rn. Let g be a function from R to Rn

defined by g(t) x / tu for every t R, and f a Ck, function on R. Then

Ok+f o g(t) C_ Ok+tf(z / tu)(u, u).

Proof. Denote by fog the set of points where the function f o g fails to be
(k / 1)-time differentiable. By the definition of the (k / 1)th order subdifferential,

Ok+If o g(to) conv{limDk+f o g(ti) t -- to, t

where conv{...} stands for the convex hull of the set under the parentheses. For each
t, by the definition of derivative,

Dkf o g(ti + t) Dkf o g(t)Dk+f o g(ti) lim
to t

By the classical chain rule, we have

Dkf o g(ti + t) Dkf(g(ti + t))(u,..., u),
Dkf o g(ti) Dkf(g(ti))(u,..., u).

Applying the mean value theorem [5] for the vector function Dkf, one can find a
matrix A(t) conv2Df([g(t,), g(t, + t)]) such that

Dkf(g(ti + t)) Df(g(ti)) Ai(t)(tu).
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Consequently,

ok+if o g(ti) lim Ai(t)(u, u).
t--o

By the upper continuity of the generalized Jacobian map we conclude that Dk+lf o

g(t) e Ok+l f(g(t))(u, u), and hence

lim Ok+if o g(t) e Ok+l f(g(to))(u,..., u).
t --*to

The proof is complete.
We also make use of the following functions of two variables x, u E Rn"

D+lf(x; u):= sup(A(u,..., u) A e ok+if(x)},
Dk_+l f(x;u) := inf{A(u,...,u) A e ok+If(x)}.

Note that sup and inf in the above expressions can be replaced by max and min,
respectively, because the set ok+if(x) is nonempty compact.

LEMMA 2.2. For every fixed x R’, as functions in the variable u, D+lf and
Dk_+lf are continuous, positively homogeneous of degree k + 1 if k is even and homo-
geneous of degree k + 1 if k is odd. Furthermore, for every fixed u Rn, the function
D+lf is upper semicontinuous, while the function D}_+l f is lower semicontinuous
in the variable x.

Proof. The first part of the lemma is evident because every (k + 1)th order
subgradient at a fixed point is a multilinear function. The second part follows from
the fact that the (k + 1)th order subdifferentiM map is upper continuous compact-
valued.

3. Taylor’s formula. Let us consider the case n 1 first.
LEMMA 3.1. Let be a Ck’l function from R to R. There exist to (0, 1) and

a Ok+lgO(tO such that

o(1) (0) E D’o(O) +a.
i=l

(k + 1)!

Proof. Denote by a a real number that satisfies the equality in the lemma and
consider the following function:

k
1
Dido(t)( 1 t)h(t) (1)- o(t) E (k + 1)-----

i=1

This function is locally Lipschitz, therefore we can apply Lebourg’s mean value theo-
rein to get a point to (0, 1) such that 0 Oh(to). It is evident that

1 1
a(1 to) kOh(to) --.ok+lo(to)(1 to)k + .

Hence a ok+left(tO), and the proof is complete.
THEOREM 3.2. Let f be a Ck’l function from Rn to R and let a, b be two arbitrary

points in Rn. Then there exist a point c (a, b) and a (k + 1)th order subgradient Ab
of f at c such that

k

1D 1
Ab(b- a, b a).f(b) f(a) E i!

f(a)(b- a,..., b- a) + (k + 1)-----i
i--1
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Moreover, there exist a neighborhood U of a and a positive K such that IIAbll <_ K,
.for all b E U.

Proof. Define a function from R to R by (t) f(a + t(b- a)). It is obvious
that is of class Ck,1. Now apply Lemmas 2.1 and 3.1 to get the Taylor formula. The
second assertion of the theorem is derived from [5, Prop. 2.6.2].

To get a better estimation for the remainder, we give another formulation of
Taylor’s theorem.

COROLLARY 3.3. Let f be as in the previous theorem. Then for every x Rn,
there exist a (k / 1)th order subgradient Ax of f at a and a (nk n)-matrix r(x) such
that

k

f(x) f(a) + E . Dif(a)(x -a,... ,x a)
i=l

1
+ (k +1)-------- Ax(x a,... ,x a) + r(x)(x a,... ,x a),

where limx-.a IIr(x)ll O.
Proof. By Lemma 3.1, for x Rn, there can be found c e (a,x) and a (k + 1)th

order subgradient Bx of f at c such that

(1) f(x) f(a) + E Dif(a)(x a" "x a) + (k + l)!Bx(x a, ,x a).

Let Ax Ok+f(a) be a matrix minimizing the distance from B to the elements of
the convex compact set O+f(a). Set

(k +

Then (1) gives us the formula of the corollary. Moreover, since the map ok+If is
upper continuous, the distance from Bx to Ok+f(a) converges to zero as x tends to
a, hence the norm of r(x) converges to zero as well.

4. Implicit functions. ’rhe main purpose of this section is to calculate the
generalized Hessian of an implicit function that will be needed in applications. Let
us first formulate the inverse function theorem and implicit function theorem for C’
functions.

LEMMA 4.1. Let g be a Ck’ function from Rn to Rn with the property that every
matrix of the first order subdifferential ofg at xo Rn is inversible. Then there exists
a Ck,1 inverse function g- of g on a sufficiently small neighborhood of g(xo) in Rn.

Proof. The conclusion of the lemma has been proven in [5] for the case k 0.
Thus, there exists a neighborhood U of g(xo) and the Lipschitz inverse function g-
on U. We must show that this inverse function is of class C,1 if g is (with k >_ 1.) By
the classical inverse theorem,

Dg-(y) [Dg(x)] -1,

where x g-l(y),y U. Since Dg is Lipschitz in some neighborhood V of x0, its
inverse [Dg] -1 must be also. Let K1 and K2 be Lipschitz constants for g-1 and
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[Dg] -1, respectively. Then for Yl,Y2 E g-(V)3 U, one has

IIDg-(y) Dg-l(y2)ll II[Dg(xl)] -1

<
_< K2KIllYl Y2

where xi g-1 (yi), i 1, 2. This means that Dg- is Lipschitz around x0.

For k 2, using the classical calculus rule one has

D2g-(y) -Dg-(y)D2g(x)[Dg(x)] -2

The Lipschitz property of D2g, [Dg] -1, and Dg-1 implies that of D2g-. Continuing
this process for other k, we conclude that g-1 is of class Ck,1 if g is also. [2

Recall [5] that if f is a function from Rn R" to R", by rzOf(y, z) we denote the
set of all (m m)-matrices M such that for some (m n)-matrix N, the (m (m+n))-
matrix IN, M] belongs to Of(y, z).

LEMMA 4.2. Let f(y, z) be a C’ function from Rn x Rm to Rm with the property
that f(Y0, z0) 0 and every matrix of 7rzOf(yo, zo) is inversible. Then there exists a
C’ function g from a sufficiently small neighborhood U of yo in Rn to Rm such that
g(Yo) zo and f(y, g(y)) 0 for all y e U.

Proof. Invoke to the preceding lemma and to the implicit function theorem (for
the case k 0) of [5]. 0

Now let us calculate the first and the second order subdifferentials of the function
g obtained in Lemma 4.2 for the case k 0 and k 1, respectively. For the sake
of simple presentation, assume from now on that m 1. We shall make use of the
following partition for every ((n + 1) (n / 1))-matrix H:

H H Hz
where the dimensions of the submatrices H,H, H,H,,z are n x n, n x 1, 1 x
n, 1 x 1, respectively.

PROPOSITION 4.a. Under the hpothesis of Lemm 4.2 we hve the followin9
formulas for k 0 and k 1, respectively:

0 (u0) c_ -[0 f(u0, zo)]-lo f(uo, z0);
02g(yo) C_ -[Df(yo, zo)] -l{Hyy + [Dg(yo)]THey

+HyDg(yo) + Hz[Dg(yo)]TDg(yo)
H 02f(yo, g(Y0))},

where (...)T denotes the transposition of the matrix under the parentheses.
Proof. Let us prove the second inclusion. The first one can be done by a similar

argument. It follows from the classical implicit function theorem that

Dvf(y, g(y)) + Df(y, g(y))Dg(y) O,

for every y in a small neighborhood U of y0. We consider first the case where g is
twice differentiable at some point near to yo. One has

[Duf(y, g(y)) Dyf(fl, g())]
+[Dzf(y, g(y))Dg(y) Dzf(f/, g(fl))Dg(fl)] 0
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for every y E U. To evaluate the differences in the left-hand side of (2), let us apply the
mean value theorem [5] to the vector function Df (byf, Dzf) from RnxR to itself.
Thus, there exists a ((n + 1) x (n + 1))-matrix H(y) e conv ODf([(, g()), (y, g(y))])
such that

Dr(y, g(y)) Df(, g()) H(y)(y , g(y) g()).

In terms of the partition of the matrix H(y) the latter equality reads as

(3) Dyf(y, g(y)) Duf(, g()) Huu(y)(y ) + Hyz(y)(g(y) g()),
(4) Df(y, g(y)) Df(, g()) Hy(y)(y ) / Hz(y)(g(y) g()).

Again, applying the mean value theorem for the function g’, we can find an (1 n)-
matrix B(y) cony Dg([, y]) such that

g(y) g() B(y)(y ).

With this, the equalities (3) and (4) become

(5) our(y, g(y)) Dyf(, g(9)) [Hyu(Y) + gu(y) B(y)](y- ),
(6) Df(y,g(y)) Df(, g())

rthermore, since g is twice differentiable at , using Taylor’s formula one has

(7) Dg(y) Dg() D2g(9)(y ) + r(y)(y ),

where limu [[r(y)]] 0. By (6) and (7) the second difference in the left-hand side
of (2) can be evaluated

Df(y, g(y))Dg(y) Df(, g(y))Dg()
[Df(y, g(y)) Df(, g())]Dg(y) + Df(, g())[Dg(y) Dg()]
{[Dg(y)]T(Hu(y)+ H(y) B(y))

(8) +DI(, a())(Da() + (U))}(U ).

Combining (5) and (8) with (2), we finally obtain

Igor(u) + H(U) (U) + [D()]r(H(U) + H(U) B(U))
() +DI(,())Da()](U ) + D(,())(U)(U ) 0

for all y U. By letting y converge to and using the upper continuity of generalized
Jacobian maps, we have

li Dg(y) Dg(),
yy

ii() o() Da(),
yy

lim sup H(y) 02f(, g()),
y

where lim sup denotes the upper limit in the Kuratowski-Painleve sense [1]. Conse-
quently, (9) yields

Da() e -[DI(, )]-l{g()+ [Da()]rH()
+Hu()Dg() + H()[Dg()]TDg(y)

(10) where Hzu() H()
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and the formula of the proposition is established for .
Now, for the point Y0, by the definition

02g(Yo) conv{limD2g() " --* Y0, g is twice differentiable at }.

Again, by the upper continuity of generalized Jacobian maps and using (10), we obtain

02g(yo) C_ -conv{[Dzf(yo, z0)] -l{Hyy / [Dg(yo)]THzy
/HyDg(yo) / H[Dg(yo)]TDg(yo)
H e 02f(yo, g(Y0))}}.

In the latter formula conv is superfluous because the set under the parentheses is
already convex, ca

It should be noted that for the case k 0 using a result of [16] one can express the
subdifferential of g in terms of the subdifferential of the inverse function of f(y0, .)
and the one of f(., z0). Namely, let us recall that the set-valued directional derivative
of f at x in direction h, denoted by Af(x; h), is the set consisting of all limits

v lim
f(xk / Akh) f(xk)

where xk --+ x and Ak $ 0 and that Of(x)h convAf(x; h). It was shown in [16] that

Ag(y0; h) A(z0;--Ayf((yo, z0); h))

for all h e Rn under the conditions: (i) 0 9 Af((yo, zo); (0, T)) for all T e R \ {0};
(ii) Af((yo, zo); (u, T)) Ayf((yo, z0); u) + Af((y0, z0); -). The above result implies
Og(yo) -O(zo)Oyf(Yo, Zo). This in its turn will give the first inclusion of Lemma
4.1 if it additionally happens that 0(z0) c_ [Ozf(yo, zo)] -1.

5. Optimality conditions. A function f of class Ck, on Rn is given. We shall
use Taylor’s formula to derive optimality conditions via (k / 1)th order subdifferential
of f.

PROPOSITION 5.1. Let xo E Rn be a local minimum of f with the property that
Dif(xo) 0 for i 1,..., k. Then D+lf(xo)(u) >_ 0 for all u e Rn. In particular,
if k is even, then 0 Ok+ f(xo) (u,..., u) for all u Rn.

Proof. Using Lemma 3.1, we have

(11)

1 ok+lf(xo)(tu tu)f(Xo + tu) f(Xo) e
(k + 1)

+ r(xo + tu)(tu,..., tu).

Observe that when t > 0 is close to 0 the difference in the left-hand side of the above
inclusion is nonnegative. Moreover, since r(xo + tu) converges to 0 as t tends to 0,
we conclude that D+lf(xo)(u) > O. If k is even, by taking t < 0 in (11) we see that
Dk_+lf(xo)(U) <_ O. Hence 0 e ok+lf(xo)(U,..., u), for all u e Rn. ca

PROPOSITION 5.2. Let xo Rn be a point with the property that Dif(xo) 0
fori 1,...,k, and Dk+l > 0 for all u e R, u # O. Then xo is a local strict
minimum of f.
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Proof. We have the formula (11) as in the preceding proof. If x0 is not a local
Rnstrict minimum, there exists a sequence (xi}=l C_ distinct from and converging

to x0 such that f(x)- f(xo) < O. Let A E Ok+If(xo) be such that

1
f(xi) f(xo) (k +1)A(x xo,.. ,x xo) / r(xi)(xi xo,. ,x xo).

Without loss of generality we may assume that Ai converges to some A ok+lf(xo)
and (x-xo)/llx-xoll converges to some vector u e Rn, u O. Then A(u, u) < 0,
which contradicts the assumption of the proposition.

The results of the previous propositions have been proven for the case k 1 in
[12], [14]. Similar optimality conditions expressed in terms of high order directional
derivatives have been given in [33]. The difference between the conditions given in this
section and those of [33] (Corollaries 2.1, and 2.2 for the case C Rn) results from
the choice of using Clarke’s generalized derivatives in our study and the contingent
derivatives in [33].

It should be noted that under the hypothesis of Proposition 5.2, the integer k
must be odd, because the function Dk_+if is homogeneous of degree k + 1 in the case
where k is even by Lemma 2.2.

6. Generalized Hessian of quasiconvex functions. We recall that a function
f from Rn to R is said to be convex (respectively, quasiconvex) if for every x, y Rn

and for every/ e (0, 1) one has f(x + (1 )y) < f(x) + (1 )f(y) (respectively,
f( x <

There exists an extensive number of papers and books on these functions (see [2],
[3], [4], [8], [13], [15], [24]-[25], [27], [28], [30], [31])Most characterizations of convex
and quasiconvex functions are expressed in terms of first and second order derivatives,
and recently, in terms of generalized subgradients (see [9], [18], [19], [21], [29]). By
our knowledge, [12] was the first paper where generalized Hessian was used to give
the second order criterion for convex functions. The authors of [12] pointed out that
a C,1 function is convex if and only if its second order subgradients at any point are
positive semidefinite (see also [29]). In this section, we use generalized Hessian to give
quasiconvexity conditions for C1’ functions.

PROPOSITION 6.1. Assume that f is a quasiconvex C’ function. Then for every
x, u e R, Df(x)(u)= 0 implies Df(x)(u) >_ O.

Proof. Suppose to the contrary that Df(x)(u) < 0 for some x, u Rn with
Df(x)(u) 0. Since Df is upper semicontinuous (in view of Lemma 2.2), there
exist two positives to andc such that Df(x + tu)(u) < -c for every t [-to, to]. By
Theorem 3.2, one can find At e 02f([x,x + tu]) such that

f(x + tu) f(x) t2At(u, u).

This implies that f(x+tu)-f(x) < -et2, for all t [-to, to]. In particular, f(x+tou) <
f(x) and f(x- tou) < f(x). This contradicts the quasiconvexity of f. []

It is worthwhile to notice that the conclusion of the previous proposition is not
valid for D2f(x)(u). For instance the function defined on R by

x if x<_O,f(x) -x2 otherwise,

is a C1’1 quasiconvex function. At x 0, the first derivative is zero and the second
subdifferential is [-1, 1], with D2_f(0)(1) -1. Moreover, the condition given in the
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proposition is necessary for quasiconvextity, but generally it is not sufficient, even in
the case of C2 functions (see [2]). Among existing second order sufficient conditions,
Crouzeix’s result [6] is probably the strongest. Let us now extend it to C1,1 functions.

PROPOSITION 6.2. Assume that a C’ function f satisfies the following condi-
tion: for every x, u E Rn, u 7 O,

0 > 0,
Of(x)- 0 implies D2_f(x)(u) > O.
Then f is quasiconvex.

Proof. Let us follow the method of [6] by using Theorem 3.2 and Proposition 4.3
instead of the corresponding classical theorems. Suppose that f is not quasiconvex,
i.e., there exist x, u E Rn, u 7 0, such that

f(x + > m x{f(x), f(x +
t[o,l

Let c x + tou be the maximum point that is the closest to x. It is evident that
Df(c)(u) 0. There are two possible cases" (i) Df(c) 0; and (ii) Dr(c) 7 O. In
case (i), applying Theorem 3.2, we have

f(x + tu) f(c) (t to)2At(u, u),

for some At e 02f([c,x+tu]). Since D2_f(c)(u) > 0 in view of Lemma 2.2, we see that
At(u, u) > 0 whenever t is close to to. Consequently, f(x + tu) > f(c) a contradiction.
Let us treat case (ii). Without loss of generality we may assume that c 0, f(c) O,
and Dr(c) (0,..., 0, 1). We shall write (y,z) to indicate a vector of the product
space Rn-1 xR and c (y0, z0). With this notation, f(yo, z0) 0 and Dzf(yo, zo) 1.
By Lemma 4.2, there exists a small ball U C_ Rn-1 with center at the origin and a
C, function g on U such that f(y,g(y)) 0 for all y U.

We want to show that g is concave on U. Indeed, for every v Rn-l, by the
implicit function theorem, the vector (v, vDg(y)) satisfies the relation

DI(U,  Da(u)) 0.

Therefore, by the hypothesis of the proposition, one has

H((v, vDg(y)), (v, vDg(y))) >_ 0

for all H 02f(y, g(y) ). This and Proposition 4.3 show that A(v, v) <_ 0 for every
A 02g(y),y sufficiently close to y0, and for every v Rn-. Thus g is a concave
function on some convex neighborhood U0 C_ U of y0.

Remember that Df(c)(u) 0. Let us write u in the new coordinates: u
(Vo, w0) R-1 x R. Since Of(c) (0,... ,0, 1), the component wo must be zero.
Hence, f(tvo, O) < 0 for all t [-to, 0), which implies that g(tvo) 7 0 for every
t [-to, 0) with tvo Uo. By the continuity of Df there exist a neighborhood V C_ U0
and a positive 5 such that Dzf(y,z) > 0 for all (y, z) V x [-5, 5]. Furthermore, by
the implicit function theorem, Dg(yo) [Dzf(yo, zo)]-IDyf(yo, zo) 0. This fact
and the concavity of g imply that g(tvo) <_ 0 for every t [-to, 0] with tvo Uo.
Thus, there can be found t [-to, 0) such that tvo Uo and -5 < g(tvo) < 0. We
have finally,

(12) f(tlVO, O) < O,f(tlVO, g(tlVO)) O,
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and Dzf(tlvo, z) > 0 for all z E [g(tlvo),O]. The latter inequality shows that the
function f(tvo,.) is increasing. In particular, f(tvo, g(tvo)) < f(tvo, O). This
contradicts (12) and completes the proof, z]

Remark. Under the assumptions of Proposition 6.2 the function f is pseudocon-
vex in the sense that for all x, y R", f(y) < f(x) implies Df(x)(y x) <_ O. To see
this it suffices to apply the above proposition, Theorem 2.2 of [7], and to observe if
Dr(x) 0, f has a local minimum at x according to Proposition 5.2.
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THE LINEAR NONCONVEX GENERALIZED GRADIENT AND
LAGRANGE MULTIPLIERS*

JAY S. TREIMANt

Abstract. A Lagrange multiplier rule that uses small generalized gradients is introduced. It includes both
inequality and set constraints. The generalized gradient is the linear generalized gradient. It is smaller than the
generalized gradients of Clarke and Mordukhovich but retains much of their nice calculus. Its convex hull is the
generalized gradient of Michel and Penot if a function is Lipschitz.

The tools used in the proof of this Lagrange multiplier result are a coderivative, a chain rule, and a scalarization
formula for this coderivative. Many smooth and nonsmooth Lagrange multiplier results are corollaries of this result.

It is shown that the technique in this paper can be used for cases of equality, inequality, and set constraints if one
considers the generalized gradient of Mordukhovich. An open question is: Does a Lagrange multiplier result hold
when one has equality constraints and uses the linear generalized gradient?

Key words, nonsmooth analysis, generalized gradient, co-derivative, Lagrange multipliers
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1. Introduction. Following the work of Mordukhovich [8], [10]-[12] and Ioffe [4], [5],
a small nonconvex generalized gradient was defined in 16]. In this paper we consider some
properties of the coderivative for the linear generalized gradient and show how these can be
used to prove necessary conditions for optimality. More precisely, a Lagrange multiplier
theorem is proven that includes inequality and set constraints.

The linear generalized gradient is a smaller version of the generalized gradient of Mor-
dukhovich that retains many of its properties. It has good rules for the generalized gradient
of the sum of functions and the maximum of functions. For our purposes it is also important
that there is a good chain rule involving a coderivative and a scalarization formula for the
coderivative.

Given this nice calculus, we show one can prove a Lagrange multiplier rule for Lip-
schitz problems. This result includes basic results for convex functions, the Clarke and Mor-
dukhovich generalized gradients, the generalized gradient of Michel and Penot, and Fr6chet
differentiable functions.

This paper is divided into five sections. Section 1 gives the basic definitions for the lin-
ear generalized gradient. Section 2 continues with a review of some of the calculus for the
linear generalized gradient, and concludes with a new result that will be used in proving the
Lagrange multiplier result. Section 3 contains a proof of the Lagrange multiplier result and
several corollaries. Section 4 gives several examples that help place this result, and in 5 the
question of including equality constraints is discussed.

2. Definitions and calculus. The basic objects used to define both the linear generalized
gradient and the generalized gradient of Mordukhovich are the proximal normal and proximal
subgradients. For our purposes the definition is restricted to En; however, a similar definition
can be used in Banach spaces with a smooth renorm.

DEFINITION 2.1. Let C C n and f ,n ]I{ U {+<x}. A v E In is a proximal normal
to C at x C, if, for some A > 0

c c B(x + v, llvll) {x},

Here [(y, p) is the closed ball centered at y with radius p.
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A w E ]’ is a proximal subgradient to f at z if

f(y) >_ f(x) + (w, y- x>  lly xll 2

for all y in some neighborhood ofx.
These definitions have been used to characterize the generalized gradients and normal

cones of Clarke [1]-[3] and Mordukhovich [5], [8], [10], [11], the B-gradient [13]-[15], and
to define the linear normal cone and linear generalized gradient [16]. They are also used,
through normal cone definitions, to define the coderivative of Mordukhovich [11], [12] and
the linear coderivative 16].

An element of the normal cone of Mordukhovich is defined as the limit of a sequence of
proximal normals. To define the linear normal cone, a restriction in the convergence of the
proximal normals is used.

DEFINITION 2.2. A sequence ofproximal normals vk v to a closed set C c ]n at
xk Yc is linear ifi either xk for all k, andfor some > 0 and all sufficiently large k,

c k +  llxk  llv ,  llx  llllv ll) {xk),

or xk for all k.
With this definition one can define the linear normal cone.
DEFINITION 2.3. Let C be a closed subset of]n. The linear normal cone to C at is

Ne(C, Y)"-- cl {v: v is the limit ofa linear sequence of
proximal normals vk to C at xk -- }.

To obtain the normal cone of Mordukhovich one simply removes the linear convergence
restriction from the sequences of proximal normals. After this change, the closure is not
necessary.

The following example shows that the two cones may be different.
Example 2.4. Let C { (x, y) y < x/}. Then

N (C, (0, 0)) {(0, 0)},

but the normal cone of Mordukhovich (MNC) is

NM(C, (0, 0))- {(x, O)’x e }.

Several properties of Ne (C, x) are given in 13]. The linear normal cone (LNC) is easily
placed with respect to well-known normal cones.

THEOREM 2.5. Let C be a closed subset ofEn and x C. Then

Ne(C, x) C NM(C, x) C Nc(C, x),

where Nc(C, x) is the Clarke normal cone (CNC) to C at x.

If C is convex then all three of these cones coincide with the normal cone of convex
analysis.

Proof. The first inclusion follows directly from the definitions. The second inclusion
follows from the fact that Nc(C, x) cl co NM(C, x).

The proof that all three coincide when the set is convex is simple and left to the
reader. []

In optimization problems, one considers problems that involve functional constraints.
Thus a generalization of the gradient is required. To define this generalization of the gradient,
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restricted sequences of proximal subgradients are used. In what follows xk ----f X means that
xk

--* x and f(xk) -- f(x).
DEFINITION 2.6. A sequence ofproximal subgradients vk ---, v to ffor is linear ifeither

there are xk --+y , xk 7 , and #, 5 > 0 such that

# [[hl[ 2+ h) -> + h)

on B(x, 61Ix l[y) with IIx Y[[y IIx Yll + If(x) f(Y)l, or v is a proximal
subgradient to f at for all k.

As with the linear normal cone, the definition of the linear generalized gradient uses this
linear convergence.

DEFINITION 2.7. Let f n tO {+cx}. The linear generalized gradient (LGG) to f
at is the set

Oef (Yc) := el {v v is the limit ofa linear sequence ofproximal
subgradients to ffor 2}.

To define the generalized gradient of Mordukhovich (MGG) one removes the linearity
restriction on the sequences of proximal subgradients. We will denote the MGG by OMf(x).
If a function is Lipschitz, the Clarke generalized gradient (CGG) is the closed convex hull
of MGG.

In finite dimensions, the closed convex hull ofLGG is the generalized gradient of Michel
and Penot (GGP) [9] when f is Lipschitz. It has a very nice calculus and is convex. This has
advantages and disadvantages. A corollary comparing the best Lagrange multiplier result for
this generalized gradient with the main result in this paper follows Theorem 3.1.

The basic optimality condition holds for the LGG. We will need this in the proof of
Theorem 3.1.

PROPOSITION 2.8. Iff ]n ] to {_+_00} is lower semicontinuous (lsc) and is a local
minimizer of f, then

0 E Oef().

Proof. Simply note that 0 is a proximal subgradient to f at Y:. Thus 0 E Oef(). []

As one hopes, there is a close relationship between the LGG and the LNC. Here 6c(x) is
the indicator function of C,

0 ifx E C,
6c(x)

+ otherwise.

THEOREM 2.9 16]. Let C be a closed subset ofltn. Then

O  c(x)

Even with the restriction to "linear" convergence, the calculus for this generalized gradient
is fairly strong. It extends to include lsc functions.

THEOREM 2.10 [16]. Let f be an lsc function from n to tO {+cxz) and let 9 be a
Lipschitzfunctionfrom n to . Then

Oe(f + g)(x) c Oef(x) + Oeg(x).

There is arule for the nonnegative multiple of a function.
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THEOREM 2.11 [16]. Let f be an lscfunctionfromn to t3 {+x} and let a >_ O. Then

cOe(ozf)(x) oOef(x).

Another important result for our purposes is the following chain rule. It involves the
linear coderivative.

DEFINITION 2.12 [16]. Let G I ]’ be a Lipschitzfunction. The linear coderivative

ofG is the multifunction DGfrom 1m ’ to ]Rm, where

DG(x)(y*)- {v*" (v*,-y*) e Ne(gphG, (, G()))}.

The coderivative of Mordukhovich is given by a similar formula. The coderivative of G
is the multifunction D*MG from I 1 to’ where

D*MG(x)(y* {v* (v*,-y*) e NM(gphG, (c, G()))}.

There are good chain rules for both of these coderivatives.
THEOREM 2.13 16]. Let G Im I and f In be Lipschitzfunctions. Then

Oef G(x) c D.G(x)Oef(G(x)).

The same result holds if the LGG and coderivative are replaced by those ofMordukhovich
[10]-[12]. The other result that is central to the proof of the main theorem of this paper is a
"scalarization" formula for the coderivative.

PROPOSITION 2.14. Let F m
__

]n be a Lipschitzfunction. Then

for all y E I.
Proof. Only the C inclusion is proven. The reverse inclusion is a direct consequence of

Theorem 2.13.
Let v DF(Y(y) and let L be a Lipschitz constant for F.
The case where (v,-y) is a proximal normal to the graph of F at (Y:, F()) is easier and

is left to the reader.
There is a sequence of proximal normals (vk, _yk) (9, --fl) to the graph of F at points

(Xk, F(xk)) --+ (, F()) such that

(2.1)
graph F f3 [((xk F(xk)) + (11xk IIF)(Vk, _yk),

ll(v, -yk)llllx IIF) {(x,F(xk))}

for some # > 0. Note that for all k, xk # .
Fix k. To simplify notation, the superscript k will be dropped and # will xeplace

11 (x, F(xk)) (, F()) while examining what happens for this fixed k.
By Definition 2.1, we have

211(v,-y)ll 2 < IIz x zvl[ 2 + IIF(z) F(x) + #yll 2

for all z e B(x + #v, 11(,-)11). Thus

211(v,-y)ll 2 < IIz x vll 2 + [IF(z) F(x) + #yll 2

_< IIz xil 2 -t- 211vll 2 2<z x, v> + IIF(z) F(x)ll 2

+ 2(F(z) F(x), #y) +/211Y[12.
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Using the fact that F is Lipschitz and rewriting gives

(F, U)(z) >_ (F, U)(x) + (z x, v) I+L2

2#

on B(x + #v, #ll(v,-y)ll). This inequality is also valid on B(x, #(ll(v,-y)ll IlvllD).
Therefore, the vk form a linear sequence of proximal normals to the Lipschitz function

(F, y) at xk and the result follows. []

The same result holds for Dr and OM.
Combining this result with Theorem 2.10 yields the following corollary.
COROLLARY 2.15. Let F Im n be a Lipschitz function with F x f x

f2(x),..., fn(X)). Then

DF(x)(,I,/2,. )n) C Og(/lfl)(X) + Oe(,2f2)(X) +’’" + Oe()nfn)(X).

Proof. By the above corollary

DF(x)(,I, 2,..., n) 0<(,1, )2,..-, n),

oe
i=1

c
i=l

This theorem can also be used to prove a result for the LGG of the maximum of a finite
number of functions.

THEOREM 2.16. Let 91,92,..., 9n be a finite collection ofLipschitz functions from
to . Then

max 9(x) c{ AOeg(x)’A>O,A=OifiI(x)and A=I},0t
i= 1,2,...,n

ieI(z) ieI(x)

where I(x) {i: gi(x) maxj= n gj(x)}.
Proof. This is a simple application of the above corollary to the function

F(x) (91(x), g2(x), gn(X))

composed with the convex function

h(y, y2, y,) m.ax yi. []

3. A Lagrange multiplier result. The problem considered in this section is a constrained
optimization problem with inequality and set constraints. The form used is

min go(x) subject to gi(x) < 0 i 1,2,...,p,
(,)

xC.

Here it is assumed that all of the 9i’s are Lipschitz functions from Nr to I and C is a closed
subset of In.

The main result is a Lagrange multiplier rule that encompasses many classical results and
many results in nonsmooth analysis where equality constraints are not considered.



LINEAR GENERALIZED GRADIENT 675

THEOREM 3.1. If2 is a local minimizerfor (*), then there exist Ai >_ 0, 0, 1,..., p,
not all zero, such that

)igi(2) 0 for 1,2,...,p

and

p

o ,o,()+ N(C, ).
i---O

Proof. Note that if (*) has a local minimum at 2, then 2 is a local minimizer for

h(x) max {go(x) go(2), gl (x),..., gp(X)} + 6c(x)

and h(2) 0. This function can be written as the sum b o (x) + 6c(x). Here

(X) (go(X) go(2), gl (X), g2(x), gp(X))

and

(y) max {Y0, yl,..., Yp,

Applying the scalarization formula, Proposition 2.14, and noting that one of the compo-
nents of every element of cO(y) is not zero for any y with Y0 0 yields the result. Explicitly,
since 0 E 0eh(2),

0 o( o + c)()
c oe o () + Oc()
C (Uxeo,((e))Oe(,, (I)> (2))+ Ne(C, 2)

[ " ]C Ueo,(e(e)) Oe()o(go g0())() + Oe(Aig,)() + N(C, )
i=0

This completes the proof.
The idea of using a chain role to prove that Lagrange multiplier results in nonsmooth

analysis is not new. It has been used by Jourani and Thibault [7].
This can be reduced to own cases in cegain situations. Using the fact that if f is Frchet

differentiable at x then Oef(x) is V/(x) [16], one can get the following result.
COROLLARY 3.2. Assume that is a minimizerfor (*). If go, gl,..., gm are Lipschitz

and Frdchet differentiable at , thenfor some Ai 0, 0, 1,..., p, not all zero,

)ig(2) O fori l, 2, p,

and

p

0 ,v,()+ N(C, ).
i=0

Proof. This follows directly from the above theorem using the facts that Oe(f)(x)
ccgef(x) if c _> 0 and if f is Fr6chet differentiable at x, then V(-f)(x) -Vf(x). []

The following is a simplification of the Lagrange multiplier results in [2] and [3]. In this
result Of is the generalized gradient of Clarke.
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COROLLARY 3.3. If 90, 91,..., 9m are Lipschitz, thenfor some/i >_ 0, i 0, 1,..., p,
not all zero,

/kig(Y) 0 fori=l,2,...,m,

and

P

=0

Proof. Simply use the facts that Ne(C, x) c Nc(C, z) and Oef(x) c Of(z) to rewrite
Theorem 3.1. []

The same can be done for the MGG.
COROLLARY 3.4 11]. Ifgo, 91,. 9m are Lipschitz, thenfor some Ai _> 0, i 0,..., p,

not all zero,

,ig(Y:) 0 fori--1,2,...,m,

and

P

o
i--0

The following gives the result corresponding to Theorem 3.1 for the GGP [9]. In most
ways it is much weaker than the result of Ioffe [6]. Ioffe’s multiplier rule includes equality,
inequality, and set constraints. His proof relies heavily on the convexity of GGP and uses a
convex set constraint.

In what follows, Op denotes the GGP and Np(C, x) denotes the corresponding normal
cone.

COROLLARY 3.5. lf9o, 91,..., 9m are Lipschitz, thenfor some Ai _> 0, i 0,... ,p, not
all zero,

,ki9( 0 fori l, 2, m,

and

P

o e N.(C.
i=0

Proof. One simply uses the fact that the Michel-Penot objects are the closed convex hulls
of the "linear" objects. []

4. Examples. In this section two examples are given and the differences between The-
orem 3.1 and Corollaries 3.3 and 3.4 are explored. The first example is a simple example
that demonstrates how the differences between the normal cones can affect the set of points
satisfying the necessary conditions.

Example 4.1. Let C be the union of the pairwise intersections of the four closed balls of
radius in I2 centered at (1,0), (0, 1), (- 1,0) and (0, 1). Consider the problem

min f(x, y) subject to (x, y) e C.

For illustration it is assumed that f is continuously differentiable on an open set containing C.
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According to the results in 3, the necessary conditions for having a minimum at (0, 0)
are that

0 Vf(O, O) + N(C, (0, 0)),

where N(C,.) is one of the Clarke, Mordukhovich, or linear normal cones.
For this example, if f has a local minimum at (0, 0), then Vf(0, 0) (0, 0). One would

like this to be reflected in the necessary conditions.
Since Uc(C, (0, 0)) z, the necessary condition is satisfied for any f when using the

CNC. This is much larger than desired.
The Mordukhovich cone is much better. Here NM(C, (0, 0)) is the union of the x-axis

and the y-axis. This means that (0, 0) is a critical point for f’s whose gradient is on one of
the axes. This is much better.

In this example the LNC is { (0, 0)). This implies that the only functions that make (0, 0)
a critical point are those whose gradient is (0, 0). This is as good as is possible.

One can also have cases where the difference between LGG and MGG is as pronounced
as that between LGG and CGG in the preceding example.

Example 4.2. Assume that f 2 ]1 is Lipschitz and consider the problem

min f(x, y) subject to (x, y) e C,

where C 2\ UO__ B((i-2, 0), i-4/4).
For this set

NM(C, (0, 0)) Nc(C, (0, 0)) ]2,

whereas

N (C, (0, 0)) {(0, 0)}.

This means that the origin is always a critical point for both MGG and CGG, but is only a
critical point for LGG if 0 E Oef(O, 0).

5. An open question. An interesting open question not answered in this paper is: Does
a Lagrange multiplier result for LGG hold if equality constraints are included. The problem
we consider is

ming0(x) subject to gi(x)<0 i=-l,2,...,p,
X

(**) gj(x)=O j--p+l,p+2,...,m,

xEC.

Here it is assumed that all of the 9i’s are Lipschitz functions from iln to ] and C is a closed
subset of ]n.

The simple proof used in 3 is not valid since the chain rule is not strong enough. This
proof does work for MGG since MGG has the following chain rule.

In the following result the singular gradient of Mordukhovich is used. It is the set of
limits of ckv, where the vk form a sequence of proximal subgradients to f at xk Y and
k " 0. We denote this singular generalized gradient by 0f(Y).

THEOREM 5.1 11 ]. Let G m n be Lipschitz and let f n __+ be lsc. If

y* e Of(G(x)) and 0 e D*MG(X)(y* implies y* O,
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then

o

Given this, we can prove the following result.
THEOREM 5.2 [11]. If Y is a local minimizer for (**), then there exist )i > 0, i

0, 1,..., p and/j, j p + 1,..., m, not all zero, such that

/igi() O for i= 1,2,...,m

and

p m

0 Z ,kOMg()+ Z OM(kgi())+ NM(C,).
i--0 j=p-k-

Proof Note that if (*) has a local minimum at Y then Y is a local minimizer for the sum
(x) + c(x). Here

(X) (gO(X) go(), gl (X), g2(x),..., gm(X))

and

max(y0, Yl,..., Yp, } ifyp+l Ym 0,
(Y)

max{yo, Yl,..., Yp, [Yp+ [,..., [Ym[ otherwise}.

First note that the zero vector is only in 0r(0), not in 0Me(0). In addition, the first p
components of any vector in 0Me(0) U 0r(0) must be nonnegative.

Applying Theorem 5.1, there is a nonzero y* E 0Me(0) U 0r(0) such that either

0 e D*M’()(y*

or

0 e D*M()(y* + NM(C,).

Since 0 G NM(C, ), the second case includes the first.
Applying the scalarization formula forD similar to Proposition 2.14 yields the result.

Explicitly, since 0 OMh(),

C (UeOM(())OM(,, )())+ gM(C,x)bar

i=0

This completes the proof. []

Unfortunately, if the set constraint is included, the above result does not hold for LGG.
The following example shows this.

Example 5.3. Consider the problem

min f(x, y) subject to 9(x, y) x2 -JW (y + 2)2 4 0,
(x,y) e /3((0, 1), l) U B((0,-1), 1).
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The only feasible point for this problem is (0, 0).
Here one has that g(x, y) is C with Vg(0, 0) (0, 4) and Ne(C, (0, 0)) {(0, 0)).
The desired Lagrange multiplier rule would be that for some A0 > 0 and A1, not both

zero, one has

(0, O) E AoOef(O, 0) + Oe()lg)(0, 0) + Ng(C, (0, 0))

AoOef(O, 0) + A1 (0, 4).

If one takes f(x, y) x this would mean that

(0, O) Ao(1, O) + A1 (0, 4)

or that A0 A1 0.
This means that a general multiplier rule does not hold with a set constraint and equality

constraints even under the condition that all functions are
Note 5.4(a). This example shows that it may be necessary to use either the Clarke or

Mordukhovich normal cone if one wants to include arbitrary set constraints with equality
constraints. The author does not know of any other well-defined normal cones contained in
either Clarke or Mordukhovich that will work. The cone of Michel and Penot will not work
since it coincides with the LNC in this case.

Note 5.4(b). If one replaces the set constraint by any one of the equivalent functional
constraints

d(C,(x,y)) -0,

d(C, (x, y)) < 0,

or

min { (x2 + (y 1)2), (x2 + (y + 1)2) } 1 < O,

the "multiplier rule" gives that (0, 0) is a critical point.
At this point it is still unknown if a Lagrange multiplier result that includes equality

constraints holds for LGG.
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ON THE SIMULATION AND CONTROL OF SOME FRICTION
CONSTRAINED MOTIONS*

ROLAND GLOWINSKIt AND ANTHONY J. KEARSLEY

Abstract. In this paper, some issues involved with numerical simulation and control of some
elasto-dynamic systems are discussed. The motivation is the simulation of dry or Coulomb friction in
the joints that link together remote manipulator systems used in aerospace operations (for example,
space shuttle remote manipulator systems). The goal here is to develop numerical techniques to
simulate and control these systems, while properly modeling the Coulomb friction. The numerical
procedure described employs a finite difference time discretization in conjunction with a vector of
multipliers that predicts the friction effect for all time. In addition to this discrete multiplier technique
an associated regularization procedure that greatly improves the behavior of these multipliers is also
presented. Numerical examples conclude the paper.

Key words. Coulomb friction, direct search methods, nonsmooth optimization

AMS subject classifications. 49J15, 70Q05

1. Introduction. In this paper, we discuss the simulation and control of some
elasto-dynamic systems with dry friction. The phenomenon of dry or Coulomb friction
has been described and analyzed in [KikO88] and in [CamOK82] (see also [Ren92]).
In [Cab81], Coulomb friction is analyzed in the motion of a string. These methods
all approach these physical problems as time-dependent variational inequalities (see
[DuvL76]). The spatial.semidiscretization of these problems gives rise to systems like
the one examined here.

We consider the simple time-dependent problem

(1.1) M2 + Ax + CA f, t e (0, T],

(1.2) X(0) X0, 5(0) Xl,

(1.3) Ai(t) 0 if cii= O, [A(t)] <_ 1 if cii > 0 and
d

cA(t). (t) c.l:(t)l.
i=1

We are using the standard inner product of d, i.e., for y, z E )d we have y. z
d-i=1YiZi. In this system, xi(t) denotes the displacement of the ith component at

time t. The mass matrix M dxd is & symmetric and positive definite matrix.
The stiffness matrix, A axd is symmetric and positive semidefinite. The friction
matrix C dxd. is diagonal with only nonnegative diagonal entries. Matrices M, A,
and C are all assumed to be constant with respect to time t. The vectors x, 5, 5, Nd

dx andrepresent displacement, velocity, and acceleration, respectively. Here 2
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dx Also, x0, Xl E d are the initial displacement and velocity, respectively. The
function f models the external forces acting on the system, and we will assume that
f L2(O,T;d). Finally, A L(O,T;d) is the normalized coefficient of Coulomb
friction.

The system described in (1.1)-(1.3) is equivalent to a second order time-dependent
variational inequality whose solution requires finding a function x H2 (0, T; d) such
that

(1.4) (M& + Ax f) (y &)dr + (j(y) j(k))dt 0 Vy e L2(0, T; d),

(:[.5) X(0) X0, 5(0) Xl.

Here we have

d

i--1

The space H2(0, T; d) is a Hilbert space with associated inner product

2 ooTdJy dJZdt.
j---O

The functional j(.) is convex and continuous. It is also nonsmooth, unless cii 0, for
all i 1,2,...,d.

Existence and uniqueness for the solution of (1.1)-(1.3) can be proved using the
methods from [DuvL76]. We will not prove these results here.

2. Simulation. Let N, At, T be positive scalars denoting the number of time
steps in the discretized problem, the length of the time step, and the final time,
respectively. Here we have At --T

N. We seek an approximate solution to problem
(1.1)-(1.a), say, xn for every nat. Similarly, we approximate f(nAt) by fn. In this
article, we will assume that f is sufficiently smooth (f C([0, T]; d)) so that we
can take fn f(nAt). We then approximate system (1.1)-(1.3) by

(2.1) M-I(xn+l+xn_l_2xn)+A(axn+l+ax_l+(l_2a)x)+CA f Vn _> 0;

(2.2) A=0 if cii=O,

(2.3) ]AI-< 1 and

(2.4)

-x )= -x if ci>0,

x=xo and xl-x-l=2xlAt,

(2.6)

A/--0 if either cii-0 or 5:(0)--0 and cii>0,

sign (i(0)) if &i(0) : 0 and cii > O.
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Discretization (2.1)-(2.6) has been investigated in [DeaGKN90] for e [0, 1/21 and
stability properties of the scheme were established. Some convergence properties
were also established.

THEOREM 2.1 (Dean, Glowinski, Kuo, Nasser). Suppose (x, A) is the solution of
(2.1)-(2.6). Let Azxt be the function of t, defined by

(2.7) Azxt(t) A when t e 0,--

(2.8) AAt(t) 0 when t e T --, T

(2.9) ,At(t) An whe t e nat -, nat + --Then (2.1)-(2..6) is an unconditionally stable scheme if a e [1/4, 1/2] and the following
convergence results hold:

1. limat-,o maxo<,<N IIxn x(nAt)ll O;

2. limAt--,o maxo<n<N-1 [ltt (xn+l xn) }((rt -4- 1/2)At)ll O;

3. limAt--0 )At ,, weakly * in L (0, T; d).

Remark 2.1. If a E [0, 1/4) the above convergence results still hold, the stability
condition in that case being

1
O)M]_ 1/2<

with (M the largest eigenvalue of the matrix M-1A.

Following [DeaGKN92], we can solve the nonlinear system (2.1)-(2.6) by observ-
ing that the conditions on A in (2.1)-(2.6) can be rewritten as

(2.10) An_pA ,n _[_

_
The projector PA d _+ A, is the orthogonal projection operator from }d onto the
set A, where A is a closed convex set defined by

(2.1i) A- i and A 0 if c 0}.

We have for all # E Nd, PA(#) z with zi 0 if cii 0 and zi min{1, max(#i,-1)}
if cii > O.

We can numerically solve the class of problems defined by (2.1)-(2.6) using the
techniques developed and described in [Glo84].

In the particular case of problem (2.1)-(2.6) and for a 1/4, these techniques yield
the following algorithm for computing the pair (xn+i, An):

(2.12) An’ E A;
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for k >_ 0, An,k being known in A, solve the linear system

(2.13) (M + -A) xn+l’k At2(fn Cn’k) + M(2xn xn-l)

At2

4
A(2xn + xn-

and update An’k by

(2.14) ,,n,k+l

We stop iterating when

r C(xn_bl,k xn_--PA (A’k +- )).

x/l’k xn+l’k--1
I]xn/l’k-l l{ -I- 1

for some well chosen norm [1" and parameter
When applying algorithm (2.12)-(2.15) to the solution of system (2.1)-(2.6), for

some test problem (1.1)-(1.3), the numerical experiments show very good convergence
properties for the approximate displacement and velocity (see, for example, Figs. 1,
2, 5 and 6). However, the approximate multiplier AA displays violent oscillations (as
shown in Figs. 3 and 7); naturally, this behavior is compatible with the convergence
Theorem 2.1 which only guarantees weak convergence for AA Some applications,
however, require more accurate discrete multipliers since, after all, these multipliers
measure friction forces. It is for this reason that a regularization procedure has been
developed in [DeaGKN92]. This procedure is based on observing first that (2.14) is a
discrete form of

(2.16) A PA (A + rC&),

then by regularizing (2.16) via

(2.17) i + P( + rC),

with e > 0, and finally by discretizing (2.17) by

(2.18) e
At

_[_ ,n PA An + rC

This procedure can be viewed as a dynamical Tychonoff regularization procedure.
It is quite clear that relation (2.17) implies that the regularized multiplier is a Lipschitz

0, then the convergencecontinuous function of t It can be shown that if limAt-+0 7
results of Theorem 2.1 still hold.

In practice, inspired by (2.18), we shall use the regularized variant of algorithm
(2.12)-(2.15) obtained by replacing (2.14) by

+ +

the parameter e must be chosen so that limA-0 L- 0.
The above regularization procedure has a double effect.

It substantially improves, for the same value of r, the convergence of algorithm
(2.12)-(2.15).
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It improves the convergence of Azxt to A without affecting the convergence of the
approximate displacement and velocity to their respective limit, this is seen in Table
5. Indeed from the figures and Table 5 we can conjecture that the weak-* convergence
of the discrete multipliers has been replaced by a strong convergence of the discrete
regularized multipliers Ls(0, T; d) for all s E [1, +cx3). Proving this result would be
of interest.

/xt2 A]-1C2Let be the largest eigenvalue of the matrix ([M + - ). Numerical
observations suggest that a value of r t yields the best results. While apparently
this value of r is optimal, r E (0, at) is necessary to guarantee the important fixed-
point property that yields convergence of the pair (xn+l’k, An’k).

3. Control. There are many practical applications where we are interested in
controlling the time evolution of the system modelled by (1.1)-(1.3). In particular we
may require x and/or 2 to have preassigned values at some final time t T.

This is certainly applicable to the control of remote manipulator systems, where
final velocities must be kept small. Here we choose target velocity 2T and target
position XT. The cost function employed will use penalty terms to attain target
states. The resulting problem will look like

(3.1) Mi + Ax + CA f + Bv, t (0, T],

(3.2) x(O) xo, x,,

(3.3) Ai(t) 0 if cii= O, IAi(t) l<_l if cii>0, and

where we want to solve

(3.4)

subject to

d

CA(t). c(t)
i--1

T
min J(v) Nv vdt
va

(3.5) x(T) XT,

(3.6) 2(T) 2T.

The vector, v P, is the vector of control variables. The matrix B }dp will
dictate how the control is administered to the system. Likewise, the matrix N PP,
is a matrix that may be different from the identity if some parts of the system are
more difficult to control than others. For simplicity we will assume that p d and
that both B and N are multiples of the identity matrix. The algorithm used to solve
this nonsmooth nonlinear programming problem (3.4)-(3.6) will be discussed in 4.
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4. Optimization technique. Problem (3.4)-(3.6) is an equality constrained
nonlinear programming problem. The equality constraints are not differentiable with
respect to the control variables, v, prohibiting the use of very fast algorithms that
require smoothness of the constraints (e.g., see [GilMW81]). In. ,ct, we expect that
at the solution of (3.4)-(3.6), say v*, the constraints will not be differentiable with
respect to v. Whenever the velocity of any of the components of our dynamical system
vanishes, the derivative with respect to v will not exist. For this reason we employed
an algorithm that used no derivative information.

In [DenT91] an algorithm for unconstrained optimization that requires no deriva-
tive information was suggested. While algorithms for unconstrained minimization
that required no derivative information (usually referred to as direct search methods)
are not new (see, for example, [Cea71] and the referencestherein), a global first-order
stationary point convergence theory for this particular method has only recently been
developed in [Tor93]. A parallel implementation of the algorithm has also been de-
veloped and tested (see [Tor92]). Recently, this algorithm and its implementation
have been modified to handle constraints [KeaTT93]. The method samples points
on an evolving simplex, moving to the vertex on the simplex with value closest to
optimality. The simplex then expands or contracts depending on where the point
closest to optimality was located. The contractions reduce the size of the simplex; the
procedure is halted when the lengths of the edges in the simplex fall below a tolerance
set by the user. Direct search methods of this sort typically do not demonstrate rapid
local convergence, but they are extremely robust and far less susceptible than faster
higher-order methods to the difficulties introduced when functions are nonsmooth or
the data is noisy.

Because we are dealing with only equality constraints, minimization problem
(3.4)-(3.6) can be handled in a straightforward manner. After each simplex is con-
structed, a penalty function is evaluated. Let pl and P2 be two large constants. Then
we employ a penalty function, such as

T

P(v; p, P2) Nv vdt + p Ilx(T) TII + pllSc(T) TII-

We can now minimize this penalty function and the new problem is now a continuous,
nonsmooth, nonconvex unconstrained optimization problem. Early numerical testing
included trying various updating strategies for the penalty parameters pl and p2. Most
of our attempts at dynamically adjusting these parameters for penalty function (4.1)
failed to significantly improve the performance of our direct search method algorithm.
The dynamic penalty parameter updating schemes,

(4.2) Pl+ -- min{106, (P + IIx(T)

p2+ +-- min{ 106, (P + II&(T) &TII)}

for Pl and p2 were employed for comparison purposes only and remained fairly inef-
fective when compared to the performance with constant pl P2 106 (see Tables
2 and 4). The superscript c denotes a quantity associated with the minimizer on the
previous simplex.

More complicated penalty functions for (PDS) involving penalty parameter
schemes, dynamical choices of norms for penalization, and exploiting feasibility are
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discussed in [KeaTT93]. One such suggestion is to use the penalty function,

(4.4) HK(V; Pc) Nv vdt + pa(Gn(v)) + Zn(v, v),

where ZK(V, vc) is

(4.5)
GK(VC)

1 max Nvc vCdt Nv vdt, 0Zg(v, vc) min
max{Gg(v), 10-8}

and Gg(V) is

(4.6) OK(V) II(x(T) XT, J(T) 2T)TIIK

Here vc denotes the value of control variables yielding smallest penalty function value
on the preceding simplex. The augmentation function Ztc(v, v) incorporates a bal-
ance between decreasing infeasibility and moving towards optimality. The choice of
norm, K,

cx if G2(v)>_2,
(4.7) K 2 if 1 < G2(vc) < 2,

1 if G2(v)_<1,

depends on the distance from feasibility. The parameter p3 can be chosen initially to
be a large constant or updated dynamically. The updating strategy employed here
combines (4.2) and (4.3)

1
(4.8) p3+ - (p+ + p2+).

It is worth commenting that consistent performance of (PDS) with respect to
the penalty parameters pl, p2, and p3 when minimizing penalty functions (4.1) and
(4.6) is characteristic of direct search methods. This is inherent in the way search
directions and trial points are generated independently of any quantity dependent on
the penalty parameters. Moreover, a new point is selected from the set of trial points
by having the smallest associated objective function value. There are no minimum
decrease or maximum allowable change conditions enforced. In this way, there is no
ill conditioning introduced into the problem by penalty parameters that are too large.
The price paid for this robustness is, as mentioned above, no rapid local convergence.

5. Numerical results. The test problems presented here are small ones, and
are intended only to demonstrate the effectiveness of the simulation method and regu-
larization. Actually, much larger problems have been solved using similar techniques,
as shown for example in [DeaGKN90] where an algorithm like (2.12)-(2.15) has been
used to simulate the motion of an elastic string in the presence of dry friction; employ-
ing the additional regularization procedure discussed here has been straightforward
and the corresponding results will be given in a forthcoming article [GloK95].

In order to make our first test problem more significant, we have chosen for A
the 3 3 Hilbert matrix because it is a small matrix with a large condition number
(. 524) and more importantly it strongly couples the components of the state variable
x(t), implying a fairly complicated dynamics particularly for the friction multipliers.
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We have also chosen a final time, T, relatively small. For this problem we prescribed
a desired final position, but no target velocity.

The second test problem can be physically motivated by considering a spring-
mass system consisting of (d / 1) springs with known spring constants and d known
masses. The springs are suspended between two fixed ends and connected by exactly
one of the masses between every two springs. The spring constants determine the
stiffness matrix A and the masses determine the matrix M.

We solve the initial value problem (3.1)-(3.3) to evaluate the objective func-
tion (3.4) and the constraints (3.5) and (3.6). The following numerical experiments
demonstrate the behavior of the algorithm and specifically the multipliers, with and
without the regularization. For simplicity we took d 3, with the following values
and functions:

TEST PROBLEM (TP1)

x0 (1, 2, 3)T (initial positions),
xl (1, 1, 1)T (initial velocities),
ml 4 m22 5 m33 6 (diagonal matrix),

(Hilbert matrix)aij- (i+j)"l
cii 10 (diagonal matrix),
fi(t)- -100e-t (external forces),
At --.0125 (time step),
T 5 (final time),

(At)/,
2r iAt

XT- (2, 0,--2)T (desired final position),
nii--- (diagonal matrix),
bii 1 (identity matrix).

TEST PROBLEM (TP2)

x0 (1, 3, 5)T (initial positions),
x (2, 2, 2)T (initial velocities),
mll 1 m22 2 m33 3 (diagonal matrix),
al 1 a2 2 a3 3 a4 4 (spring constants),
al 3 a22 4 a33 5 a23 a32 -3 a2 a21 -2 (stiffness matrix),
c 6 c22 5 c33 4 (diagonal matrix),
fi(t)--10sin(-A)e-t: (external forces),
At --.01 (time step),
T- 10 (final time),

(At)6/,
2r 5At

XT (5, 10, 15)T (desired final position),
T (0, 0, 0)T (desired final velocity),
nii-1/2 (diagonal matrix),
bii 1 (identity matrix).

The control problems (4.1) and (4.6) were solved on an Intel iPSC/860, using
8 nodes simultaneously to evaluate 216 function evaluations per processor for each
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Multiplier
scheme

Not regularized
Not regularized
Regularized
Regularized

TABLE
Problem 1. Simulation.

iterations (FIP) (FIP) per time step on RHS?
35633 89.0825
16676’ 41.6900
5135 12.8375
4184 i0.4600’

TABLE 2
Problem 1. Control.

yes

scheme constant scheme simplexes solved E(v*) (msec)
P(v; p) Constant Not regularized 21 36624 7.82E-8 1878366
P(v;p) Constant Regularized 21 36624 7.82E-8 1141314

36624 1878338P(v;p)
P(v;p)

’Dynamic
Dynamic

Not regularized
Regularized

21
36624

7.79E-8
7.80E-8 1141328

170’7533H(v; p) Constant Not regularized 19 33136 2.01E-8
H(v; p)’ Constant Regularized 19 33136 1.99E-8 1040543
H(v; p) Dynamic Not regularized 19 33136 2.08E-8 ’1707433
H(v; p) Dynamic Regularized 19 33136 1.94E-8 1040461

TABLE 3
Problem 2. Simulation.

Multiplier
scheme

Not regularized
Not regularized
Regularized
Regularized

iterations (FIP) (FIP) per time step on RHS?
20876 20.876 no
1i517 11.5’17 yes
3238 3.238 no
3142 3.142 yes

TABLE 4
Problem 2. Control.

scheme constant scheme

P(v,p)
P(v,p)

Constant Not regularized
Constant Regularized

P(v, p) Dynamic Not regularized
P(v,p) Dynamic Regularized
H(v, ) Constant Not regularized
H(v, ) Constant Regulrized
II(’v )’ Dynamic’ Not .ii:egularized
H(v, ) Dynamic Regularized

simplexes solved EL (v*) (msec)
23 40112 2.54E-9
23 40112 2.54E-9
23 40112 2.56E-9
23 40112 2.56E-9
20 34880 6.03E-8
2{) 34880 6.02E-8
20 34880 6.11E-8
20 34880 6.11E-8

2309235
1424193
2309188
1424085
2010565
1241696
2010213
1241428

TABLE 5
Difference between regularization and no reglarization.

Problem present discrepancy discrepancy
on RHS? D(XR, XNR) D(R,&NR)

Test Problem 1 yes
Test Problem 1 no
Test Problem 2 yes
Test Problem 2 no

4.4E-8 2.8E-5
1.4E-7 3.8E-4
6.1E-7 5.7E-2
8.9E-8 3.2E-3
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>

FIG. 1. (TP1) Displacements of uncon-
trolled system.

FIc. 2. (TP1) Velocities of uncontrolled
system.

FIG. 3. (TP1) Multipliers of uncontrolled
system (NR).

FIG. 4. (TP1) Multipliers of uncontrolled
system (R).

simplex generated. The minimization procedure was halted in the event that the
largest edge of a generated simplex was less than 10-1.

The simulation was performed on a SUN SPARCstation (1+), in double precision
arithmetic (IEEE 64-bit floating-point arithmetic). The fixed-point iterations were
applied until (using stopping criteria (2.15)) convergence was detected (with a value
of 1.5 x 10-s v/machine and the norm used was I1" I1" 112).

Tables 1-4 illustrate how effective the regularization procedure was. In the simula-
tion, the number of fixed-point iterations decreases drastically when the regularization
is employed (see Tables 2-4). While the regularization could not decrease the number
of simplexes generated by (PDS) and hence, could not decrease the number of initial
value problems (3.1)-(3.3) that needed to be solved, it did result in a decrease in the
elapsed time. The dynamical updating of the penalty parameter had little influence
on the performance of (PDS). Employing the more sophisticated penalty function
(4.6) did consistently result in fewer (PDS) simplexes. The relative error in the final
position, E(v),

(5.1) (v) max{l, IIXTIl }

was recorded in the numerical results. The relative error associated with the velocities,
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0 3.5,

FI(. 5. (TP1) Displacements of controlled
system.

FIG. 6. (TP1) Velocities of controlled system.

FIG. 7. (TP1) Multipliers of controlled
system (NR).

FIG. 8. (TP1) Multipliers of controlled
system (R).

E2(v),

(5.e) El(v): max{1, II:r I1 }

was not reported in. the tables. For the first test problem (TP1) no final velocities
were prescribed, and for the second problem the desired velocities (2T (0, 0, 0)T)
were satisfied exactly.

The effect of regularizing on the positions and velocities of our test problems is
summarized in Table 5. The maximum relative difference between regularized and
unregularized position and velocity is recorded. More precisely, the discrepancies

D(XR, XNR) II maXn Iz(nAt) x(nAt)lll
1 + maxn Ix(nAt)l

maXn liCNR(nAt) (nAt)lll
1 + maxn l(nAt)l

are in the third and fourth columns, respectively, of Table 5. The subscripts R and
NR denote regularized and nonregularized values respectively.
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-0.5

FIG. 9. (TP2) Displacements of uncon-
trolled system.

FIG. 10. (TP2) Velocities of uncontrolled
system.

FIG. 11. (TP2) Multipliers of uncontrolled
system (NR).

FIG. 12. (TP2) Multipliers of uncontrolled
system (It).

Position, velocity, and the Coulomb multipliers are plotted versus time. The
first set of figures (Figs. 1-4 and Figs. 9-12) represents the system coming to rest
without any control present and hence the velocities of all three components vanish
quite rapidly. In the second set of figures (Figs. 5--8 and Figs. 13-16) the control is
activated, and the final positions of the components are the desired targets.

A significant decrease in computation was seen when the regularization (using
(2.19) instead of (2.14)) was employed. The oscillating behavior of the multipliers
was virtually extinguished by the regularization procedure both in the controlled sys-
tem and the uncontrolled system. An interesting observation is that the values of the
regularized multipliers were always close to the time averaged values of the unregu-
larized multipliers, as observed in [DeaGKN92]. The external forces were chosen to
change the sign of the velocity in the interval t E (0, T]. The only nonsmooth behavior
in the multipliers occurred at the jumps, where the velocity of the system changed
sign. Since we are most interested in behavior of these systems when velocities be-
come small or vanish, dealing with the nonsmooth behavior of the multipliers was the
primary difficulty in these simulations.

The graphs associated with test problem one and test problem two are labeled
(TP1) and (TP2), respectively. Similarly, the graphs of the Coulomb multipliers
calculated with the regularization procedure are labeled with (R) and those graphs
calculated without regularization are labeled by (NR). In the uncontrolled system, the
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FIG. 13. (TP2) Displacements of con-
trolled system.

FzG. 14. (TP2) Velocities of controlled
system.

FIG. 15. (TP2) Multipliers of controlled
system (NR).

FIG. 16. (TP2) Multipliers of controlled
system (R).

friction damped the displacements to zero very rapidly. Here the weak convergence
of the multipliers is evident, and the benefit of the regularization is clear. In the
controlled systems the displacements did reach the correct targets, both with and
without regularization as seen in Figs. 1, 5, 9, and 13. Again, we see the weak
convergence of the multiplier corresponding to the one component whose velocity
vanishes for t large enough.

The smooth behavior of the multipliers when velocities are far from zero and
the effectiveness of the regularization suggest that a combination of smooth and non-
smooth minimizations may prove useful in the study of these motions. In particular,
using smooth or higher order minimization techniques (like those in [DenS83]) for
(4.1) or (4.6) when velocities are far from zero seems appropriate. When velocities
are small, more robust methods like [DenT91] may yield minima of a nonsmooth func-
tion that describes the system more accurately than a smooth analog. Perhaps the
development of an algorithm for the minimization of (4.1) or (4.6) that could harness
the strengths of both types of minimization techniques is possible.
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SOME CONVERGENCE PROPERTIES OF THE MODIFIED LOG
BARRIER METHOD FOR LINEAR PRO(RAMMING*

M.J.D. POWELL?

Abstract. On each iteration of the modified log barrier method for linear programming, a
vector of variables is calculated by the unconstrained minimization of a fixed positive multiple of
the objective function minus a linear combination of the logarithms of the constraint residuals plus
positive constants. Thus, in contrast to interior point methods, all the logarithms are finite whenever
the vector of variables is feasible. The parameters of the calculation have the property that the
coefficients of the linear combination of logarithms can be viewed as estimates of Lagrange multipliers
of Karush-Kuhn-Tucker conditions of the given problem. Initially these coefficients have any positive
values, and then their adjustment is derived from the zero gradient that occurs at the end of each
unconstrained minimization calculation. These techniques provide a simple and interesting algorithm
for linear programming that was proposed by Polyak. We study its convergence properties, finding
that the sequence of calculated variables converges to a solution. Furthermore, the values of the
objective function tend to optimality and any constraint violations tend to zero at R-linear rates.
These conclusions are valid even when there are many solutions. Indeed, our only assumption is that
the feasible region of the linear programming problem is bounded and nonempty, which is far less
restrictive than the assumptions that are usually made in theoretical investigations of the modified
log barrier method.

Key words, convergence theory, linear programming, modified log barrier method

AMS subject classifications. 65K05, 90C05

1. Introduction. Log barrier methods for linear programming are often highly
efficient in practice, being used, for example, in the very successful software that has
been developed by Lustig, Marsten, and Shanno (1991). Furthermore, it is known
that they enjoy polynomial time convergence properties, which are reviewed well by
Gonzaga (1991). In order to describe the main idea of these methods, we consider the
minimization of the linear function

(.1) crx, xen,
subject to the linear inequality constraints

(1.2) ax_>_bk, k=l,2,...,m,

where the components of the vectors _c and {ak k 1, 2,..., m} and the numbers
{bk k- 1, 2,..., m} are data. It is required that the feasible region, q0 say, is
bounded and has a nonempty interior. Then, for every value of the parameter a, the
function

m

xeS0,
k--1

is strictly convex and has a unique minimizer, x(a) say, which is an interior point of
S0. A log barrier method follows approximately the trajectory {x(a) :0 < a < oc} in
0 by calculating an estimate of x(a) for a sequence of values of a that diverges to
infinity, because this trajectory leads to a solution of the linear programming problem.
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An important ingredient of an efficient implementation is to ensure that the in-
creases in a have the property that, when calculating x(a) for a new value of a, it is
suitable to apply an iterative procedure whose initial vector of variables is the x(a)
that was found for the previous value of a. It would be very wasteful, however, to
make changes to a that are far smaller than necessary, because usually a large final
value of a is required in order that the final x(a) is acceptably close to a solution of
the given calculation. Another important practical consideration is that, if one takes a
global view of the function (1.3) whena is very large, then the graph of (I)a has sharp
corners near the boundary of S0, which can be particularly severe near the vertices of
the feasible region. These corners introduce several difficulties into the minimization
of (I), such as ill-conditioning of the second derivative matrix V2(I) at x(a).

These features of log barrier methods were studied more than 20 years ago for
general inequality constraints (Fiacco and McCormick (1968)). Then, in the 1970’s,
the augmented Lagrangian method and its extensions tended to be preferred, because
the use of estimates of Lagrange multipliers can avoid the need for a parameter that
must diverge to infinity. These developments are described in several books, such as
Fletcher (1987) and Gill, Murray, and Wright (1981). In the augmented Lagrangian
method, however, one loses a strong advantage of the function (1.3), which is that the
log terms provide barriers that prevent constraint violations.

Therefore Polyak (1992) has developed a way of combining the merits of the aug-
mented Lagrangian approach with terms that restrict constraint violations, namely,
the "modified log barrier method." In order to avoid a construction that is analogous
to a tending to infinity, it is necessary for the modified barriers to be outside the
boundary of the original feasible region. Specifically, instead of working with expres-
sion (1.3), one applies an algorithm for unconstrained minimization to the function

m

(1.4) ((t)(x) ocTx-- Z,k(kt)log[a(ax--bk)+l ], XeSl,
k--1

where the new parameters (A(kt) k 1, 2,..., m} are all positive, and where S is
the set of vectors x in 7n such that the numbers {a(ax--bk)+l" k-1,2,...,m}
are all nonnegative. We see that the log terms of expression (1.4) allow the original
constraints (1.2) to be violated by at most if-1. Therefore, if a is a moderate positive
number, any solution of the given linear programming problem is well away from the
boundary of S. Let x() be the minimizer of (I)() It will be shown that, for any fixed
positive value of a, there exists a sequence of parameter vectors {_() g- 1, 2, 3,...}
in Tm such that x() converges to a solution of the given calculation as g-x Here
the subscript + on 7m indicates that all the components of each _() are positive.
We note also that the function

m

(1.5) o’cTx - ,(kt)log[ a’x--bk--(T-1 ], XESl,
k--1

differs from (I) (t) by a term that is independent of x, because it follows that the
minimization of (I) (t) is comparable to the minimization of (I) if a is large and if all
the components of _(t) are one.

The definition of x(t) implies that the gradient vector V(I)(t)(x(t)) is zero, so we
have the equation

m
ak(1.6) c_- A(k)a(ax(,)_bk)+l.

k--1
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Moreover, if x(*) is any solution of the given linear programming problem, then the
well-known KKT (Karush-Kuhn-Tucker) conditions for optimality provide the iden-
tity

m

k--1

where A(k*) is zero if _a"x(*)--bk is positive and where the remaining components
of _(*) e Tm are nonnegative. We see that the condition (1.6) reduces to (1.7) if
A() A(*) and if x() satisfies the condition .T()=-- --k =b} for all values of k such that

A(k*) is nonzero. Therefore it is appropriate to regard _() as an approximation to
a vector of Lagrange multipliers. Alternatively, one can regard _() as a vector of
variables of the dual linear programming problem, but our view may be more helpful
to any extensions of the given theory to nonlinear constraints that are not necessarily
convex.

If a is much larger than the components of _(e) e TT, then usually x() is close
to a solution of the linear programming problem, because it is the minimizer of the
function (1.5). It follows from a comparison of expressions (1.6) and (1.7) that the
"updating formula"

(1.8) (+1)__ (k) a(ax()-b) 1 m,"’k /[ + k=l,2,...,

is often an excellent way of generating _(+1) from _() in practice. Furthermore,
_(+1) inherits positive components from _() because x() is an interior point of 81.
The use of this formula is recommended by Polyak (1992). He proves that, if it is
applied recursively for a suitable fixed value of a, then the points {x() g.= 1, 2, 3,...}
and the sequence {_() g 1, 2, 3,...} converge to a solution of the given optimization
problem and an optimal vector of Lagrange multipliers, respectively, assuming that the
following conditions are satisfied. 1. The linear programming problem has a unique
solution x(*); 2. the feasible region ,So is bounded and has a nonempty interior; 3. the
constraints (1.2) have the nondegeneracy property that exactly n of them are satisfied
as equations at x-x(*); 4. the "strict complementarity condition" holds, which means
that A(k*) is positive in (1.7) if ax(*)-bk is zero; and 5. the fixed parameter a is
sufficiently large. We will find that most of these conditions are unnecessary, but it
should be mentioned that Polyak (1992) addresses nonlinear objective and constraint
functions, so some of his results for linear programming applications are corollaries
of theorems that do not take advantage of linearity, and also he studies rates of
convergence.

Therefore we consider the following procedure for minimizing the linear function
(1.1) subject to the constraints (1.2).

THE ALGORITHM. Initially the components of (1) E Tm and the parameter a have
any positive values. Then an infinite sequence of iterations is begun, being the index

of the iteration, so 1 is set initially. For each , the vector x() is calculated by
(+1)minimizing the function (1.4). Then ) is defined by the updating formula (1.8),

which completes the gth iteration.
We are going to investigate the properties of this algorithm assuming only that 0

is bounded and nonempty. Hence in 2 we deduce that the calculations are well defined
for all positive integers t. It is important to study the convergence of the sequences
{x(). t 1,2,3,...} and {_()" 1,2,3,...}, because the modified log barrier
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method may provide substantial improvements to algorithms for linear programming,
by gaining some of the advantages that augmented Lagrangian methods have over the
original use of log barrier functions.

Let us compare our assumption that ,0 is bounded and nonempty with the five
conditions of Polyak’s analysis that have been noted. It is highly useful to remove
his conditions 1, 3, and 4, because degenerate calculations do occur in practice, and
it is important that they should not cause failure in linear programming software
that is intended for general applications. Deleting the nonempty interior assertion
of condition 2 is also valuable, because sometimes expressing an equality constraint
as two inequalities is more convenient than satisfying the equality by eliminating a
variable. Furthermore, our absence of restrictions on _(1) and a, except for positivity,
may assist the choice of suitable initial values of these parameters. It should be noted,
however, that the rate of convergence of the iterative procedure is usually very slow
when a is small. Nevertheless, the fact that one can prove convergence under such
weak assumptions is likely to be of interest to many theoreticians.

The main purpose of 2 is to establish a consequence of the updating formula
(1.8) that provides the backbone of our analysis. It is that the sequence

(1.9) () (I)()(x()), g= 1, 2, 3,...,

increases monotonically and is bounded above by a cTx(*), where x(*) is any solution
of the linear programming problem. This result is analogous to a duality property of
the augmented Lagrangian method.

Let (*) be the set of indices of the inequality constraints that are satisfied as
equations at every solution of the linear programming problem. It is proved in 3
that, for each k in K(*), the sequence {akTx() --bk - 1,2,3,...} tends to zero as
g-- c. It follows that, if the given calculation has a unique solution x(*), then the
points {x(t) g 1, 2, 3,...} must converge to x(*) as required, because uniqueness
implies that the vectors {ak k E K:(*)} span Tn. This analysis also establishes the
convergence of the sequence {_() g- 1, 2, 3,...} of Lagrange multiplier estimates,
the limiting value of A(k) being positive if and only if k is in K:(*).

On the other hand, when the linear programming problem has several solutions,
then the conditions

(1.10) lim a’x() bk, kE(*)

are not sufficient to imply that the sequence {x(t) t= 1, 2, 3,...} converges. In this
case, therefore, the work of 4 shows that the residuals {a’x(t) --bk g---- 1, 2, 3,...}
tend to a positive limit for at least one value of k that is not in (*). Furthermore,
if this addition to the properties (1.10) does not establish a limit of the points {x()
t- 1, 2, 3,...}, then the argument of 4 can be applied recursively to find yet more
values of k such that the numbers {a’x(t) -bk - 1,2,3,...} converge. Thus we
conclude eventually that the calculated vectors {x() g 1, 2, 3,...} tend to a feasible
point, which is a solution of the given linear programming problem due to some of
the theory of 2 and 3.

In the analysis of 4, there is a set K: E(*) of constraint indices, such that, for
each k in K, it is known that the residuals {a’x() -bk g.- 1,2,3,...} tend to a
limit, but the vectors {ak k ]C} do not span 7n. Therefore it is helpful to take the
following view of the minimization of the function (1.4) for each g. We express x(t) in
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the form

(1.11) x_if y() + z()

where y() is in the linear space, 3; say, that is spanned by {ak k E/C}, and where
z() is in the orthogonal complement of 3;. Furthermore, we suppose that y() is

known before z() is calculated. Thus z() is defined by an unconstrained minimization
calculation that depends on a, _A(), and y(). Now y() is a perturbation of a known
vector, where the perturbation tends to zero as g--* oc. Furthermore, except for the
consequences of the perturbations, the properties of the sequence {z() g 1, 2, 3,...}
are analogous to the properties of {x() g- 1, 2, 3,...} that are found in 3. Therefore
much of the analysis of 4 is an extension of the theory of 3 that accommodates the
perturbations. We protect the reader from many of the complications of the extension
by placing the proofs, of some of the lemmas of 4 in an Appendix.

We draw conclusions from our theory in 5, noting that {x() g- 1,2,3,...}
tends to a limit, (*) say, that is independent of the initial parameters a and _A(1).
Thus we confirm an observation of Polyak (private communication) that the rate of
convergence of this sequence to _i(*) can be controlled by the value of a.

It has been anticipated that most readers will not have time to consider the
arguments that address the difficult cases when. the linear programming problem has
more than one solution. Therefore it is advisable to skip both 4 and the Appendix
initially. Thus one can gain an understanding of the method of analysis that makes it
easier to study the treatment of degeneracies. Furthermore, the presentation allows
one to read 4 completely before referring to the Appendix.

2. Some properties of the algorithm. The first result of this section is that
the vector of variables x() that minimizes the function (1.4) is well defined on each
iteration of the algorithm. Second, we consider the relevance of the numbers (1.9),
noting that they are bounded above by a times the optimal value of the objective
function, and that they tend to this bound as --+ oc if the sequences {x() -1, 2, 3,...} and {A() g 1, 2, 3,...} converge to optimal vectors of variables and
Lagrange multipliers, respectively. Third, we find that the algorithm provides the
strict inequality

(2.1) (+1) > ()

on every iteration, except in the highly degenerate case when x() is on the boundaries
of all the constraints (1.2). Thus we deduce that, if the calculated sequences {x()
g-1, 2, 3,...} and {_A() g-1, 2, 3,...} converge, then their limits satisfy the KKT
conditions for optimality. The section ends by mentioning some of the difficulties that
must be overcome by the analysis of 3 and 4.

LEMMA 2.1. The assumption that the set o is bounded and nonempty implies
that S1 is bounded and has a nonempty interior, these sets being defined in 1. Fur-

()thermore, for any positive values of a and {Ak k= 1,2,..., m}, the function (1.4)
is strictly convex and has a unique minimizer x(), which is an interior point of 31.

Proof. The set S1 C Tn is convex. Therefore, if it is unbounded, there exists a
nonzero vector v such that x+av is in 81 for every x in 31 and for every positive
multiplier a. It follows from the definition of 1 that v satisfies the conditions

(2.2) a"v k 0, k=l,2,...,m.
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Let _x be in the nonempty subset ,0 of -1. Then the inequalities (2.2) imply that x-v
is in ,0 for every positive c. This contradiction of the boundedness of0 implies that
-1 is bounded too. Furthermore, the set 0 provides a nonempty interior of 1.

The function (1.4) is strictly convex if its second derivative matrix

m
a akak(2.3) V2(I)() (x) E A(k)
2 T

k=l a(a’x_-bk)+ 112

is positive definite at all interior points of ’1. Because the components of _() are all
positive, we see that this matrix has no negative eigenvalues and that it is singular if
and only if a nonzero vector v satisfies the equations

(2.4) _akTv 0, k=l, 2,...,m.

We found in the previous paragraph, however, that these equations lead to a contra-
diction, which establishes the required strict convexity of (I) (). Furthermore, since
(I)() is continuous on the interior of 1 and tends to infinity at the boundary of ,1,
it has a minimizer, which is unique due to the strict convexity. Therefore _x(t) is a
well-defined interior point of 1. D

It follows from Lemma 2.1 and the updating formula (1.8) that, if the components
of_A(t) are positive, then not only is x(t) well defined, but also the components of_(t+l)
are positive. Thus the calculations of the algorithm we are studying can continue for
an infinite number of iterations.

LEMMA 2.2. Let x(*) be any solution of the given linear programming problem.
Then the numbers (1.9) satisfy .the condition

(2.5) (t) <_ a cTx(*), = 1, 2, 3,

Furthermore, if {x(t) e 1, 2, 3,...} converges to x(*) and if {_.A() e 1, 2, 3,...}
converges to a Lagrange multiplier vector, A_.(*) say, of the KKT conditions at x(*),
then the sequence (1.9) has the property

(2.6) lim (t) a cTx(*).

Proof. It follows from the definitions of _x(t) and (I) (t) that we have the bound

m

(t) -< (I)(t) (-x(*)) a cTx(*) E )(kt) lg[ a(ax-(*)-bk)+ l
k=l

(2.7) <_ a cTx(*), 1, 2, 3,...,

where the last line depends on the constraints (1.2) on x(*) and on the positivity of
_(t). Therefore condition (2.5) is satisfied. Moreover, because the right-hand side of
expression (1.4) is a continuous function of x and _A() in neighbourhoods of x(*) and
_(*), respectively, the assumed limits x(t) x(*) and _A(t) ---_(*) imply the equation

m

lim () lim (I)()(_x(t)) a cTx(*) E A(k*) log[ a(ax_(*)--bk)/ l
k--1

a cTx(*),
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where the last line depends on the fact that, due to the KKT conditions, A(k*) is zero
if k"T’(*)+/- bk is nonzero. Therefore the lemma is true.

Lemma 2.2 is useful because it tells us that, if we wish to achieve the limits of
the sequences {_() 1, 2, 3,...} and {_( 1, 2, a,...} that are assumed, then
we should satisfy (2.6). Therefore, in view of inequality (2.15), we want the numbers
{() 1,2,,...} to converge to as large a value as possible. Fortunately, the
updating formula (1.8) gives the following properties.

LEMMA 2.3. Every iteration of the algorithm provides the inequality
m

(2.9) (e+l)_(e) > Wl ),(+1) 2

k--1

where wl is a positive constant. Furthermore, ((e+l) also satisfies the bound
m

(2.10) o" cTx(*) (t+l) <_ Z ’k(kt+l)a(a’--x(*)-b),
k--1

where x(*) is any solution of the linear programming problem.
Proof. Equations (1.6) and (1.8) imply the identity

m

(2.11) _c A(kt+l)a}.
k--1

Therefore the definitions of (e+) and _(+1) and an elementary property of the log
function provide the relation

(+1) a crx(e+l) Z (+1)log[ o’(__(e+) -b)+ 1

> e cx(+ll (e+ll

k--1

(2.12) a A(k+l)bk.
k--1

Thus, using the definitions of () and _(), (2.11) again, and formula (1.a), we find
the inequality

m

(-t-1) _() (+1) O" cTx(’) -- ,(kg’) log[ a(a’_x(e) --bk)+ 1
k=l

k=l k=l

(2.1a) ,(e+l {[ a(fl_( -b)+ 1] log[ a(fl( -b)+ 1] a(_’(el -b)}.
k=l

We write this condition in the form

(2.14) (t+)_(t)
__
Z (kt-l))(o’(akTx(t)--bk))
k--1
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where is the function of one variable

(e) (e+l)log(e+l) o, -1

and where is a constant upper bound on the numbers {a(ax-bk) k 1,
2,..., m} for every x in 81. Noting that has the derivatives

(2.16) ’(0) log(O+1) and "(0)= (O+l)-,
we use a Taylor series expansion to deduce the bound

(2.17) I/)(0) l/)(0) -+- 0)’(0) -[- 1/2021/)"()
_

1/202(3t-1) -1,
being a point in the interval [min{0,0},max{0,0}]. Therefore expression (2.14)

implies the relation

(2.18)
m

(g+l)_(g) > 1/2(q_l)-I E ),(g+l) 2

k--1

so inequality (2.9) is satisfied when wl is the constant 1/2(+1) -1. We complete the
proof by deducing the property (2.10) from the fact that expressions (2.11) and (2.12)
provide the inequality

m m

2.19) a cTx(*)--fl(+1) __< rE (kT1)--akTx(*) 7E "’k1(+1) bk. [’]

k--1 k--1

The second assertion of Lemma 2.3 will be useful in 3, while the first assertion
establishes the strict inequality (2.1), unless all the constraint residuals (aTx()--bk
k- 1, 2,..., m} are zero. It now follows from the bound (2.5) that the differences
{(g+l) _() 1,2,3,...} tend to zero. Hence condition (2.9) implies that the
algorithm gives the limits

lim ,(kg+l) (akTx_.(g) --bk) 2 O, k-- i, 2,..., m.

These limits and the updating formula (1.8) make us hopeful that the algorithm will
converge satisfactorily, because they provide the following lemma.

LEMMA 2.4. If the sequences {x() g 1, 2, 3,...} and {_A(t) g 1, 2, 3,...} are
c mzts bern (*) (*) (*)onvergent, their li fc and A say, then is a solution of the linear
programming problem and A*)-s a Lagange multiplievector of the KKT conditions
at 2c(*)

Proof. For each constraint index k, formula (1.8) implies the equation

(2.21) A(g+l) A(k1)k / H a(_ax(J)--bk)+ 1 ].
j----1

Therefore, if the limit T ^(ak x *)--bk of the constraint residuals {a’x()-b g 1, 2, 3,...}
were negative, then the sequence {A(k) g 1,2,3,...} would diverge, which is a
contradiction. It follows that the point (*) is feasible, The updating formula also
provides the relation (2.11), so (1.7) holds. Moreover, we deduce from expression

(2.20) that a[&_.(*)--bk is zero if A(k*) is positive. Moreover, because each _A() is in 7,
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none of the components of _A(*) is negative. These remarks show that (*) and _A(*)
satisfy the KKT conditions. Since these conditions are both necessary and sufficient
for optimality in the case of a linear programming problem, the lemma is true. [:l

Our main task is to show that the conclusion of Lemma 2.4 is always valid under
our very weak assumption that 0 is bounded and nonempty. Therefore 3 and 4
prove the convergence of the calculated points {x(e) g- 1, 2, 3,...} and the Lagrange
multiplier estimates {_A() g- 1, 2, 3,...}. This rather long analysis must overcome
the following difficulties.

,(q-l)The updating formula (1.8) would cause "’k to be much larger than %(ke) if
the denominator [a(fix(e) --bk)+ i] were close to zero, but we must establish that
{_() g 1,2,3,...} tends to a limit. In particular, suppose that the equality
constraint aTx=b is expressed as the two inequalities

(2.22) aTx _> b and a2Tx _> b2,

where a ---a, bl --b, a2 "----__a, and b2---b. Then the updating formula gives the
identity

Thus the products {At) A(f)" g= 1, 2, 3,...} increase monotonically, so no recovery can
occur if a large increase in the product is caused by a small denominator. Therefore
our analysis must show that the total damage from the denominators being less than
one does not prevent the convergence of the Lagrange multiplier estimates as g--+ cxz.

Another difficulty is nonuniqueness of the solution of the linear programming
problem, which occurs, for example, when the objective function (1.1) is identically
zero and the constraints (1.2) are satisfied by many values of x. We must identify the
appropriate limit of the sequence {x() g= 1, 2, 3,...} in this case. Furthermore, our
analysis will imply that the second derivative matrix (2.3) tends to singularity if the
linear programming problem has more than one solution, due to the components of
_A() that converge to zero.

Difficulties arise also from the shifts in the log barrier functions, because this
construction keeps the calculated points {x() g 1,2,3,...} in $1, but we require
the limit points of the sequence to be in the original feasible region S0. For example,
consider the linear programming problem

Minimize cTX x2, x__ E T,2,
(2.24)

subject to x2_>O, -x2_>-1, x+x2_>-l, -x +x2 _> -1,

which has the set of solutions x(*) E {(0, 0)T -1 _< 0 _< 1}. Let a 1, let A) 1,
and let the remaining Lagrange multiplier estimates be very small. Then the first
component of the vector equation (1.6) takes the form

o,
which gives the value

(:.:6) xl
Since our assumptions on _A(g) imply x(f 0, it follows that xg) depends mainly on

the ratio A(3)/A(4). Thus we achieve the required feasibility condition -1 _< x) _< 1
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in the limit I --, oc if and only if the algorithm tends to give the property 1/2 _<
)(3e)/A(ae) _< 3. In fact both A(3e) and A(4) converge to zero, so this example shows
that, in addition to proving the convergence of the sequence {() g- 1,2,3,...},
our analysis must take account of the ratios of the components of _() that tend to
zero. Therefore we require some properties of the algorithm that are stronger than
the assertions of Lemmas 2.2 and 2.3. Actually, this linear programming problem is
solved satisfactorily, because (2.25) shows that the updating formula (1.8) provides

Ai+1) =,(3e+l), and then formula (2.26) gives x) =0, _> 2.

3. The constraints that are active at all solutions. The linear programming
problem that we are considering has at least one solution due to the assumption that
the feasible region S0 is bounded and nonempty. We let A’(*) be the set of optimal
vectors of variables, and, as in 1, we let K:(*) be the set of indices of the constraints
that hold as equations at every point of A’(*), so we have the identities

(3.1) ax(*) bk, kE(*), x(*) EA’(*).

The analysis of this section will prove that the algorithm has the property

(3.2) lim ax() bk, k

We will find also that the Lagrange multiplier estimates {() g 1, 2, 3,...} converge
to a limit _(*) whose components satisfy the conditions

(3.3) (*)>0, k/C(*), and *)-0, kl(*).

These assertions depend on the existence of strictly complementary solutions of the
linear programming problem and its dual, which is proved in Corollary 2A of Goldman
and Tucker (1956) for a different formulation of the problem. Specifically, the following
properties of K:(*) will be required.

LEMMA 3.1. If (*) is nonempty, then there exist multipliers {#k kK:(*)} that
are all positive and that give the formula

(3.4) c= E #kak"
kEK:(*)

Moreover, if some of the constraint indices are not in 1C(*), then there exists a solution
of the linear programming problem, (*) say, that satisfies the conditions

(3.5) a"(*) >_ bk+, kE{1,2,...,m}\K:(*),

where is a positive constant.
Proof. We pick any strictly complementary solution of the linear programming

(,) n , (,)problem and its dual, say E 7 and # 7 and we define to be the set
{k" #k >0}. Then the equation

(3.6) _c= E #k__a

holds, and, if some of the constraint indices are not in (*), we can let be the
greatest number that is allowed by the inequalities

a(*) >_ bk+h, ke{1,2,...,m}\(*).



CONVERGENCE OF THE MODIFIED LOG BARRIER METHOD 705

It follows from strict complementarity that is positive. Therefore the theorem is
true if (*) is the same as the set K:(*) that has been defined already.

Expression (3.7) with > 0 and (*) E A’(*) imply that, if k (*), then k K:(*), so
we have the property E(*) c (*). Moreover, if x(*) is any optimal vector of variables,
then optimality, (3.6), and the KKT conditions at i(*) give the identity

(a.s) o (*))
kE(*) kE(*)

Furthermore, the feasibility of x(*) implies that the factors {ax(*)--bk k E:(*)} are
nonnegative and we recall that the multipliers {#k k (*)-are strictly positive.
Therefore the constraint residuals {_a’x(*)--bk k/:(*) } are zero for every x(*) A’(*),
which is the condition (*) c K:(*). It follows that (*) is the set K:(*) as required.

It would not be helpful to deduce the assertion (3.2) from our analysis if the
set K:(*) were empty. This cannot happen if _c is nonzero, because we are able to
satisfy (3.4). It also cannot happen if c is zero and 0 has no interior, because
now a nontrivial, nonnegative linear combination of the constraint gradients {ak k-
1, 2,..., m} vanishes, the multipliers of the combination being admissible as Lagrange
multipliers of KKT conditions, so again (*) --K:(*) is nonempty. The set E(*) is
empty, however, when _c vanishes and ,0 has an interior, because the interior points
of 0 are in A’(*). In this case, therefore, we apply the algorithm of 1 to the linear
programming problem that is the subject of the following lemma.

LEMMA 3.2. Let the objective function of the original linear programming problem
be identically zero and let the constraints (1.2) define a feasible region ,o that has a

nonempty interior. Furthermore, let have the largest value that is allowed by the
statement of Lemma 3.1. We introduce the quantities

(3.9) _5k (a]+l)-lak and k (a]+l)-l(bk+), k=l,2,...,m.

Then the feasible region, ,o say, of the linear programming problem

Minimize cTx (=_ 0), xTn,
(3.10)

subject to 5_x >_ Dk, k- 1, 2,..., m,

is nonempty but has no interior. We apply the algorithm of 1 to the new problem,
using the old value of a and starting with the Lagrange multiplier estimates (1)
(a+ 1)_(1), and we let {i() l= 1,2,3,...} and {_(t): g= 1,2, 3,...} be the vectors
of variables and Lagrange multiplier estimates that are generated. Then these vectors
are related to the original ones by the identities

(3.11) () (a+1)_() and &() x(), - 1, 2, 3,

Proof. Let i(*) satisfy the conditions (3.5) for the above value of . Then, because
E(*) is empty, expression (3.9) provides the bounds

(3.12) _5’i(*) --(ah+l)-l_akT_(*) _> (ah+l)-l(bk+])- k, k--1,2,...,m,

which shows that the constraints of the problem (3.10) are consistent. Moreover, if x
were an interior point of 0, then it would satisfy the strict inequalities

a’_x (a/ 1)_5’x_ > (ah+l)k b-t-, k- 1, 2,..., m,
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which contradicts the maximal property of the given choice of , the optimality of
the objective function at x being trivial because _c is zero. Therefore ,0 is nonempty
but has no interior as required.

We establish the relations (3.111 by induction, knowing that the first one is true
when 1. Therefore we assume that _() has the value (a+ 1)_A() for general .
Then &(e) is the minimizer of the function

m

(3.141 )(t)(x) =acTx-- (a+l)t-A(t)log[o’(x--:)+l], xe,l,
k--1

where x is in 1 if and only if the inequalities

a(_kTx--Dk)+l__>0, k--l,2,...,m,

hold. Now the definitions (3.9) are chosen to provide the identities

(3.16/ a(’x_-)+l (ah+l)-l[a(ax-b)+ll, k=l,2,...,m,

for every _, so the sets ,1 and ,1 are the same. Purthermore, remembering __c= O, it
follows from the definitions (1.41 and (3.14) that we can write (() in the form

m

(3.17) (t)(x_) (a+l)(()(x) + (ah+l) yA() log(a+l), x_e,S1.
k-1

Hence the vectors that minimize ((t) and (I)(t), namely, _() and _x() are equal for
the current g. Then the updating formula (1.8) gives the new Lagrange multiplier
estimates

(+11 i(k) a(kTx_(t) k)1

--(a]_t_i)’A(k’>/ ((a+i)-l[a(ax(’>-bk)+l ]}
(3.18) (r+ 1)t+l(t+l)"’k k=l,2,...,m,

which completes the inductive argument that establishes the assertions (3.11). There-
fore the lemma is true. [:!

The last part of expression (3.11) shows that, in order to assist our analysis of
the sequence {_x() g- 1, 2, 3,...} that is defined in 1, we can replace the original
linear programming problem by the calculation (3.10) if_c is zero and if 80 has interior
points. Therefore we assume without loss of generality that the set/C(*) is nonempty.
Further use will be made of Lemma 3.2 in 4.

Our analysis will require a bound on the Lagrange multiplier estimates (_A()
1, 2, 3,...}. It is easy to deduce uniform boundedness if ,0 has an interior point,
say. Indeed, Lemma 2.3 and the definition of (g) imply the inequalities

m

(3.191 a cT& y A(kg) log[ a(a&_--bk)+ 1 ],
k=l

Therefore the conditions

(3.20) A(k) <_ ((T _C T_-- q(11) /log[ a(a_--bk)+ 1 ],

k-l,2,...,m.

k= l, 2, m,
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are satisfied for every positive integer g. Next we derive an adequate bound for the
general case when the interior of S0 may be empty.

LEMMA 3.3. There exists a positive constant w2 that provides the property

(3.21) A(k)_<w2/, k=l,2,...,m, t=1,2,3,

Proof. The updatingformula (1.8) allows the first statement of Lemma 2.3 to be
expressed in the form

m

(3.22) E A(k’+l) [a(ax-()-bk) ]2
k--1

m

E (’(kg+l) --’(kg))2
k=l (ke+l)

_< w-((+i)-()).

We introduce the monotonically increasing numbers

(3.23) p() max max A(ky) t= 1 2, 3,
j--1,2,...,t k--1,2,...,m

They satisfy the inequality

(3.24)
(p(+) -p())e

p(+l)
k=l

which is trivial if p(+l)=p(), and otherwise condition (3.24) follows from the remark

(3.25)
(p(+l)_p(t))2 (/(ki+l)_p(t))2

p(+l) A(ke+l)
where k is such that p(t+l)__ A(kt+l). Hence expression (3.22) provides the bound

(3.26) (p(W1)_p())2/p(+l) W-1((+1)_()).
Now the Cauchy-Schwarz inequality gives the relation

(3.27) p(+l)_p(1)__ E (p(j+l)_p(j)) <_ (p(j+l)_p(j))2/p(j+l) E p(j+l)
j--1 j=l j=l

By squaring both sides, by dropping the (p(1))2 term from the left, by bounding
j=l p(j+l) by tp(+1), and by dividing by p(e+l), we find the condition

P(+I)--2p(1) -- E (p(j+l)_p(j))2/p(j+l)
j=l

(3.28) wi-1((+1)-.(1)), 1,2,3,...,

where the last line depends on expression (3.26). Therefore the positivity of p(1) and
the first statement of Lemma 2.2 imply the bound

(3.29) p(+l) _< (_t_l)p(1)q_ .W-I(o. cTx(.). (1)), e=1,2,3,

Furthermore, this bound is trivial when g 0. It follows from the definition (3.23)
that the lemma is true when w2 is the constant p(1)+w-l(r cTx(,)__(1)). ]
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We can now establish that property (3.2) is achieved by a subsequence of the
integers g. The proof of this result depends on the positive constants {#k k E/C(*) }
that are introduced in Lemma 3.1.

LEMMA 3.4. The algorithm provides the limit

(3.30) o.

Proof. Let H(t) be the product

(3.31) H(t) H (A(ke))"’ g=1’2’3’’’’’
kE(*)

and let be the constant that is defined just after (2.15). It follows from the updating
formula (1.8) and the inequality log(O+l)_<0-1/202(+l)-2, -1 <_<, that we have
the relation

lg(II(t+l)/II(t)) E #k log[a(_akTx_(t)-bk)+l]
kC(*)

(3.32) >- E #k o(ax_(t)-bk) + 1/2(0+1) -2 E
kK:(*) kK;(*)

Furthermore, let x(*) be any solution of the original linear programming problem.
Then the definition of ]C(*) and (3.4) give the identity

(3.33) E
kK;(*)

Furthermore, (2.11) and the feasibility of x(*) imply the bound

(3.34)
m m

-cT(x()----X(*)) E/(kt+l)a(x--(t)----X(*)) - E/(k+l) (akT--x(t) --bk)"
k=l k=l

Therefore condition (3.32) provides the inequality

Now Cauchy-Schwarz and Lemmas 2.3 and 3.3 yield the relation

(3.36)

E "’k)"(-t-1) o’(akTx__() bk)]

_
E ’(k+1)[ ’(ax() bk)]2 E ’(k+1)

k=l k=l k=l__
[m(w2/wl) (e+l) ((+1)_()) ]1/2.



CONVERGENCE OF THE MODIFIED LOG BARRIER METHOD 709

Furthermore, if p and q are any integers that satisfy 1 _< p < q, another application of
Cauchy-Schwarz implies the property

(+1).((+)_())1/ < (+1) (+)-())
.=p g.=p

(3.37) _< q ((q) (P)) 1/2.

It follows from expressions (3.35) and (3.36) that we have the inequality

_< 2 (0+ 1)2 (log(II(q)/II(p)) + q[m(w2/wl) ((q)-(P))]1/2 }.
Let e be any positive number. Then, because the sequence {(e) = 1, 2, 3,...}

increases monotonically and is bounded above, there exists a fixed integer L that gives
the condition

(3.39) 2(+l)2[m(w2/wl) ((e)-(L))]1/2 <_ e., g>_L.

Thus, when l exceeds L, expression (3.38) provides the inequality

}"= kE:(*)

, [(a_()-b)]: + , [(d_()-b) ]
j--1 k(*) j--L k](*)

(3.40) _< 2(+1)2 log H(1) ] +L m- + (g+l)e.

Moreover, the definition (3.31) and Lemma 3.3 imply the bound

(3.41) logH(e+) < #k log w2 +log(g+ l) ].
k:(*)

Therefore, by dividing both sides of expression (3.40) by and by taking the limit as, we deduce the condition

(3.42) -o #k [a(_a’x_(j)-bk)]2 <_ e.
j=l kffK:(*)

Because a and (# k E K:(*)} are positive constants, the required property (3.30) is
now a consequence of the fact that e can be arbitrarily small. [3

We complete the analysis of this section by combining Lemma 3.4 with some
properties of the sequence (a cT&(*) --(t) l 1, 2, 3,...}, where (*) is introduced
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in Lemma 3.1 if some of the constraint indices are not in K:(*), and otherwise (*) is
the unique solution of the linear programming problem. Lemmas 2.2 and 2.3 show
that this sequence is nonnegative and monotonically decreasing. Furthermore, the
following assertion will help us to deduce that the sequence converges to zero at a
rate that is at least R-linear.

LEMMA 3.5. fhere exist constants w3 and wd, satisfying w3 > 0 and 0 < w4 < 1,
such that, if the conditions

(3.43) [ax(t)--bk[ <_ w3, kEIC(*),

hold for some positive integer , then the algorithm provides the inequality

(3.44) o’cT(*)--(t+l)

_
W4

Proof. The right-hand side of expression (2.10) is zero if K:(*) includes all the
constraint indices, in which case the assertion (3.44) is an immediate consequence of
the bounds (2.5) and (2.10), the value of a cT&(*)--(t+l) being zero. Therefore we
assume for the remainder of the proof that condition (3.5) is satisfied.

Let S(*) be the set

(3.45) S(*) {x" ax=bk, kE(*)} C nn,

so it includes the solutions of the linear programming problem. Furthermore, for every
x in Tn, let s(x) be the orthogonal projection of x into (*). We claim that there
exists a positive constant w5 that provides the property

(3.46) I]x-s(x)ll2 <_ w5.max{lax--bk keK:(*)}, xenn.

Indeed, if we let .4(*) c Tn be the linear space spanned by {ak k K:(*)}, and if the
Euclidean length of y .4(*) is one, then an elementary argument using continuity
and compactness gives the inequality

(3.47) max{lay ke/C(*)} _> e,

where e is a positive number that is independent of y. Thus, using homogeneity to
remove the restriction Ilyl12 1, we deduce the relation

(3.48) [[y[[2 _< e-max{la’_yl keK:(*)}, y_eA(*).

Now the orthogonal projection construction of _s(x) causes x-_s(x) to be in 4(*), in
addition to providing the equations {a"_s(x) =bk k ’(*)}. Therefore, by substitut-
ing _X-_S(x) for y in expression (3.48), we find that condition (3.46) holds when w5
has the value e-1.

We are going to require the bound

(3.49) E "’k(t+l)akT [x_(t)__8(x__(t)) < 1/2t E "’k

k:(*)

when condition (3.43) holds, where t occurs in expression (3.5). Therefore we note
that Cauchy-Schwarz and inequalities (3.46) and (3.43) provide the relation
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E /k(+l)’T--k [X--()---8(X())

(3.50) < WbW3 E ’(+)

It follows that we can achieve the bound (3.49) by letting W3 be the constant

Expressions (3.5) and (3.49) yield the inequality

E ’(kt+l)[a’x(t) bk] > E ),(+1) ,) ),(+1
"’k [a"x(O- --a’ 1+ E "’k

> E "(k’+l) [a’l8(x(Q)--a--1(*) -l- 1/2 E "k’(t+l),

and our next task is to show that the first of the two sums in the last line is zero.
Indeed, because both s(x(t)) and _b(*) are in the set (3.45) and because (2.11) and
(3.4) are satisfied, we find the identity

m
"(+’) [_(x()), _

[_(z())-(*_ ,’(+’) -_
kK:(*) k--1

(3.53)

_
[_(_())-g*) , a[ [_(x())-_(*) 0.

kE(*)

Therefore expression (3.52) and Cauchy-Schwarz give the condition

(3.54) 1/2 kK:(’)E )(k+1)-- { kK:(*)E "(k+1) [ax()--bk ]2

which can be written in the form

i

(1/20"h)2 E ’(k’’+1) <- E "’k’(+l) [d(a’"x(’) --bk)] 2.

The relation (3.55), the positivity of Wl, the nonnegativity of the products
),(q-l) [a(a’x(t)-b) ]2 kE/(*)}, and the first part of Lemma 2.3 imply the bound

m

(3.56) Wl (1/20") 2
ktiK:(*) k--1

while the second part of Lemma 2.3 and (*) E (*) provide the condition
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By combining expressions (3.56) and (3.57) in the way that eliminates the sum

-:kC(*) A(k+1), we find the inequality

]_11/4Wl’t2[m&x.(aY(*)-bJ) ((7cT(*)--(H-1)) --< Wl(ff)2 "’k(+l)

It follows that the lemma is true when w4 is the number

{1 +

The main conclusion that we draw from Lemmas 3.4 and 3.5 is given next.
LEMMA 3.6. The positive, monotonically decreasing sequence

1, 2, 3,...) has the property

(a.o) v(,) _() , =,, a,

where w6 and w are constants that satisfy w6 > 0 and 0 < w7 < 1.

Proof. We deduce from Lemma 3.4 that we can pick a fixed positive integer L
that provides the bound

}(a.l)
j=l

where wa is introduced in ghe statement of Lemma a.g. This relation implies that the
conditions

(3.62) I()--bkl w3, ke(*),

are achieved by at least half of the integers j in the range [1, g ]. Therefore Lemma
3.5 and the monotonicity of the sequence (acT&(*) --() g 1,2,3,...} yield the
bound

Thus, remembering w4 < 1, we have the relation

which has the advantage of also being true when g L, due to the monotonicity
property that has just been mentioned. It follows that we can satis inequality
(3.60) by setting the values

(acT& and w=w,

which completes the proof.
We are now ready to justify (3.2). We emphasize the importance of this result by

presenting it as a theorem.
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THEOREM 3.7. Let the algorithm of 1 be applied to minimize the function (1.1)
subject to the constraints (1.2), where the feasible region is bounded and nonempty,
and let k be the index of any constraint that is satisfied as an equation at all solutions

of this problem. Then the sequence of calculated variables gives the limit

(3.66) lim a’x(e) bk.

Furthermore, this limit has the R-linear convergence property

(3.67) laTk x(t) -bkl <_ WsW9, =1, 2, 3,

where Ws and w9 are constants that satisfy ws > 0 and 0 < W9 < 1.

Proof. Lemma 3.4 allows us to pick a fixed integer L that provides the condition

(3.68) E(a’x(J)--bk)2 <_ 1/2a-l log(1/w7) ]2g, g_>L,
j--1

where k is defined in the statement of the theorem and where w7 occurs in expression

(3.60). Thus we will obtain a lower bound on A(k+1) that allows the required results
to be deduced from inequalities (2.9) and (3.60).

The updating formula (1.8), the concavity of the log function, and Cauchy-
Schwarz imply the relation

[.(+1) )(k1)ogAk / E log[ a(ayx(j) --bk)+ 1] >_ --a E(ax(J) --bk)
j=l j=l

(3.69) _> -a f
Therefore our choice of L gives the inequality

(a.70) >_

which is equivalent to the bound

g/2(1) > L.(3.71) )(k-{-1) - w7 "’k

Hence, by retaining only one term from the sum of expression (2.9) and by invoking
Lemma 2.2, we find the property

(a’x() bk)2

(3.72) g_>L.

It follows from Lemma 3.6 that we have the relation

(3.73) (ax_()-b) < w(wia)())-w/, >_ L.

We set w9--w/a and choose a value of ws that is no less than [w6(wla2A(kl)) -1 ]1/2,
in order that the required condition (3.67) is satisfied for >_ L. Furthermore, by
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increasing ws if necessary, we can accommodate the values of g that are less than L.
Thus inequality (3.67) is achieved, which implies the limit (3.66).

We also offer a formal statement and proof of expression (3.3).
THEOREM 3.8. Let the algorithm of 1 be applied to minimize the function (1.1)

subject to the constraints (1.2), where the feasible region is bounded and nonempty.
Then the sequence (_A(e) g--1, 2, 3,... of Lagrange multiplier estimates converges to
a limit, A(*) say. Furthermore, the components of A(*) satisfy the conditions (3.3).

Proof. Let k be a constraint index that is in K:(*). We consider the sequence

(3.74) ,)(e+l) ,)(ke) (T(_akTx(e) bk) X, 2,3,k /[ + g=l,

that is given by the updating formula (1.8). Because every denominator and A(k1) are
positive, it is elementary that this sequence has a nonzero limit if and only if the
sum ’=1 laTx(0 --bkl is finite. We see that this convergence property is implied by
inequality (3.67).

Alternatively, if k is a constraint index that is not in K:(*), then the definition of
K:(*) implies that we can pick a solution (*) of the. linear programming problem at
which a2c(*)-bk is positive. Then inequality (3.19) and Lemma 3.6 give the bound

(3.75)

A(ke) <_ (a cT&(*)--(e)) /log[a(a&_(*)--bk)+l <_ w6w/log[a(a_&_(*)--bk)+l ].

It follows that {A(ke) g= 1, 2, 3,...} tends to zero as required.
It is mentioned in 1 that the convergence of the sequence {x(e) g 1, 2, 3,...}

can be deduced from the limits (3.2) if the given linear programming problem has
a unique solution. In order to prove this assertion, we let x_(*) be the solution and
we suppose that the sequence fails to converge to x(*). Then, because the sequence
is bounded and is in 7n, it has a limit point, x_() say, that is different from x(*).
Furthermore, the definition of K:(*), expression (3.2), and the feasibility of_x(*) provide
the conditions

(3.76) ax_(*)=bk=ax(), ke(*), and ax(*)>bk, k(*).

It follows that we can pick a small positive value of 0 so that the vector

_
x(*)+

0(_x()-x_(*)) is feasible. Furthermore, (3.4) and (3.76)imply cTS=c_Tx(*). Therefore
is another optimal vector of variables. This contradiction establishes the limit

x(e) -x(*) as -c.
On the other hand, if the linear programming, problem has more than one solution,

then the set (3.45) includes more than one point, while condition (3.2) states just that
the limit points of the sequence {x_(e) /= 1, 2, 3,...} are in S(*). Therefore we do
not yet know if the sequence is convergent. Furthermore, we do not even -know if its
limit points satisfy the given constraints (1.2). The lengthy analysis of 4 and the
appendix will answer these questions. It can be skipped by any reader who prefers
not to study linear programming calculations that have many solutions.

4. The limiting values of the other constraints. It is convenient to intro-
duce a notation for the constraint indices k whose residuals (ax(e)--bk -- 1, 2, 3,...
are known to converge satisfactorily. Specifically, we say that a set K; of constraint in-
dices is "established" when we have proved that it has the following three properties.



CONVERGENCE OF THE MODIFIED LOG BARRIER METHOD 715

(i) For each k E K:, the sequence {a’x() --bk t 1, 2, 3,...} tends to a nonnegative

limit, r(k*) say. (ii) These sequences have the R-linear convergence rate

(4.1)

where ws and w9 are numbers that are independent of t, satisf$ing the strict inequal-
ities ws > 0 and 0 < w9 < 1. (iii) There exists a solution (* of the original linear
programming problem that satisfies the conditions

(4.2)
a’_&(*) _> bk, ke{1,2,...,m}\.

It follows from the analysis of 3 that ](*) is "established." Indeed, (3.2) provides
the limits {r(k*) --O" k K(*)}, Theorem 3.7 gives the convergence, rate (4.1), and
expression (4.2) is a consequence of the second part of Lemma 3.1 and the definition
of K:(*). Here we are using the elementary fact that, because the number of constraints
is finite, we can let ws and w9 be independent of k in the statement of Theorem 3.7.

Alternatively, if (*) is empty, we let (*) be the set of indices of the constraints
that hold as equations at all solutions of the linear programming problem (3.10), and
we show that (*) is "established." In this case Lemma 3.2 and Theorem 3.7 imply
the bounds

(4.3) 15_X()--[k <_ WsW9, g=1,2,3,..., ke(*).

Therefore, by substituting the definitions (3.9), we find the inequalities

(4.4) lax()--bk--l <_ (a+l)wsw9, t=1,2,3,..., ke(*),

which provide the positive limits {r(k*)= " k f:(*)}, and which establish the
conditions (4.1), because we are allowed to replace ws by (at+ 1) times its original
value. Furthermore, if (*) is any solution of the problem (3.10), then the definitions
(3.9) give the relation

(4.5) akT_&(*) (ah+ 1) ^T ^(.)
akX _> (at+l) k bk+ k=l,2,...,m.

Therefore, because this last inequality holds as an equation if k is in (*), the condi-
tions (4.2) are satisfied by this choice of (*), which completes the proof that :(*) is
"established."

The purpose of most of the analysis in this section is to show that, if is any
"established" set that does not include all of the constraint indices, then we can form
a larger "established" set by adding one or more constraint indices to K:. It will follow
by induction that {1, 2,..., m} is "established." Then we let _&(*) be the solution of
the original linear programming problem that occurs in expression (4.2), because the
definition of r(k*) gives the limits

(4.6) lim (a’x()-bk) a.2_(*)-bk, k= 1, 2,..., m.

Thus we deduce our main result, namely, that the sequence {x() g 1,2,3,...}
converges to (*). Indeed, if this conclusion were false, then the sequence would have
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at least one other limit point, x() say, and expression (4.6) would imply that all
of the scalar products {a((*) -x()) k- 1,2,... ,m} were zero. Then the point
(*) +a(_2(*) -x_()) would be feasible for all real values of the multiplier a, which
would contradict the boundedness of the feasible region. Therefore it is sufficient to
prove that "established" sets with fewer than m elements can be enlarged. Often the
following result can be applied.

LEMMA 4.1. Let be any "established" set. If there exists a constraint index
j that is not in ., and if aj is in the linear space that is spanned by the vectors
{ak kEK:}, then the set K:U{j} is also "established."

Proof. We write aj in the form

(4.7) aj 0k ak

in order to derive the relation

(4.8)

Thus expression (4.1) implies the bound

(4.9) < 9, g=1,2,3,...,

-(*) is the numberwhere .-j

(4.10) r*) E Ok(bk+r(*)) bj.

Inequality (4.9) shows that r!*) is the limit of the sequence {a’x()-b t= 1 2, 3, }
as required. Furthermore, (4.10), (4.2), and (4.7) provide the identity

(4.11) rJ*) E Ok a_(*) b y(*)-b,
kE

so it follows from the second line of expression (4.2) that r*) is nonnegative. It also
follows that the conditions (4.2) remain valid if is augmented by j. Moreover,
we deduce from the bound (4.9) that the conditions (4.1) also admit this augmenta-
tion, because we are allowed to overwrite ws by the number max[ ws, aK Oaws ].
Therefore the lemma is true.

Given an "established" set , which can be either E(*) or (*) initially according
to the second and third paragraphs of this section, we enlarge it as much as possible by
applyi Lemma 4.1 recursively. Thus the resultant set E contains all the constraint
indices, or the set

(4.12) {1,2,...,m}

is nonempty, and none of the vectors {ilk k } is in the span of the vectors
{ilk k }. We investigate this latter case by applying the method that is mentioned
briefly in the penultimate paragraph of 1.

Therefore we let fi be the dimension of the space that is spanned by {ilk k },
we assume without loss of generality that E includes the first fi integers and that the
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vectors (ak k 1, 2,..., are linearly independent, and we let A be then matrix
whose columns are these vectors. Furthermore, we let Z be an n matrix whose
columns are both orthonormal and orthogonal to the columns of A, where is the
integer n-. It is straightforward to verify that these choices imply the formula

(4.13) ( A Z )-1 (ATA)-IAT)
It follows that we can express each x(t) in the form

(ATA)-IAT ) (t) A(t) + Z(t) y(t) +( lz)

where _a(t) and/(t) are the vectors

(4.15) a__(t) (ATA)-IATx(t) E n and

and where the last part of the identity (4.14) agrees with (1.11).
Now we recall from 1 that the algorithm generates x(t) by minimizing the func-

tion (1.4). Therefore the least value of the expression

m

(.16) acT(Aa_+Z)-",A(kt)log[a(aAa+aZ-bk)+l ], Aa_+Ze,S1,
k-1

occurs when c and have the values a_(e) and (t) respectively. We also recall that we

take the view that c(t) is calculated before/(t), so we deduce from expression (4.16)
that/(t) is the vector of variables that minimizes the function

where we are using the notation

(4.18) _5--ZT_cnn and k--ZTaknn, k=l,2,...,m,

and where ,t) is the set of values of such that A__a(t) +Z/ is in 81.
Next we reformulate the calculation of (t) in a way that takes advantage of the

fact that K: is an established set. First, we delete from expression (4.17) the values
of k in , because in this case the choice of Z implies that _5k is zero. We could also
delete the term _sTy, since (3.4) and (*)C imply that _5 is zero, but we retain this
term in order to provide more generality in the lemmas that are proved later. Second,
letting _b and r(*) be the vectors in 7a whose components are (bk k- 1, 2,..., t}
and (r(k*)" k--1,2,..., t}, we deduce from the conditions (4.1) that the moduli of
the components of the vector

(4.19) g_(e) ATx_(t) b_ r(*)

are at most wsw9. Therefore we substitute the identity

(4.20) T a(t) T (b +_ -ak A (ATA) r(,) 5__(t)ak A ATx(t) a[A (ATA) -1
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into expression (4.17). It follows that () can be calculated by minimizing the function

where is still the set (4.12) and where k and et) have the values

T (+_ and(4.22) k b A (ATA)- r(*)

Our notation has been chosen to show the similarity between expressions (1.4)
and (4.21). Indeed, the main difference is that the original shifts of 1 have been
replaced by shis of l+et), and we see that the perturbations satisfy the bounds

(4.23) ) wow, ke, g=1,2,3,...,

where w0 is a positive constant. On the other hand, the definitions (4.18) and (4.22)
cause the quantities , (k k} and (bk" k to be independent of g, while the
values of A) in expression (4.21) are the same as the ones that occurred originally.
rthermore, because the only changes to the arguments of the log functions are due
to new notation, the updating formula (1.8) gives the equation

(4.24) (+) ) )-. / [a(()-k)+l+ ], k.
Therefore, apart from the changes in the shifts that tend to zero at an R-linear rate
as g, one can take the view that the sequence {() g= 1, 2, 3,...} is calculated
by applying the algorithm of 1 to the problem

Minimize T, ,
(4.25)

subject to

We prefer to accommodate the changes in shifts by applying a generalization of the
algorithm of 1 to the original linear programming problem instead of working with
the notation of the previous two paragraphs. Moreover, it is convenient to assume

w0 1 in condition (4.23), which does not lose generality because we can let the
initial value of g be the least positive integer L that satisfies WlOW- 1. Therefore
we study the following algorithm.

GENERALIZED ALGORITHM. Let the parameters a and satisfy a > 0 and 0 < 1
and let the components of () m have any positive values. Then an infinite
sequence of iterations is begun, being the index of the iteration, so 1 is set
initially. For each , the vector () is calculated by minimizing the function

m

1,
k=l

where the real parameters {e k= 1, 2,..., m} cn take n vles that stisf the
conditions

(4.27) ee) <

and where S) is the set

(z. 1
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Then __(+1) is defined by the updating formula

(4.29) A(k+1) A(kt)/[a(ax()--bk)+l+e(ke)], k=l,2,...,m,

which completes the gth iteration.
We see that the sequence (/3() g-- 1,2,3,...} can be calculated by apply-

ing this algorithm to the problem (4.25), except that some of the early values of
I may be omitted. Therefore, if we can prove that the generalization does not
damage the main conclusions of 3, then we will know that the constraint residu-
als (’()-k" ----1,2,3,...} converge to a nonnegative limit for some k. Thus
we will deduce that (k} is an "established" set, the details of the argument being
given after we have found suitable extensions of our previous theory to the "general-
ized algorithm." Therefore the problem (4.25) will not be mentioned again until the
analogue of Theorem 3.7 has been stated for the generalization.

The analogue of expression (1.9) for the generalized algorithm is the notation

(4.30) () (t)((t)), g= 1, 2, 3,

It is shown below that each new () is well defined and that (t) satisfies a bound
that is a little weaker than the first statement of Lemma 2.2.

LEMMA 4.2. The function (4.26) is stctly convex and has a unique minimizer
(), which is an inteor point ofS). Moreover, each of the numbers (4.30) has the
property

m

(4.31) () __< ff Tx(*) + Wll , ),
k=l

where (*) is any solution of the given linear programming and where Wl is a positive
constant.

Proo The set 8) has a nonempty interior, because the feasibility of (*) and
the conditions (4.27) imply the strict inequalities

(4.32) a(fi[(*)-bk)Tl+e) 1-, > O, k= 1, 2,..., m,

for every positive integer g. It follows that the function (4.26) is strictly convex if
its second derivative matrix is positive definite at all interior points of St), which
can be confirmed by direct computation. rthermore, (t) is well defined if S) is
bounded, which can be established by the argument of the first paragraph of the proof
of Lemma 2.1, the set S0 being a subset ofS) for each g. Therefore the first sentence
of the statement of Lemma 4.2 is true.

The definition of () and expression (4.32) provide the relation

m

(l) (t)((*)) cTx(*) ) log[a(fi(*)-bk)+
k:l

m m

k=l

where the last inequality is an elementary property of the log unction. Therefore the
choice Wll 1/(--) completes the proof.
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We require the following analogue of Lemma 2.3.
LEMMA 4.3. Every iteration of the generalized algorithm satisfies the inequality

m m

(4.34) (+1) (e) > W12 E 1(+1) (kt) ]2 [(+1
"’k 7(ax() --bk)2V w13 E "’k

k--1 k=l

where w12 and W13 are positive constants. The algorithm also has the property

m m

(4.35) acT2(.) (t+l) --< E A(kt+l)a(a(*) bk)+ w14 E"k(+l)’g=l, 2,3,...,
k=l k=l

where _(*) is any solution of the linear programming problem and where w14 is another
positive constant.

Proof. See the Appendix for the proof of this lemma. V!
The definition of the set K:(*) and Lemma 3.1 are the same as before, because

they depend on the given linear programming problem and not on the algorithm that
is used to solve it. We find, however, that a small change is needed in Lemma 3.2
that takes account of the perturbations e(k). Specifically, we compare the sequences
{x() t 1, 2, 3,...} and {_() 1,2,3,...} that are calculated by applying the
generalized algorithm to the original linear programming problem with the sequences
{_() g= 1,2, 3,...} and {_(): t= 1, 2, 3,...}, say, that occur when the generalized
algorithm is applied to the problem (3.10), where , {k" k= 1, 2,..., m}, {k" k=
1, 2,..., m} and 0 are defined as before. The values of a and are the same in the
two calculations, and again the initial Lagrange multiplier vectors are related by the
equation (1) (a+ 1)_(1). The perturbations {e() k 1, 2,..., m} of expression
(4.26) that were chosen for the original linear programming problem, however, must
be replaced by the values

(4.36) (k)= (a+l)-le(k) k=l,2,...,m,

when the new problem is solved. Thus we achieve the following extension of Lemma 3.2.
LEMMA 4.4. Let the conditions of Lemma 3.2 be satisfied and let the sequences

{x() 1, 2, 3,...}, {_() g 1, 2, 3,...}, {() 1, 2, 3,...} and {_() g
1, 2, 3,...-} be calculated by the generalized algorithm in the way that has just been
described. Then these sequences satisfy (3.11).

Proof. The old value of is adequate for the perturbations (4.36), because I()
is bounded above by le(k)l for every k and . Furthermore, the choice (4.36) and
expression (3.16) imply the identities

(4.37) a(_"x--/k)+l+(k) (a+l)-1 [a(ax--bk)+l+e(ke)], k 1,2,...,m,

which suggest the replacement of the terms a(Ty-/k) + 1 and a(ay- bk) + 1

by a("y k) + 1 + (k) and [a(akTy bk) + 1 + e(kt) ], respectively, wherever these
terms occur in the proof of Lemma 3.2, the vector y being either x or x(). Thus it is
straightforward to establish that Lemma 4.4 is true.

Of course the purpose of Lemma 4.4 is to allow us to assume without loss of
generality that the set K:(*) is nonempty in our analysis of the calculated sequence
{x() g= 1, 2, 3,...}. Next we note that there is no change to Lemma 3.3.
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LEMMA 4.5. The Lagrange multiplier estimates of the generalized algorithm have
the property

(4.38) ,(k) _< w15g, k=l,2,...,m, g=1,2,3,...,

where w5 is a positive constant.
Proof. See the Appendix for the proof.
The theory of 3 employs the fact that the numbers {() g 1,2,3,...} are

increasing, but the corresponding sequence {() g-1, 2, 3,...} need not be mono-
tonic. Therefore the following lemma identifies another sequence that can replace
{(t) g= 1, 2, 3,...} in the part of the analysis that requires this monotonicity prop-
erty.

LEMMA 4.6. There exist positive constants w16 and w17 such that the sequence

(4.39) (() (g) (w6+wTg) v], g= 1, 2, 3,...,

increases monotonically. Furthermore, its terms are bounded by the condition

(4.40) 5(e) _< g= 1, 2, 3,...,

where for convenience we let &_(*) be the solution of the given linear programming
problem that occurs in Lemma 3.1. Furthermore, the sequences {(g)
and {() g= 1, 2, 3,...} are convergent.

Proof. See the Appendix for the proof.
We can now present the analogues of Lemmas 3.4-3.6 and Theorem 3.7 that

complete our analysis of the generalized algorithm.
LEMMA 4.7. Lemma 3.4 remains true when the sequence {x() 6= 1, 2, 3,...} is

calculated by the generalized algorithm.
LEMMA 4.8. There exist constants ws, w19, and w20, satisfying wls

w9 < 1 and w20 > 0, such that, if the conditions

(4.41) [ax()--bkl
__

W18, k(]((*),

hold for some positive integer , then the generalized algorithm gives the inequality

m

k--1

LEMMA 4.9. The positive monotonically decreasing sequence (a cT&(*)--() --1, 2, 3,... has the property

-1,2,3,(4.43) acT&(*) () <_ W2W22,

where w21 and W22 are constants that satisfy w2 > 0 and 0 < W22 < 1, and where ()
has the value (4.39).

THEOREM 4.10. Theorem 3.7 remains true when the vectors of variables (x()
6-1, 2, 3,...) are calculated by the generalized algorithm.

Proofs. See the Appendix for the proofs.
We now return to the linear programming problem (4.25). Because it has been

noted that _5 is zero, we apply the construction of Lemma 3.2. Specifically, we let
be as large as possible subject to the consistency of the inequalities

(4.44) T
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for some fl in 7n. Then, instead of expression (3.9), we employ the notation

and

It follows from Lemma 3.2 that the feasible region of the problem

Minimize _5 Tfl ( 0), fl (n
(4.46)

subject to -Ta_fl > , k,

is nonempty but has no interior. Furthermore, we deduce from Lemma 4.4 that the
sequence {_fl() l 1, 2, 3,...} can be calculated by applying the generalized algorithm
to this new problem, except that we noted soon after expression (4.25) that the initial
value of may have to exceed one. Therefore Theorem 4.10 gives the property

(4.47) lim fl(t) , k e (*)

where k is in/(*) if and only if the conditions (4.44) on _fl imply the identity Tfl=
k + ], the set (*) being nonempty because is as large as possible. Furthermore,
expression (4.47) and the definitions (4.45) of -k and bk provide the limits

(4.48) lim _tfl() + kf:(*)

We express this conclusion in terms of the variables of the original linear programming
problem.

LEMMA 4.11. Let be an "established" set that does not include all the constraint
indices, but that has the property that none of the vectors {ak k E f} is in the
space spanned by the constraint gradients {ak k }, where ] is the set (4.12).
Furthermore, let be as large as possible subject to the consistency of the conditions

(4.49) aTx--b r(k*) k E

a_kx >_ bkq-

for some x in TC. Given this choice of , we let 2d be the set of values of x that
are allowed by expression (4.49). Then there exists a nonempty subset (*) of 1. such
that, for each k in 1.(*), the inequality akTx_

_
bk + holds as an equation for every _x

in ,. Furthermore, the set ICUfC.(*) is "established."
Proof. It is straightforward to deduce from continuity and compactness that the

required choice of h can be achieved. Then we suppose that, for each k in , there is
T t is positive, and we let x be the average ofa feasible vector x_k such that ak x_.k-bk-

these vectors. Thus we find that every inequality of expression (4.49) can be satisfied
strictly by a single admissible value of x_, which implies that can be increased. It
follows from this contradiction that f:(*) is nonempty.

Next we employ the change of variables that is described in the paragraph that
includes (4.13)-(4.15). Specifically, we express the general vector x7 in the form

(4.50) x_ A_a + Zfl,

where the matrices A and Z have been defined already, and where __a and fl are related
to x_ by the formulae

(4.51) a__ (ATA)-IATx e n and fl ZTx_ e n.
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Thus, if x satisfies the first line of expression (4.49), then we have the identity

(4.52) r(*) ATx_-b-- ATA o-b,

which fixes a_, the vectors b and r(*) being introduced just before (4.19). Then the
second line of expression (4.49) gives the conditions

(4.53) T aZ >_ b Ea_kAa_+_ +, k ,
on . Furthermore, because the relation (4.52) shows that _a can be replaced by the
vector (ATA)-I(b+r(*)), we can write the inequalities (4.53) in the form (4.44), where
we are recalling the notation (4.18) and (4.22). It follows that the value of t in the
conditions (4.49) is the same as the one that occurs in the paragraph that includes
expressions (4.44)-(4.48). Furthermore, the sets (*) in that paragraph and in the
statement of Lemma 4.11 are the same.

Therefore the limit (4.48) is achieved when the statement of Lemma 4.11 defines
and f:(*). Remembering also that the moduli of the components of the vector (4.19)
are at most wsw9, we deduce that (4.14), (4.15), (4.19), (4.18), (4.48), and (4.22)
imply the limit

lim a’x() lim [aA (ATA)-IATx() + a’Z_()]
lim [aA (ATA)-I(() -t- b --1- r (*)) -1- _’(g)]--oo

(4.54) a_A (ATA)-l(b_ + r_(*)) + )k + t bk +t, kefd(*).

Moreover, a comparison of expressions (4.2) and (4.49) shows that is nonnegative.
It follows that the first condition for an "established" set is preserved if the elements
of/(*) are included in E, the new values of r(k*) being equal to .

Turning to the second condition, we have noted already that the components of
_5() tend to zero at an R-linear rate as g oc. Moreover, Theorem 4.10 implies that
the convergence rates of expressions (4.47) and (4.48) are also R-linear. Therefore the
limit (4.54) enjoys this rate of convergence too. Consequently, condition (4.1) allows
K: to be augmented by/(*), provided that the numbers ws and w9 are increased if
necessary.

Finally, we let __&(*) in expression (4.2) be any vector x that satisfies the constraints
(4.49). Remembering that the definition of/(*) in te statement of Lemma 4.11
provides the equations

(4.55)

and that is nonnegative, it follows that the third condition for K:U(*) to be
"established" is also obtained, which completes the proof.

We deduce from Lemmas 4.1 and 4.11 that the set {1,2,... ,m} of all the con-
straint indices can be established." Indeed, as suggested just beibre the statement
of Lemma 4.1, we apply a recursive procedure that begins with the "established" set
K: that is identified in the second or third paragraph of this section. Then each step
of the recursion enlarges E by applying Lemma 4.1 or 4.11 until every constraint
index is in 1. It follows that expression (4.6) is true. Furthermore, in view of the
remarks that are made just after that expression, we now know that the sequence
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{x(t) g-- 1, 2, 3,...} converges to a solution of the given linear programming prob-
lem. This important result will be stated as a theorem in 5 so that it is available to
those readers who skip 4.

5. Conclusions. We let _(*) be the following solution of the original linear pro-
gramming problem. If there is only one solution, then the problem defines (*)
uniquely. Otherwise, the definition of K:(*) in the first paragraph of 3 gives the
equations

(5.1) a’_&(*) bk, k]C(*).

Furthermore, we let ](1 be the subset of { 1, 2,..., m} such that j is in 1 if and only
if these equations do not fix the value of a&(*). In other words, aj is not in the space
that is spanned by the vectors {ak k E/C(*)}. Then, after satisfying expression (5.1),
we take up (some of) the remaining freedom in _2(*) by maximizing the least of the
residuals {a’(*)-bj "j E/I}, which is the condition

min{_a’_(*) -b "j e/i} max min{a’x-b j e/i}

where 1 and where , contains those vectors in Tn that achieve the conditions
on _(*) that have been imposed already. If there is still some freedom in (*), we
let /+1 be the subset of {1,2,...,m} such that j is in /+1 if and only if the
constraints on (*) so far do not fix the value of a.&(*). Then we require _(*) to
satisfy (5.2) after increasing by 1. We continue this procedure recursively, increasing
at each stage, until there is no freedom in _(*). The procedure terminates, because

the argument in the first paragraph of the proof of Lemma 4.11 provides the strict
inequality I/+11 < I/il, where I/1 is the number of elements in . It is important
that this definition of (*) is independent of the parameters a and _(), because (*)
has the following fundamental property.

THEOREM 5.1. Let the algorithm of l be applied to minimize the function (1.1)
subject to the constraints (1.2), where the feasible region is bounded and nonempty.
Then the sequence {x(t) g 1,2,3,...} converges to the solution (*) of the linear
programming problem that has just been defined.

Proof. The argument in the penultimate paragraph of 3 proves the theorem in the
case when the linear programming problem has a unique solution. In the alternative
case, we employ the analysis of 4. Specifically, we take the vector _(*) in expression
(4.2) from the statement of Theorem 5.1, because this choice is allowed by the initial
"established" set K: that is specified in 4, and because there is no need to change _(*)
when Lemmas 4.1 and 4.11 are applied. Therefore the required result follows from the
last paragraph of 4 and from the paragraph that precedes the statement of Lemma
4.1. D

The limit of the sequence {_(t) g- 1, 2, 3,...} is also useful. Indeed, having
proved Theorems 3.8 and 5.1, we know from Lemma 2.4 that the limit _(*) is a
Lagrange multiplier vector of the KKT conditions at _(*). This vector, however,
depends on the initial parameters of the algorithm, namely, a and _(1), if several
values of Lagrange multipliers are allowed by the KKT conditions. In particular, in
the highly degenerate case when only one vector x satisfies the constraints (1.2), and
when all of these constraints hold as equations, the conditions (1.7) admit several
choices of _(*) whose components are all positive, and, if _() is set to any of these
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choices, then the function (1.4) has the property 7(I)(1)((*))----0. Thus the algorithm
picks the value x(1) =(*). It follows (by induction for g_> 2) that every iteration sets
_(+1) =_(), so _(1) is the limit of the sequence {_() g= 1, 2, 3,...}.

Next we consider some rates of convergence of the algorithm, keeping in mind that
it would be usual to end the calculation on the gth iteration if an upper bound on
cTx() --cT2c(*) were sufficiently small, provided that any constraint violations at x()

were tolerable. The sequence of Lagrange multiplier estimates enjoys the following
properties.

THEOREM 5.2. Let the set ]C(*) and the vector &__(*) be defined by the first para-
graphs of 3 and 5, respectively, and let the conditions of Theorem 5.1 hold. Then,
for each k in IC(*), the sequence {A(k) g= 1, 2, 3,...} tends to a positive limit. Al-
ternatively, if k is a constraint index that is not in (*), then its Lagrange multiplier
estimates converge to zero at the Q-linear rate

(5.3) lim )(kt+)/A(k). [a(a&(*)--bk)+l] -1 k(*)__,
Proof. The first statement of Theorem 5.2is taken from Theorem 3.8. The other

statement is an immediate consequence of Theorem 5.1 and formula (1.8). [’1

We derive a bound on cTx() --cT2c(*) from (2.11) and the feasibility of (*).
Specifically, we find the condition

(5.4)

which is useful because it is straightforward to calculate the right hand side for each
g. Furthermore, we write this condition in the form

(’+l)(aYx()-bj) + E ’(+l)(a--x()--bk)’cTx()--cT(*) < E J
j(*)

in order to explain that the right-hand side tends to zero as g oc. Indeed, the
boundedness of the Lagrange multiplier estimates and the limits {ax() --. a(*)
by j E E(*)} imply the convergence to zero of the first sum of expression (5.5), while,
remembering that each x() is confined to the bounded set 1, the other sum also has
this property due to the assertion {A(+I) -.0" kCK:(*)} of Theorem 5.2.

When ’inequality (5.5) is used in practice, the rates of convergence to zero of the
sequences {ax() -bj t 1, 2, 3,...} and {A(+I) g 1, 2, 3,...} for j E/C(*) and
k K:(*) are of interest. The latter case is answered by (5.3). Moreover, inequality
(2.9) is relevant to the former sequence, because, with the help of Lemma 2.2 and
expression (2.10), it gives the conditions

Thus, remembering that all of the numbers {a_&(*)--bk k (*)} are zero, we deduce
the following bounds on the residuals of the constraints that are satisfied as equations
at (*).
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THEOREM 5.3. If the set ]C(*) is nonempty, then, after the first iteration, the
algorithm of 1 has the property

(5.7)

where () is the number

(5.8) /5() [Wl min{/+1)" j E ](:(*)}]
m-1

E ,(k) (_akT(*) bk),
k--1

g=2,3,4,...,

which is zero in the degenerate case K:(*)= {1,2,...,m}. Alternatively, if some of
the constraint indices are not in 1(*), then each () is positive and the sequence
{fi() g= 2, 3, 4,...} tends to zero at the Q-linear rate

T^(*) -1(5.9) lim (+l)/fi(e)= max{[aakx --bk)+l] k(* }.

Proof. Inequality (5.7) is an elementary consequence of the bound (5.6). Further-
more, in view of the conditions

(5.10) a_’&_.(*)=bk, keE(*), and a_.Tk&_(*)>bk, k/C(*),

we have (2)=0 if all the constraint indices are in (*), so in this case we deduce from
expression (5.7) that the algorithm sets x(2) to the only feasible vector of variables.

Otherwise, because each of the vectors {_() g- 1, 2, 3,...} has positive components,
we see that the numbers (5.8) are positive. Furthermore, because Theorem 5.2 asserts
that the sequence {A) l-1, 2, 3,...} tends to a positive limit for each j in
the term inside the square brackets of (5.8) also tends to a positive limit, so we have
the relation

(5.11)

lim
m ), (+1)(a,(, --bk)

lim Ek--1 "’k
e--, Ekm=l )(k)(a_(*)_bk)

the last equation being a consequence of the first part of expression (5.10).
Let T be the right-hand side of (5.9) and let K: be the set

(5.12) f; {k" a(akT_2(*) --bk)+ 1 ]-1---T},

which is a nonempty subset of {1, 2,..., m}\K;(*). It follows from the limits (5.3) that,
for j/ and k{1,2,...,m}\{IC(*)U }, the ratio A(ke)/,e) tends to zero as
Therefore (5.11) and the definition (5.12) give the identities

(5.13)
(+1) (akT2(*) bk/(g+l) Eke "’klim-. lim- () - Ee([)(_a(*)-b)

Now, according to Theorem 5.2, each of the ratios {,(kl+l)/,(kg) k ]i} tends to - as
g oc. Hence we deduce from the positivity of the Lagrange multiplier estimates that
the right-hand side of expression (5.13) is equal to T. Thus this expression establishes
the property (5.9), which completes the proof.
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The limits (5.3) and (5.9) are particularly useful because _2(*) is independent of
a. It follows that the asymptotic rates of convergence of the sequences {A() /-

1,2,3,...} and {ax()-bj t= 1,2,3,...} for k K:(*) and j e K:(*) can be made
arbitrarily fast by choosing a sufficiently large constant value of a. Therefore the
convergence rate of the bound (5.5) on cTx()---cT:(*) as g--,o can be made arbitrarily
fast too. Furthermore, this property is also enjoyed by the maximum constraint
violation at x(e). Indeed, Theorem 5.3 proves this assertion for the constraint indices
in ]C(*). Alternatively, if k K:(*), then the second part of expression (5.10) and
the limit x() (*) imply that the constraint akTx() _> bk is satisfied strictly for all
sufficiently large g.

Several researchers, including one of the referees, have suggested that the given
deductions may remain valid if we replace the assumption that the feasible region is
bounded by the weaker condition that the set of solutions of the linear programming
problem is compact, but I have not tried to prove this conjecture. Moreover, the same
referee questioned the availability of x(), because in general the minimizer of the
function (1.4) cannot be computed exactly. Further consideration of the generalized
algorithm that includes expressions (4.26)-(4.29) could allow some freedom in each
x(), but it would be more useful to develop a suitable termination condition for the
case when the minimization of {O()(x) x E $1} is done by a Newton-Raphson
algorithm with a practical line search.

The numerical results of Jensen, Polyak, and Schneur (1992) show that the modi-
fied log barrier method is highly suitable for the solution of many linear programming
problems, but the version of 1 has the disadvantage that occasionally no single value
of a gives good efficiency throughout the calculation. This difficulty is particularly
severe in the semi-infinite programming problems that are studied by Powell (1992),
because several of the constraint residuals {ax-bk k K:(*)} are very close to zero

at x=(*). In this case expressions (5.3) and (5.9) suggest correctly that a large value
of a is needed for a good final rate of convergence, but such values introduce the
ill-conditioning problems that are mentioned in the second paragraph of 1, which
can increase greatly the amount of work of the early iterations. Therefore Powell
(1992) also investigates numerically an extension to the algorithm that increases a
automatically, finding that the extended version is much faster than the original one.
The details of the extension are complicated by the fact that, because x() is used as
a starting approximation in the calculation of x(+1), it is necessary for the numbers
{a(ax()--bk)+l k= 1,2,... ,m} to remain positive if a is increased. Thus there is
a constraint on any new value of a in the usual case when x() violates some of the
constraints (1.2). On the other hand, this difficulty does not occur in the unmodified
log barrier method that is mentioned at the beginning of 1.

Therefore our analysis should be regarded just as a contribution to knowledge
that may assist some future research. Indeed, although the algorithm of 1 has some
highly interesting properties, the author does not know of any linear programming
calculations that it solves more efficiently than all other methods. Perhaps some
practical advantages will be derived from the fact that there is no need for the initial
vector of variables to be a strictly interior point of the feasible region. This question
is studied by Freund (1991), who develops a "shifted log barrier method" whose
a parameter tends to infinity. Moreover, our algorithm can be applied when the
constraints (1.2) are inconsistent, provided that the set S1 of expression (1.4) has a
nonempty interior. In this case we conjecture that the calculated sequence {x() l
1,2,3,...} will converge to a limit _(*) at which the greatest constraint violation is
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minimized. Moreover, some of our theory may be relevant to new work on modified
log barrier methods for nonlinear constraints.

Appendix.
Proof of Lemma 4.3. We recall that x(e) minimizes the function (4.26). Therefore

__V((e) (x()) is zero, which gives the equation

(A.1)
m m

_c E )(k) a(ax(t)--bk)+ l +e(k) ]-lak E "’k)’ (e+l)_ak
k--1 k=l

the last assertion being due to the updating formula (4.29). Moreover, we now let
(t+l) minimize the strictly convex function

m

(A.2) i)(t-kl)(x) =ocTx E(t+l)log[a(ax-b)+l+e() xE,.t)

k--1

Thus the analogue of expression (2.12) is the inequality

m

)(+1) (_(g+l)) _> ff cTc(g+I E "’k(g+l) [,((a,_(e+l) bk) +5(kg)
k--1

m

k=l

Furthermore, remembering the definitions (4.26) and (4.30) of (e) and q(e), and using
(A. 1) again, we find that the analogue of condition (2.13) is the bound

(-t-1) ((e+l)) ()
m

(e+i)(_&(e+l)) acTx(e) + E k(ke) lg[a(ax(e)--bk)+l+e(ke)]
k=l

m /1%

(A.4) _> E A(kO lg[ ’(a-a-x(t) -bk)+ l +e(ke) E "k)’ (t+l) a(a_T x(t)_bc)+e(ke.) ].
k=l k=l

It follows from the updating formula (4.29) that, instead of expression (2.14), we
now have the relation

(A.5)
m

()(gTl,((gq-1,)_ ((g) > E),(g+l).g,(o.(a_x(g)_bk)__(kg,)
k=l

where is still the function (2.15), except that we increase the constant in order
to accommodate the perturbations e(k0. Thus the derivation of inequality (2.18) gives
the condition

(A.6)
m

:)(+1) ((g+l))__ q(g) __> W12 E "’k(g+l) [.(T (_akTx(g) bk)_jr_(kg) ]2
k=l

where w12 has the value 1/2(+1) -1. Therefore the first assertion of Lemma 4.3 is true
m l(ed-l)if {&(g+l)((e+l)) q(e+l)} is at most a constant multiple of re Ek=l "’k
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We obtain a suitable bound on {)(+1) ((1+1))_(+1) } from the value of )(+1) at
a point that is near to x(+1), allowing for the possibility that some of the logarithms
in (A.2) may have negative arguments if we set x x(+1). Therefore we pick the
point

(A.7) { [2 r/e(*) + (1-r7/)x(g+)]/(1+r/e),

where _(*) is any solution of the linear programming problem. Because _(*) is feasible
and because x(+1) satisfies the constraints

(A.8) _(e+l)a(a’x(g+l)-bk) + 1+% > 0, k= 1, 2,..., m,

the conditions

(A.9) I([)l < r/e k 1, 2, m g= 1 2 3,

given in expression (4.27), imply the inequalities

.(a_-) + 1 +
e ’(-g*)-) +1+(1-) "(-[x(+l) -) + 1+

(e+l) --1 (ki)> (1--7g) (--1--% (l+re) + 1 +
(a.10) >_ (1-7e) (-1-e+) (l+r/e)- + 1 r/e > 0, k=l,2,...,m,

where the last assertion is obtained by increasing 7
g+ to 7e. Therefore the function

(A.2) is well defined at x={. Furthermore, the relation

(A.11) )(g+l) ((g+l))

is a consequence of the definition of (g+l).
Next we seek an upper bound on the right-hand side of the identity

+(_) e+ e+() +l(e+) (_+)
(A.12)

m

k=l

Because the definition (A.7) gives the formula

(A.13) { x(e+l) 2 e((*)-x(e+l)) / (l+e),

the boundedness of the sequence {x(e) g 1, 2, 3,...} and (A.1) provide the inequality

where W23 is a positive constant. Our treatment of the second line of expression (A.12)
depends on the remark that we can restrict attention to the values of k that make
positive contributions to the sum. Therefore we assume the condition

-(__-) + () < .(am(+l)-o)+
(A.15) (l-Fr/) (1-7) lcr(-a_-bk) 2r/l (1-r/)-lcr(-a.-(*)-bk) -+-k
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where the last line is derived from the definition (A.7). Thus, noting that a reformula-
tion of this inequality gives a lower bound on a(a_--bk), and recalling the feasibility

of (*) and the assumption (A.9), we deduce the relation

It follows from the elementary property

(A.17) O<a<f => log-loga<(-a)/a

that, when the term inside the braces of (A.12) is positive, its value is less than the
number

(A.18) 2[a akT(x(t+l) --_) + e(kt+l) (kt) / (1--7)2.

Furthermore, expressions (A.13) and (h.9) show that this number is at most a con-
stant multiple of t. Therefore the remarks of this paragraph provide the bound

(A.19)

where ?/)13 is a positive constant. Thus, in view of inequality (A.11) we have the
property

(A.20)
m

k--1

It follows that the first statement of Lemma 4.3 is a consequence of expression (A.6).
In order to prove the other half of the lemma, we note that expressions (A.1),

(A.3), and (A.9) give the condition

m m

o. cT(*)_ )(+1) ((t+l))_ --< O"E "’k)’(+1) -a’(*)-- E ’(kt+l) ((7 bk (k))
k=l k=l

m

(A.21) < E (+) ].

Eliminating (i+l)(i(t+l) from the relations (A.20) and (A.21), we find the re-
quired inequality (4.35) where w14 is the constant (w13 + 1), which completes the
proof.

Proof of Lemma 4.5. The first statement of Lemma 4.3 and the updating formula
(4.29) imply that the analogue of condition (3.22) for the generalized algorithm is the
inequality

m m

(A.22) E (A(k+l) A(kt))2 tit (t+)
(+1)

< W’)((+I) --()) -" W-21W13 E
k=l "’k k=l
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We continue to employ the notation (3.23), so expression (3.24) remains valid. Fur-
thermore, the last sum of inequality (A.22) is at most m p(t+l). Thus the bound (3.26)
can be replaced by the relation

(A.23) (p(t+l) _p())21 p(+l) _< wi-l(q;(+l)_()) + w-wltm
which gives the condition

where L and l are any integers that satisfy 0 < L < g.
Next we make use of the bound (4.31) on (t). Thus, in view of the relation

(A.25)
m g-1

k--1 j--L

expression (A.24) implies the inequality

(A.26)
-1 (p(j+l)_p(j))2

p(j+l)
j=L

g-1

_< wi-21 (a cTx(,)- q(L)) + w24 E rlj p(j+l)
j=L

where w24 is the constant w-21m (Wll’Wl3). We now define L to be the least positive
integer that satisfies the condition

(A.27) r/L <_ (1-r/),(1-/-)2/w24,
because this choice allows us to deduce that the right-hand side of expression (A.26)
remains finite as g oc.

Specifically, remembering that {p(J) j--1, 2, 3,...} is a monotonically increasing
sequence, the choice (A.27) gives the bound

(A.28) flL p(t)W24 E fliP(j+1) < w24 (lq-r/+r/2+ --< (1-- V/)2P(t)"
j--L

Therefore, by retaining only the last term of the sum on the left-hand side of expression
(A.26), we find the condition

(A.29) (p(t)_p(t-1))2 <_ w(acrx(*)-(i)) p(t) + [(l_v/-)p(t)]2, e>L.

Then we complete the square on the right-hand side by adding a term that is inde-
pendent of p(), which implies the inequality

(A.30) p(e)-p(-l) _< (1--) (p()+w2), e>L,

where W25 is the number

(A.31) w= max[0, 1/2w-l(ocTx(*)-(b(i)) /(1-V)2].
Furthermore, since the left-hand side of expression (A.30) is bounded below by the
difference (p()+w=5)-(p(t-l) +w25), we obtain the relation

(A.32) p() +w25 _< (p(e-1)+w2) / v/, > L.
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It follows by induction that we have the property

(A.33) p(J)
_

p(J) +w25

_
(p(L) -w25) -(j-L)/2, j > L.

Thus the sum on the right-hand side of expression (A.26) satisfies the bound

(A.34)

Therefore, because L is a constant integer, inequality (A.26) provides the condition

(A.35) Z(p(j+l) _p(j))2/p(j+l) ( w26,

__
1, 2, 3,...,

j-1

where W26 is another positive constant. Hence, remembering the first line of expression
(3.28), we deduce the bound

(A.36) p(t+l) < 2 p(1) _}_ w26 <: (p(1) +w26) (+ 1), -- 1, 2, 3,

Furthermore, this bound is trivial when g-0. It follows from the definition (3.23) of
p() that the required inequality (4.38) is true if w15 has the value (p(1)+w26). D

Proof of Lemma 4.6. Lemmas 4.3 and 4.5 imply the bounds

m

(A.37) (e+l)> (e) w13 2 > fitrig (+1) () (+ 1) r/, / 1 2 3., ww

It follows from the elementary identity

(A.38) (+1) r] {[l+(1-rl)glr]- [l+(1-r]) (g+l)]r]+1 } / (l-r])2

that the inequalities

(A.39) (+) [w16+w17(/+1)]+1 _> () (W16-}’W17 ) ?t, -- 1, 2, 3,...,

are satisfied, where w16 and w17 have the values

(A.40) W16 W13W15 m / (l--r/) 2 and w17 (1-r) w16,

which establishes the first statement of Lemma 4.6. Furthermore, expressions (4.39),
(4.31), and (4.38) provide the property

[ ](A.41) limsup(t) limsup() <_ limsup a cTyc(*) + Wll ? ,,(k) O" cT,(*).
--*cx) --x) --c k=l

Therefore condition (4.40) is a consequence of the monotonicity of the sequence (()
g--1, 2, 3,...}. Thus it is elementary that this sequence is convergent. Furthermore,
the convergence of ((t) g-- 1, 2, 3,...} now follows from the remark that, due to
the definition (4.39) of (), the differences ((t)-(t)" l-1, 2, 3,...} tend to zero as--. c. The proof is complete.
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Proof of Lemma 4.7. The analogue of expression (3.32) for the generalized algo-
rithm is the inequality

lg(H(e+l)/H(e)) E #k log[ a(ax(e) --bk)+ l +e(t)
kE(*)

_> . (ax() -b +)
kE(*)

(A.42) + (0+ 1)-2 ,k [a(fi(e) --bk)+e) ]
k(*)

where H() is still the product (3.31) and where we must use the new value of that
is mentioned just after condition (A.5). Therefore, because the relations (3.33) and
(3.34) are still valid, it is suitable to replace expression (3.35) by the bound. [(g)-)+)l

kEE(*)

{ }(A.43) N 2(0+1) og(n(e+l/H(e)+1e+l)[a((e)-b)] + .ee)

k=l kM(*)

rthermore, in view of Lemmas 4.3 and 4.5, the analogue of expression (3.36) is the
condition

Ae+l) [a((e)_b)+ee)] < x(e+l) ee) ]2
k=l k=l k=l

m

(A.44) < {m(w15/w12)(gWl)[(+1)-()+w13 ]}
k=l

SO it is helpful to replace inequality (3.37) by the relation

[=p k=l

[ =p k=l

(A.45) q [(q)-(P) +Wl3Wl5m(p+l)P/(1-)2]
where the last line is derived from the bound "’k(e+l) w15(g+1), given in Lemma 4.5,
and from the identity

(A.46) E(e+e:p 1) r/ d---
d e:p+E r/e= (P+(l_r/)l-r/p) r/p

Let T(p) be the positive number

(A.47) r(p) sup(q() -(P) q_>p} + W13W15 m (p-I- 1) TP/(1--r2), p= 1, 2, 3,...,
q
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which is well defined because we found in Lemma 4.6 that the sequence ((e) g-
1, 2, 3,...} is convergent. Furthermore, this convergence and 0 < < 1 show that the
numbers (T(p) p= 1, 2, 3,...} tend to zero as p--. oc. Therefore, for any e > 0, there
exists a fixed integer L that has the property

(A.48) 2 (+ 1)2 [m (w15/w12) T(L) ]1/2 _( ,
which is analogous to inequality (3.39). Moreover, expressions (A.44), (A.45), and
(A.47) imply the bound

(A.49) E E(’+I)"’k [a(a’x(e)--bk)+e(ke)] < q[m(wI5/Wi2) T(P)] 1/2 p>_l.
---p k-1

It follows from inequality (A.43) that, when g exceeds L, it is suitable to replace
expression (3.40) by the condition

"=

(A.50)

}
--K 2 (+1)2 {log(ii(+x)/ii(1))ff j=l ["(kj+l)k=l [’(a-7x(J)--bk)]]

k=l j=l kEK:(*)

_< 2 (+t) { lg(II(e+l)/II(1))+ L[m(Wl/W)T(1)] 1/2

E E (kJ+l)(.(kj) q_ E E "kf’(kJ) ) + (g" +1
j=l k=l j=l kEK:(*)

Guided by the proof of Lemma 3.4, we divide both sides of inequality (A.50) by
/ and then we consider the limit as --. oc. Because the bound (3.41) is valid if we
replace w2 by the constant w15 of Lemma 4.5, we argue as before that there is a zero
contribution to this limit from the first two terms inside the braces on the right-hand
side of expression (A.50). Furthermore, the other two terms inside the braces also
enjoy this property, because the right-hand side of the condition

is finite. Thus we deduce the bound

t__, E #k [a(a’x() --b)+e(k) ]2 _< e,
j=l kK:(*)
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which implies the limit

(A.53) =0,
j=l

due to the positivity of the constants a and {#k k E/C(*) } and the freedom to make e
arbitrarily small. The required result (3.30) now follows from the elementary relation

(A.54) (ax_.(j) -bk)2

_
2 (ax_.() --bk -’(T-l(kJ))2 " 2 (7-1(kJ))2

and from the finiteness of the double sum -y=l -kE:(*)(e(kJ))2" Therefore Lemma
4.7 is true. [:]

Proof of Lemma 4.8. In the highly degenerate case when all of the constraint
indices are in/C(*), the first sum on the right-hand side of inequality (4.35) is zero. It
follows that Lemma 4.8 is valid if we let w18 be any positive constant and if we pick
the values w9-0 and w20-wa. Therefore for the remainder of the proof we assume
that condition (3.5) is available, which provides the number .

We take the definitions of S(*) and _s(x) from the paragraph that includes ex-
pressions (3.45)-(3.48), and we recall that inequality (3.46) is satisfied, where w5 is a
constant. Therefore the analogue of expression (3.50) is that the conditions

(A.55) lax(t)--bkl <_ ws, kE/C(*),

given in the statement of Lemma 4.8, imply the bound

(A.56) ).(t-I--i)

Thus, by letting ws have the value (3.51), we preserve the relation (3.49). Conse-
quently, the assertions (3.52) and (3.53) remain valid.

These assertions and condition (A.9) give the property

(A.57) (1/20"--7t) E "(k+l)--< E "’k)’(+l) o’(a’x(t) --bk)-e.(k’) ].
k:(*)

Hence the argument that provided expression (3.55) yields the inequality

(A.58) (1/2ah-) A(+)_< A(+)[a(aTx()-b)+e()]e

k:(*) kCtC(*)

t_>L,

where L is any fixed positive integer that satisfies L < 1/2a t in order that (1/2a -7t)
is positive.

We now invoke the two parts of Lemma 4.3, noting that the relation (4.35) implies
the bound

(A.59)
m

(T W27 E ’(k+1) > O" cT(*) (t--l) W14 ?E "’k)’(t+l)
kti/C(*) k=l
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where w27 is the largest of the numbers {_a’(*) --bk k

_
]C(*)}. Thus inequalities

(A.58) and (4.34) give the condition

(1/2-) [_(,) (+) ]ff W27 kl k(*)

k=l

After replacing _e by -, we see that this expression can be written in
the form

m

(A.61) acT&(*) (T1)< w19 ((TcT(*)_ ()) 4- W20 ? "k(+l), i,

where w19 and w20 are the constants

(A.62)
W19 [1 +W12(a--,L)2/(ffW27)] -1

W20 [W13+WI2WI4(ff--L)2/(ffW27)] W19,

so we have the property w9 < 1. Thus the required bound (4.42) is satisfied for l L.
rthermore, we can increase w20 if necessary so that this bound is also valid for all
smaller values of , which completes the proof.

Proof of Lemma 4.9. We pick the integer L in the way that is suggested by the
beginning of the proof of Lemma 3.6. Specifically, we require the condition

(A.6a) ((-b) Nsewla,
j=l

which can be achieved due to Lemma 4.7. Thus inequality (A.gg) is satisfied by
least half of the values of in the interval [1, ]. or these values of , Lemmas 4.8,
4.6, and 4. provide the bound

(A.64)
cr cTc(,) (t+l) [w16+w17(4-1)It]

_
w19 (o" cT(*)- P(t)) + w15w2om (.T1)r],

which we write in the form

(A.65) a cT2c(*) (+1) _< w2s (acT&(*) --()) + (W29+W30 g) /,
where w2s, w29, and W30 are positive constants, and where w2s can have any value
that satisfies w2s >_w19, which allows us to impose the strict inequalities

(A.66) ? < w28 < 1.

Next we make use of the elementary identity

(W29 4-W30 T]

T/g / W29 4-W30g(A.67) w2s
w28 -/

W30T] } T/.4-11W294-W30(4-1)+ (ws ) ws /
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Thus, on the iterations that satisfy the conditions of Lemma 4.8, expression (A.65)
gives the inequality

(A.68)

where we are introducing the notation

(A.69) () () T] { w29--w30 W307"] }+ =123
ws-] (ws-)

Moreover, because this notation implies the relation

(+1)_()--(+1)--()--]{ (w29"-w30)(I-/])w28-]
__

W30(I--w28)r]}(W28
(A.70) > (e+l)_ () _> 0,

where the last assertion is given in Lemma 4.6, the iterations of the generalized algo-
rithm enjoy the monotonicity property

(A.71) a cT2c(*) (+) < a cT2c(*) b()
for all values of g.

The work of the previous paragraph shows that, instead of the bound (3.63), our
definition of L provides the inequality

(A.72) a cT&(*) (+1) <_ 2S a c

Therefore, corresponding to the relation (3.64), expressions (A.66) and (A.71) give
the conditions

(--L)/2 ( _(1))(A.73) acT&(*) () _< w2s cT2c(*) -- 1, 2, 3,

Now the definition (A.69) is such that a cT&(*)--() is an upper bound on a cT2c(*)-()
Hence Lemma 4.9 is true when w21 and W22 have the values

-L/2 ( _(1 ) 1/2(A.74) w2 w28 a cT2c(*) and w22 w28 [:]

Proof of Theorem 4.10. We recall that the proof of Lemma 4.7 establishes the
limit (A.53). Therefore, instead of expression (3.68), we can pick a fixed integer L
that provides the condition

_< L,
j----1

where k is any integer from ]C(*) and where w22 is defined by (A.74). Thus the
analogue of expressions (3.69) and (3.70) is the bound

/=1 j=l

(A.76) >_ E [a(a’x()-b)+e.j) 12 _> -1/2g log(i/w22), g_>L,
j=l
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which implies the inequality

(A.77) (e+l) ,e/2 ), (1) > L kEK:(*)
’k -- 22 kNext we give further attention to the sequence {() t 1,2,3,...} that is

introduced in Lemma 4.6. The constants (A.40) provide the equation

+
(A.78) wl6 (l-y)2 (g+ 1) t Wl3Wl5 m (g+ 1) .
Therefore, remembering Lemmas 4.5 and 4.3, we have the relation

m

k=l

k=l

It follows from conditions (A.77), (4.40), and (4.43) that,, for every constraint index
k in (*), the analogue of expressions (3.72) and (3.73) is the inequality

(A.80)

which gives the bound

/ () / /a(A.81) a I_a’x_(t) -b _< w21 (W12 )-- t22 + l,

Moreover, the conditions (A.66) and (A.74) imply the relation

(A.82) /s /a? < W28 < 28 --22

1/4Therefore the required property la’x(0--bkl _< wsw9 holds for t_> L if we set w9 w22
and if ws satisfies the constraint

1/2 )(kI) --1/2Ws_>r-1[,21 (W12 +1].(A.S3)

Again we increase ws if necessary to accommodate the values of g that are less than
L, so inequality (3.67) is true. Because it provides the limit (3.66), our analysis is
complete. []
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FAST INTERIOR POINT METHODS FOR BIPARTITE MATCHING*

LOV K. GROVER

Abstract. In this paper we show that by using path following interior point methods with
nonlogarithmic potential functions that vary inversely with the fth power of the distances from the
hyperplane (with O(logv)), it is possible to obtain an approximate bipartite matching with the
number of edges within a factor of (1 ) of that in the optimal matching for arbitrarily specified p

in O* (p) matrix inversions (O* (X) O(X logk n), i.e., we ignore logarithmic factors of n in stating
most bounds in this paper). At present the best-known logarithmic time parallel algorithm for finding
an approximate matching is that for finding a maximal matching that contains at least half of the
edges in the optimal matching by Karp and Wigderson [J. ACM, 32 (1985), pp. 762-773].

By combining the approximate matching algorithm discussed in this paper with an augment-
ing path algorithm it is possible to derive the optimal matching in O*(v1/2) time. The previous
fastest parallel algorithms for general bipartite graphs are those by Vaidya [Proc. 22nd Ann. ACM
Syrup. Theory Computing, 1990, pp. 583-589], which runs in O* ((ve) 1/4) time and that by Goldberg,
Plotkin, and Vaidya [Proc 29th IEEE Syrup. Foundations of Computer Science, 1990, pp. 175-185],
which obtains solutions in O* (v2/3) time.

Key words, interior point methods, parallel .algorithms, path following algorithms, bipartite
matching, network flow algorithms, linear programming

AMS subject classifications. 90C05, 90C27, 90B10

1. Introduction. The significance of the bipartite matching problem is well rec-
ognized in the contexts of both sequential as well as parallel computation. Historically,
matching has been one of the most well-studied problems in both combinatorics and
graph theory and several efficient sequential algorithms are known for it. Recently the
importance of the problem has been recognized for parallel computation as well. The
efficiency of several parallel algorithms depends on the parallel complexity of bipartite
matching. For example Aggarwal and Anderson [1] and Aggarwal, Anderson, and
Kao [2] show, respectively, that an NC algorithm for bipartite matching implies an
NC algorithm for the problems of constructing depth-first search trees in undirected
and directed graphs. (An NC algorithm is a logarithmic time algorithm that requires
a polynomial number of processors.) Also, an NC algorithm for bipartite matching
will lead to NC algorithms for the unit capacity network flow problem according to
Karp, Upfal, and Wigderson [10] and hence for networks with capacities polynomially
bound in n.

Bipartite matching is known to be in RNC (i.e., randomized algorithms are known
to converge to the solution in logarithmic time with a polynomial number of processors
with extremely high probability) (see Karp, Upfal, and Wigderson [10] and Mulmuley,
Vazirani, and Vazirani [13]); however, despite extensive research there is no known
deterministic algorithm that always converges to the optimum matching in logarithmic
time. Special cases of the problem are known to be in NC. Lev, Pippenger, and Valiant
[11] gave an algorithm to find a perfect matching in a regular bipartite graph; Miller
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This work was carried out when the author was in the School of Electrical Engineering, Cornell
University, Ithaca, New York. Current address: AT&T Bell Labs, Murray Hill, New Jersey 07974
(lkgmhcnet. art. corn).
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and Naor [12] gave an algorithm to find a perfect matching in a planar graph if one
exists; and Grigoriev and Karpinski [6] related the number of steps to the permanent
and proved that the number of steps is related to the logarithm of the permanent.

In this paper we show how to obtain an approximate matching much faster than
an exact matching. An approximate matching is defined as a set of edges that do not
share any vertex and the cardinality of which is within a factor of (1 ) of that in the
optimal matching for an arbitrarily specified p. This can be obtained in O* (p) matrix
inversions using the algorithm described in this paper. (As mentioned in the abstract,
O*(X) O(X logk n), i.e., we ignore logarithmic factors of n in stating most bounds
in this paper.) It is possible to do a matrix inversion in polylogarithmic time using a
polynomial number of processors; the number of processors required is that required
to invert an Iv v] matrix in polylogarithmic time. In case the optimal matching is
desired, p is chosen to be x/7 and an augmenting path algorithm is used to find the
remaining at most 0"(vl/2)) edges which leads to an overall time bound of 0"(vl/2).

The fastest parallel algorithms for general graphs are those developed by Vaidya
[16], that use interior point methods that run in O*((ve) 1/4) matrix inversions and
that, due to Goldberg, Plotkin, and Vaidya [4], use combinatorial properties to obtain
solutions in O*(v2/3) time. Goldberg et al. [5] first pioneered the use of interior
point methods in parallel computation for bipartite matching algorithms and gave an
O* (el/2) time parallel algorithmnin this paper we make use of the rounding algorithm
due to this paper. Vaidya [16] used another interior point method using volumetric
considerations to reduce the number of matrix inversions required by the interior point
algorithm. The heart of the algorithm described in this paper is a new interior point
method. We show that by using this interior point method along with the rounding
algorithm of Goldberg et al. [5] and a standard augmenting path algorithm, it is
possible to derive the optimal matching in O*(vl/2) time in parallel.

The linear programming (LP) problem can be visualized as the problem of finding
the extreme point in a polytope in a given direction. This may be mathematically
represented as

(1.1)

n

Aijxj + Ci >_ O, i=l,2,...,m,
j--1

j=l

An interior point algorithm starts with a point in the interior of the feasible region
(the polytope: (j Ajxj + Ci _> 0)) and successively makes steps in the interior to
reduce the objective function. Karmarkar [8] used interior point methods to develop
an LP algorithm that converges in O(mL) steps where m is the number of constraints
and L the bit length of the input. Since then this has been improved to O (v/L) steps
by Renegar [15]. There has been extensive research in interior point methods and a
host of algorithms has been developed. All these are based on the logarithmic barrier
function in one way or another. The advantages of the logarithmic barrier function
are well known; the dual has good properties that enable the steps to be well bounded.
The disadvantage is that there are no known ways to obtain a fractional improvement
better than O() in each step with the logarithmic barrier function and hence it has
not been possible to improve the bound to better than O (x/L) iterations. This paper

where dp is the distance of theintroduces a new potential function that varies as
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center (i.e., the point at which the potential function is minimized in the polytope)
from the hyperplane and/ is O(log v). The advantage of this potential function is
that due to the high degree of nonlinearity, the minimum stays well away from all
the constraint hyperplanes; also the effect of all hyperplanes further away than twice
the distance of the closest hyperplane can be neglected, thereby reducing the effective
number of hyperplanes.

The algorithm described in this paper runs on the dual of the bipartite matching
problem. The initial location of the center is obtained by superposing a v-dimensional
cube, the hyperplanes of which dominate the gradient exerted at the center considering
a point close to the center of the cube. Gradually, the weight of the hyperplanes of
the cube is reduced and a Newton-Raphson (N-R) step is used to compute the new
location of the center. Using standard interior point methods, it would take O*(v/-)
steps to find the center for a constant reduction of the weight of the hyperplanes.
However, in this paper we show that the N-R method for the above problem can be
made to converge in O*(1) steps. This uses a particular case of a recently proved
result, presented in this paper, according to which a convex function of the type
-j gj(ui +uj)+- g(u), with gj and g having positive definite and slowly varying
Hessians, can be minimized in a cube [ui- ci[ _< in O*(1) matrix inversions. Note
that the minimization problem would be trivial without the gij since there would be
no coupling between the various directions and the problem could be separated. The
interior point method of this paper finds the minimum with coupling-between the
axes provided it is of the form indicated above. The dual of the matching problem
has its constraints of the form indicated above. In case an approximate matching
is desired with the number of edges within of the optimum, it is shown that the
corresponding center of the interior point method will be at a distance of at least O(p)
from each hyperplane of the matching polytope. The center can then be obtained in
O*(p) time. Once the center is obtained, an equivalent point in the primal polytope
can be immediately obtained at which the value of the objective function is within

O*() of that of the optimal vertex. The algorithm due to Goldberg, et al. [5] is

used to round this to a better vertex in O*(1) time. In case the optimal matching is
desired, p is chosen to be vl/2 and an augmenting path algorithm is used to find the
remaining (at most O*(vl/2)) edges which leads to an overall time bound of O*(v/2).

The paper is organized as follows: 2 presents the broad framework and some of
the terminology; 3 contains a simplified description of the interior point method; 4
describes the steps in the algorithm (without proofs); 5 proves the theorems men-
tioned in the previous section.

2. Terminology and framework. As mentioned briefly in the Introduction,
LP is represented as

(2.1)

n

E Apxy / Cp >_ O,
j--1

j-’l

p-- 1,2,...,m

The outward normal vector to the hyperplane p is defined as p and equals Yj Apjj
(here j is the usual unit vector in the jth coordinate direction). The bipartite match-
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ing problem can be formulated as LP, e.g., Papadimitriou and Steiglitz [14]

fi >_0,

E f. < 1,
.v

V

Max E
i,j=l
(,)

(i, j) E E,

i 1,2,...,v,

The value of fij in the final solution denotes whether or not the edge between the i
and j vertices is included in the matching. By unimodularity of the constraint matrix
on the left-hand side (LHS) it may be shown that all vertices of the polytope have
fij either 0 or 1, e.g., Papadimitriou and Steiglitz [14]. Note that in this case n, the
number of variables, is v; and m, the number of additional constraints, is e. v <_ e _< v2

and therefore O(log e) O(log v).
Taking the dual of (2.2) gives (2.3), which we shall be concerned with for most

of this paper:

(2.3)

ui _>0,
u + uj > 1

2 -2’

Min ui.
i=1

1,2,...,v,

(i,j) E,

The factor of 2 in the second equation of (2.3) is inserted to simplify the definitions
of distances. The distances are defined as dp ui and (u+u-I2 for the two kinds of
hyperplanes present in (2.3). Some of the symbols used in this paper with their brief
meanings are as follows.

1. 5 step made by center.
2. 5p 5. (-p), i.e., component towards hyperplane. As mentioned after (2.1),

ep is the unit outward vector to the hyperplane p.
3. A is the standard symbol used to denote the change in a particular quantity.
4. d0 is the vector connecting the center and the point at which the objective

function is at its optimized value, do is the component of do in the direction of the
gradient of the objective function.

5. K and a are universal symbols for constants and used in different places with
different meanings, their use is local to particular theorems or lemmae. K generally
denotes constants of magnitude greater than 1 and a denotes constants less than 1.

6. k is a scaling factor whose usage is reserved for a particular term discussed
in (2.8) below. This varies the relative weight of the constraining cube--initially this
is a large amount () and is gradually reduced (to )f)

7. e, F, and 7 are used to denote small but finite constants. is used to denote
an infinitesimal.

8. Wp, p, Wp denote the weights of the pth hyperplanes (elaborated on in (2.6)
below). Wp denotes the weight of the hyperplanes of the matching polytope, p the
weights of the hyperplanes of the constraining cube, and Wp is a generic term denoting
weights of arbitrary hyperplanes. The changes of weights of the hyperplanes of the
matching polytope are always negative, those of the cube may be positive or negative.
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However the changes of weights are finite and the total weights do not change by more
than a constant factor in the course of the algorithm (this is proved in Theorem 3).

9. Hyperplanes indicated by p E M are the constraint hyperplanes of the
matching polytope (2.3) and hyperplanes indicated by p E C are those of the sur-
rounding cube.

10. ij is used to denote the weight of the (i, j) edge in a weighted matching.
Our interest lies in the case when all tij are equal to 1; however, in intermediate steps
we consider small deviations from 1 in Theorems 9 and 11.

11. p, as mentioned in the abstract, denotes the degree of approximation of the
matching. The algorithm finds a bipartite matching with the number of edges within
a factor of (1 ) of that in the optimal matching. In case the optimal matching is

desired, p is chosen to be and an augmenting path algorithm is used to find the
remaining (at most 0"(vl/2)) edges, which leads to an overall time bound of 0"(vl/2).

12. / is chosen to be 8[log2 v + 1. Note that is an odd integer of magnitude
O*(1).

13. A denotes the force that pushes the center toward the optimum. This is
large enough to ensure that the center gets pushed close enough to the optimum. It
is chosen to be (2p)Z. A is held constant during the course of the algorithm, while the
effect of the constraining cube is reduced by reducing k.

14. f(fi), fl(fi), f2(fi) and (fi), l(fi), )2() denote potential functions dis-
cussed below in (2.4)-(2.9).

15. The equations in this paper are expressed in vector notation, i.e., component
by component; this is in contrast to papers in most interior point methods where
matrix notation is used. Especially in the case of the bipartite matching problem,
where there are at most two variables per constraint, this notation is more insightful,
e.g., see the discussion after (2.5).

Consider the potential function fl (fi) for the system of hyperplanes corresponding
to the dual of the bipartite matching problem (2.3) as defined below:

(2.4) f() E 1 .
pEM (- 1)dp-1

+
i=1

Aui.

The algorithm of this paper finds the minimum of fl (fi). At the minimum, the gradient
of fl (fi) is zero, i.e.,

V

(2.5) --Vfl () E pP E,i 0.
pEM i--1

Here d-ep represents the effect of the potential due to the hyperplanes of the matching

polytope, as mentioned after (2.1), ep is the unit outward vector to the hyperplane
p; Ai a component in the direction of the gradient of the objective function. (2.5)

Vmay be visualized as an external force- i=1 Ai balanced by outward forces exerted
by the hyperplanes that vary inversely as the /th power of distance. The center
(minimum of the potential function) is the point at which they balance. The problem
is to find the center. It is shown that if (2p) and 8[log2 v + 1, (note that

by the above definition is an odd number) it is possible to obtain the center in
O*(p) matrix inversions and the optimal matching, from this location of the center,
in O*(v/p) steps. Therefore if p is chosen to be yr, then it is possible to obtain the
optimal matching in O*(v/2) time.
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In order to track the minimum of f (fi) using the Newton-Raphson (N-R) method,
a variable weight Wp is defined for each hyperplane which is varied to take second order
effects into account. The symbol f(fi) is used to denote the modified potential function

V

E +E(3- i=1

With this modification (2.5) becomes

pEM -P i----1

f2(fi) represents the difference between f(fi) and fl(fi); i.e., f() fl(fi)+ f2(fi).
In this paper we show that by using an interior point method, it is possible to find

the minimum of the function fl(fi), with dp of the form indicated in (2.3); furthermore,
the center is constrained to a cube such that none of the hyperplanes of the matching
polytope intersect the cube. For this, examine minima of the function 1(fi) defined
by

(2.8) 1()
( 1)dp_ -- ti -- k dp_(3- 1)

Note that the cube will be defined in such a way that none of the faces of the cube
ever intersect any of the hyperplanes of the matching polytope, k is a scaling factor:
when it is small the potential function is close to the desired potential function and
when it is large the potential function is dominated by the hyperplanes of the cube.
As mentioned before, the weights of the hyperplanes are perturbed to take second
order effects into account; a new function (fi) is defined.

There are two symbols, Up and Wp, used for the weights since the equations for the
changes in weights of the cube and the matching hyperplanes are slightly different.
We show in 3-5 that we can indeed follow the trajectory of the minimum of

while reducing k by a factor of O (3 ) in each step. In order to keep nonlineardp max

effects bounded I will be kept less than O(-) in each step Therefore in o(3),,alP max
iterations the algorithm will be able to decrease k by a factor of 2g3, at which point
the second term on the right-hand side (RHS) of (2.9) becomes negligible, and the
point at which b(fi) is minimum approaches the point inside the cube at which f.(fi)
is minimum.

In order to find the minimum of f(fi) in the entire matching polytope, the process
described above can be iterated. It is possible to show that the minimum of f(fi) will
lie at least p from each hyperplane of the matching polytope (Corollary 4A) and

within the cube {3 > ui > 0}. Thus if the side of the cube is smaller than p, it will
not intersect any of the hyperplanes of the matching polytope (it is actually chosen
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uj>O

ui+uj> 1

ui>O

(a) The dual of the matching polytope is defined by the hyperplanes ui > 0;
ui + uj > 1; where (i, j) E E as mentioned in (2.3).

where/ 8[log2 v + 1, is inscribed within the polytope(b) A cube of side
obtained by introducing t[..e additional constraints u < 3 to the dual of the matching
polytope (2.3). C is the center of this cube and M the point in the cube at which the
potential function fl (fi) peM (_l)d- +=AU is minimum; A (2p).

(c) The interior point method repeatedly finds the minimum (M) of f(fi) in
the cube and then shifts the center of the cube to M.

(d) The center C will always stay at least at a distance of from each of the hy-
perplanes of the matching polytope and within the large cube defined by {3 > u > 0}.
Therefore by convexity of fl (), (f (C) fl(M)) (fl(C) f ()), where fl
is minimum at in the entire matching polytope.

(e) Within O*(p) repetitions of (b) and (c), fl(M) approaches within O(v-g)
of fl

FIG. 1. Simplified outline of algorithm to find an approximate matching with the number of
edges within a factor of (1 O()) of the optimal matching.

to be to accommodate second order effects). The algorithm is summarized in
Fig. 1.

The algorithm proceeds by surrounding the current position of the center with
a cube of side 1--’1 The center of the cube is denoted by C whose coordinates are
represented by (Cl, c2,..., c,...); the minimum of f() in the cube is assumed to be
at the point M and the minimum of f(fi) in the entire matching polytope is assumed
to lie at the point #. The final point obtained by the interior point method in the cube
is denoted by F. The values of f(fi) at these points are represented as f(C), I(M),
f(#), and f(F), respectively. Since, when k is large, the minimum of () approaches
the minimum of f() inside the cube, it is clear that I(F) . I(M). By the argument
of the previous paragraph, the cube will never intersect any of the hyperplanes of the
matching polytope, and thus the interior point method of 3 (mentioned briefly in
the Introduction) can be used for finding the minimum of f(/). By convexity of the
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function f(fi) {f(C)- f(F)} > {f(C) f(#)}. The actual constant is smaller

than due to higher order effects and is derived in Theorem 6 as 76/p Therefore,
in O*(p) iterations, f(fi) becomes very close to f(#). This point is transferred to the
primal to obtain an interior point of the matching polytope. A matching is derived
from this by using the rounding algorithm of Goldberg et al. [5].

As mentioned previously in this section, in order to derive the exact matching,
p is chosen to be V1/2 and an approximate matching which has at most O*(), i.e.,

O*(v/2), fewer edges than the optimal matching can be determined in O*(p), i.e.,
O*(vl/2) steps. It is possible to increase the number of edges in the set by unity in
O*(1) steps using standard augmenting pth algorithm {see Even [3]). Thus all the
edges in the optimum matching can be obtained in O*(v) steps of the augmenting
path algorithm giving an overall time bound of 0"(vl/2).

3. Interior point method. This section develops the interior point method
that the later algorithm uses. We show how to minimize the function

1
/1() 1)d_1 +

in a cube ]u -c] , where none of the hyperplanes in the matching polytope
intersects the cube ]u -c] . This section describes a simplified version of the
algorithm without second and higher order effects. The detailed algorithm, including
these effects, is described in 4 and proved in Theorems 2 and 3 in 5. As mentioned

after (2.3), here dp u or (u+u-l)2 (these are the only two kinds of hyperplanes

present in the dual of the matching polytope (2.3) and the superposed cube). Consider
the function (fi) as mentioned in (2.8)"

with Z 8[log2 v + 1 and A (2p). The dp denote the distances from the hyper-
planes of the matching polytope and the constraining cube as defined in (2.3). k is a
scaling parameter that starts from a large quantity and gradually decreases. The first
component is the part to be minimized and the last component constrains the center
to the indicated cube. As k decreases the first component dominates.

An N-R type step is used to find the location of the minimum after every change
of k. We show that k can change by a constant factor in each step while guaranteeing
that 5 ,makes a small step relative to each of the hyperplanes. Contrast this with the
logarithmic potential where k could only improve by a factor of (1 + O()) in each
step. In order to derive the rate of change of k, consider the conditions for a minimum
before and after the step 5. The condition V() 0 yields

) 1
(a.1)  p=O.

i=1 pC

Changing k by Ak and making the step so as to stay at the minimum of (fi), we
obtain the condition

1 ) 1
(a. l + + o.

i=1 pC



748 LOV K. GROVER

Subtracting (3.1) from (3.2) and retaining first order terms gives (a detailed analysis
that incorporates higher order effects is presented in Theorems 2 and 3 in 5);

dp_t_l p-AkE p p =0"
pEM pEG pEC

Next construct a vector 5() as indicated below with which we will take the dot
products of (3.1) and (3.3) and take their ratio to obt_ain -. Normally in logarithmic
potential based interior point methods this vector is 5; however, using 5 here will give
Ak
k as approximately

p dp+1

p dp+1

which is difficult to lower bound. Instead we use the vector 5(Z) which has its compo-
nent in i as 5 where 5i is the component of in the direction i (i represents the
coordinate direction i).

Taking the dot products of (3.1) and (3.3) with 5(Z) and then their ratio gives

Ak
(3.4) - + k EpEM dp+

The first term in the numerator is clearly positive since is an odd number. The last
5+term in the numerator is either of the form in case the matching hyperplane is

(u _> 0), or else of the form

z + +
k 4dp+1

in case the matching hyperplane is (ui / uj >_ 1). In either case this term is positive.
This is the one step in which we require the potential function to be of the form
(u) Yij{gi(ui) + gij(ui + uj)} since without this restriction it is not possible to
bound the step in terms of a finite constant times -. Since the numerator is positive,
the sign of the denominator adjusts itself according to the sign of --. The first term
gives the required gain as follows from Lemma 3 of 5. This is because the magnitude
of the term

EpEC(dp) -t’1

is at least 1/2l l if O(log v) i.e. at least half of the magnitude of the withdp max dp
the maximum absolute value. An intuitive way to see this is to look upon
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dp max dp max"
In case the log barrier function had been used, an equation similar to (3.4) with

[[ not1 would be obtained, the RHS of this could only be bounded to d max’
2 dp max"

4. The algorithm. The following algorithm is described for general p. Steps
0-8 will yield an approximate matching with the number of edges within a factor of
(1 O()) of that in the optimal matching. In order to obtain the optimal matching
set p x/ and execute Steps 0-9.
Step O. Initially set the location of the starting point to ci 1 for all i.
Step 1. Define the cube of interest by the hyperplanes lui c _< ’1 Initially set k

to a relatively large quantity (k (s)) and all Wp 1 and Vp 1. The center
of the cube is denoted by C.

Step 2. Perturb the positions of one of the hyperplanes of the cube slightly in each
direction by s so that at the center of the cube C, V1() 0, 1() is defined
in (2.8) In case after Step 1, 0_ > 0, move the hyperplane (u- c) < 32fp

closer to the center so that with the new positions of the hyperplane o_ 0 InOui
case after Step 1, o < 0, move the hyperplane -(ui -ci) _< , closer to the

center so that with the new positions of the hyperplane o 0. Repeat for all
i.

Step 3. Reduce k by Ak so that and make the step indicated in (4.1) It123
is proved in Theorem 2 in 5 that 11 < , A/]p and Awp are determined,,dPmax- 6-’-"
by the following equation similar to (3.3) (observe that in (4.1b) and (4.1c) all
Avp, Awp are second order terms in 5p):

(4.1a) dp+
p + k E p+ p+AkEp -0

pEC pEC

(4.1b) (dp p) + (dp p) d d+l
0,

(4.1c) (k + Ak)(dp -5p) -k k
(dp -5p) dp dp+

+ Ak
(dp p)Z dp

denote the position of theStep 4. If k _> (12sf) go to Step 3; else if k < (128),
center by F and continue on to Step 5.

Step 5. In case, --LI in any direction ui is more thano 2v., go to Step 1 with C (the
new center of the cube) set to F; else continue on to Step 6.

Step 6. Obtain the corresponding point in the primal by the following transformation.
Let the distance of the nearest hyperplane of the matching polytope (2.3) to F
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be dp,min. Set fj on the (i, j) edge in the graph to 0 in case the hyperplane
+u > 1/2) is at a distance greater than 2dp min from F. Otherwise, set fj on2

u+u > 1/2)(2p)-’ where dp are the distances of the 2
the (i, j) edge in the graph to d
hyperplane from the center F.

Step 7. Evaluate S -j fj for all vertices i. For each edge (i, j) let Sj be the larger
of Si and Sy; in case Sij be greater than unity, reduce fij by a factor Sij.

Step 8. Use the rounding algorithm of Goldberg et al. [5] to derive a better vertex than
this interior point. This yields an approximate matching in which the number of

edges is within a factor of (1 ) of that in the optimal matching.
Step 9. In case the optimal matching is desired, use an augmenting path algorithm

to obtain the remaining edges one by one. It is possible to increase the number
of edges in the set by unity in O*(1) time using a standard augmenting path
algorithm (see Even [3]).
5. Proofs of theorems. We start by proving that the solution to (4.1a) for 5

is unique and well defined. This follows from the convexity of the potential function
(fi)ma formal proof from first principles is carried out in Theorem 1.

THEOREM 1. The solution 5 to the following system of linear equations (5.1.1) is
uniquely determined for given Wp > O, Xp and dp.

(5.1.1) E Wp-p p + -p p o, Wp > o.
p--1

The summation in (5.1.1) is over all constraint hyperplanes. It is assumed that the

LHS of (5.1.1) includes the set of terms - (w + -)d that correspond to the

equations {x 0,i 1,..., n}, represent orthogonal coordinate directions.
Proof. This follows from the fact that (5.1.1) is of the form -y Hj5y vi, where

Hij is the Hessian of the convex function -]p (wplog dp). For completeness we carry
out a proof from first principles. We show that 5 exists and is uniquely determined
by the vector equation (5.1.1). In order to do this we first write the equation in
terms of orthogonal coordinates and unit vectors, i.e. (xl,x2,...,x,...,xn) and
(xl, x2,..., xi,..., xn) where i is the unit vector in the xi direction:

n

(5.1.2a) dp= E Apyxy + Cp,
j=l

(5.1.2b) 5p E ApjSXy.
j=l

Note that since by definition of 5p in 2, it is the component of 5 towards the hyperplane
p, there is a negative sign in (5.1.2b).

The vector Xpp may be written as Ein=l ApiXpi. Using this, (5.1.1) may be
written as

(5.1.3)



FAST INTERIOR POINT METHODS FOR BIPARTITE MATCHING 751

This is a set of n simultaneous linear equations in 5xj. To check that 5xj exist
and are uniquely determined, we need to prove that the determinant of the matrix

Xii pm=l ApApi is nonzero. Assume that it is zero. Then there exists some
nnonzero vector Yj such that j=l XijY [0] (i.e., the zero vector). Therefore,

i,y= ]Xij] 0. This implies that p=l El,j=1 ]QApi piY 0. Denote-= ApjY bp. Then -pm__
_

b2p 0.

Since Wp > 0, the only way this is possible is if bp 0 for all p. Since the system
nof equations includes the set of terms -i= wi i, it follows that all components of

Y are zero, a contradiction, since by assumption Y was a nonzero vector. It follows
that our assumption is false and 5x and hence 5 are uniquely determined. [:]

COROLLARY 1.1. The solution 5 to (4.1a) is uniquely determined.

Proof. The proof follows by substituting for Wp and Xp and using Theorem 1.

For p E M, substitute Wp and Xp 0; for p E C, substitute Wp

and Xp Ak. [’]

We show that we can follow the central trajectory as k in (2.8) is reduced by a
factor of O() in each step. For the particular case of the potential function considered
in this paper of the form (fi) .’iv,j=l gij(ui +uj)+i=l gi(ui) with the functions
and gi slowly varying, while following the central trajectory, it is possible to take higher
order terms in the perturbation expansion of (fi) into account provided dp O(Fz),l
by perturbing the weights of the hyperplanes as shown in Grocer [7] for the logarithmic
potential function. The convergence result with this modification is presented in
Theorem 2. To prove this we first need two algebraic results proved in Lemmas
2.1 and 2.2.

LEMMA 2.1. In case is even, and m=wx t and to, w > O, then

m

WiX
i’-I

Proof. This is proved by using Lagrange multipliers as follows. Consider the
function

The condition 0A() 0 along with (5.2.0) implies that at an extremum all nonzeroOx
xi are equal. Assume that P xi’s are nonzero. Then at the maximum of the objective
function all these are equal (to say x0) and (-ilx0 wi)x . Therefore

xo=4-

and the objective function becomes (ilx#o wi)l/tl--1/" This is clearly highest for
P as high as possible, i.e., m, from which the lemma follows.
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LEMMA 2.2. In case 1/4 < wi < 4; a is even; then

m

E wix
i--1

max

where IXilmax denotes the maximum of all Ixil.
Proof. Using Lemma 2.1 and substituting,

m

m

E WiX
i--1

, it follows that

(5.2.3)

After changing k by Ak and making the step 5 in order to satisfy the condition
V(fi) O, 5, Ak, AWp, AUp must satisfy

Subtracting (5.2.1) from (5.2.2) and rearranging terms gives

IpM PA-k EpEC dP+1
P--Ak E -P

Aw { w+ E (dp 5p) + (dp 5p)
pM

+E (k+Ak)(dp_6p) +k
pC

(dp 5p) dp dp+1

+Ak (dp Sp)

Wp lZp P O.(5.2.1) p e-E)i +kEp
i--1 pC

Using bounds on wi and definition of n, it follows that the above is greater than
IXilmax/(16m)-.

In Step 3 of the algorithm of 4, it is easy to accommodate higher order terms

in the perturbation expansion of the potential function prvided I..dp
max

O(1N)’ by

perturbing the weights of the hyperplanes as shown in Grover [7] for the logarithmic
potential function. The convergence result with this modification is presented below
in Lemma 2.3 and Theorem 2.

LEMMA 2.3. In case before Step 3 of 4 the starting point is at the minimum of
() (as defined in (2.9)), then after making steps in accordance with (4.1a)-(4.1c),
the new point obtained will also be at the minimum of

Proof. Since the initial point is at the minimum of (fi) (as defined in (2.9)), the
condition V() 0 gives

( )
!

-> al_z(4m)zl
which equals

(4m)
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In Step 3 of the algorithm of 4, is chosen so as to make the term in the first line
in the LHS of (5.2.3) zero; App and Awp are chosen so as to make the two terms in
the last two lines each zero (note that the terms in the last two lines are both second
order terms in ) Thus with this choice of , A/]p and AWp (5.2.2) is satisfied afterdp
the step 5 since (5.2.1) was initially satisfied.

THEOREM 2. In case wp, 4, then in Step 3 of the algorithm of 4,

]maxd < ]]" The perturbation of the weights of the hyperplanes of the matching

polytope (Wp) are bounded by {_()2ad > w > --Z2()2}d Also, the perturbation
in the weights of the hypelanes of both the cube and the matching polytope are bounded

, } Note that the change in weight of the hyperplanes of
the matching polytope is always negative.

We show that ] is bounded in terms of by an equality of the formProo dp

(3.4) (the only difference is that the hyperplanes instead of having unit weights, now

have perturbed weights). In order to bound }, construct a vector (Z)as indicated

below with which we will take the dot products of (5.2.1) and (5.2.3) and take their
ratio to obtain . Normally in logarithmic potential based interior point methods
this vector is ; however, using here will give as approximately

which is dicult to lower bound. Instead we use the vector () which has its com-

ponent in i as g, where i is the component of in the direction i. (i represents
the unit vector in the coordinate direction i.) aking the dot products of (g.2.a) and
(5.2.2) with (, making use of the Net that wp, u are chosen so as to make the
lasg two terms in (.2.a) ero, and ghen taking the ratio of the two dot products, we
obtain

pp"()p
d+(5.2.4a)

The last term in the numerator is either of the form Wp in case the matching

hyperplane is (ui _> 0); or else of the form Wp (5+5)(5+)4d+ in case the matching

hyperplane is (ui + uj 1). In either case this term is positive since is odd.
This is the one step in which we require the function to be of the form (u)
y{g(u) +g(u +u)} since without this restriction it is not possible to bound the
step. Note that the denominator of the RHS of (5.2.4a) is of the same sign as the LHS
since the numerator of the RHS is positive by the above argument. The first term in
the RHS gives the required gain as follows from Lemma 2.2 since 8[log2 v + 1
and {4 Wp, p }. Therefore
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Substituting the value of _4 from Step 3 of the algorithm of 4, as -1-, into (5.2.4b)"

(5.2.4c)
1

max 6f2

Next we show that and are small in each step. According to (4.1b) and
lp Wp

(4.1c), Au and Aw are given by

Aw { wz, w w5 }(5.2.5a) (d, 5p) + (d, 5p)f dp dp+1
0,

(5.2.5b)

(k 2_ Ak) (dp p) + k
(dp p)fl dp dp+1 (dp p)fl -p O.

Using the mean value theorem on the Taylor series expansion of the term in parentheses
gives

Awp ( + 1)52pWp
(5.2.6a) (dp 5p)Z + 2(dp aSp)Z+2

0, 0 _< a <_ 1,

(5;2.6b)

(k + Ak)(dp 5p) + k
2(dp 15p)f+2 + Ak (dp 25p)Z+1

=0, 0<_a,a2_<l.

Using (5.2.4c) to bound dp

(5.2.7a)

Applying (5.2.4c) again, the above may be written as

(5.2.7b) 0>_ AWP>_wp -4(-)
2

Similarly it follows from (5.2.6b) that

(5.2.7c) 5 _>--_>-5
p

Finally using Theorem 2 and summing the changes in k, Wp, and pp, we prove
that the total changes in weights are actually bounded.

THEOREM 3. After making 362 steps as specified in (4.1a), the scaling factor k
falls by a factor of at least 24t and the weights Wp and p satisfy

(5.3.0) -1 < gp,final

_
4; _1 < Wp,final < 1.

4 /p,initial 4 Up,initial

Proof. - in each repetition of Step 3 of th.e algorithm is -- and therefore in

362 steps, k will fall by a factor of (1 ).s6# This is less. than 2-4.
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The proof for the variation of weights is given for the Wp’S. Exactly the same
sequence of steps leads to a similar bound for the variation in p’S. Denote the weight
Wp after the jth step by Wp,j+l and assume the condition 1 _< Wp, _< 4 is satisfied for
i 1, 2,..., I. The ratio of the initial and final weights can be written as

(5.3.1) wp,i+ Wp,i+ Wp,i .Wp’2
Wp,1 Wp,I Wp,I--1 Wp,1

Using Theorem 2, each term on the RHS may be bounded to lie between 1 and

(1-5 (_)2). Therefore

(5.3.2) 1 >_ Wp,,+l _> 1-5
Wp,1

For Ak and I < 362 it is seen that 1 > Wp,i/l > 1/4 The condition required
by Theorem 2 is hence satisfied and the desired bound in Theorem 3 follows.

Using the fact that the weights of each hyperplane stay in a finite range, it is
possible to prove that the center stays at least from each hyperplane (Corollary
3.3A) and it stays in the box {3 > u :> 0, Vi} (Corollary 3.3B).

COROLLARY 3.1. Assuming the minimum distance to each hyperplane of the
matching polytope from the center is more than , the initial movement of the hyper-

planes of the cube in Step 2 of the algorithm in 4 is less than
Proof. Assume a hyperplane with its normal in the direction moves towards C

by more than 2sp’ It is easily seen that the gradient due to this dominates and is
greater than the sum of the components of all other gradients in the direction. The
net gradient in the direction due to the hyperplanes of the cube is -peC; with

k (S), the magnitude of this becomes at least 1/2 (16_23 )Z Since all the hyperplanes
of the matching polytope are assumed to be at least at a distance of , the total
gradient in the direction due to the hyperplanes of the matching polytope and
is limited by v (4p) + (2p)z which could not possibly balance the gradient due to the
hyperplanes of the cube. Thus the component of gradient of (fi) in the direction
could not possibly be zero as required by Step 2 of the algorithm of 4. Therefore the
initial assumption was false and the initial movement of a hyperplane of the cube in
Step 2 of the algorithm will be less than 128pZ"

COROLLARY 3.2A. Assume that at the beginning of the ith repetition of the loop
in Steps 1-5 of the algorithm of 4, the initial movement of the hyperplanes of the cube
in Step 2 are all smaller than 2sfp and the distance of the center from a hyperplane
(say ) of the matching polytope becomes less than p(1 + ). Then after the execution

of the loop in Steps 1-5 the center moves away from the hyperplane by a distance of
at least 12sp"

Proof. In order to see that in the next repetition of the loop in Steps 1-5, the
center will move away from this hyperplane by at least 28f, assume that dp
(1 + ) for a particular hyperplane . Plane is either of the form ui > 0 or4p

2- > 1/2. in either case, consider the gradient in the direction i. According to (5.2.1),
the following condition is always satisfied by the center (,eM , -’-iV=l Ai)
k .peC O. Examining the components of the above vector equation in the

direction, it is observed that any components due to the hyperplanes p M directed
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in the i direction are in the /i direction. Since according to the assumption, at
least one of these planes has dp < (1 + ), it follows that the gradient in the +i

direction is at least aP6. The component in the -i direction is due to -A (which is
-(2p)Z) and possibly due to the hyperplanes of the cube. Thus the net gradient due

to the hyperplanes of the cube is at least { -(2p)} in the -i direction. Since
k _< (1-s)Z by Step 4 of the algorithm in 4, and by Theorem 3 { 1/4 _< p < 4}, it
follows by Theorems 2 nd 3 that after an execution of the loop in Steps 1-5 at the
center is within a distance of of the hyperplane (u c) < 32]p 8i where s256fp

in Step 2 of the algorithm Assuming ais the shift of the hyperplane (u -c) <
maximum initial shift in Step 2 of it follows that the center gets pushed away128/p

if it approaches any of the hyperplanes of the matching polytope byby at least 128fp
closer than -(1 + ).P

COROLLARY 3.2B. Assume that at the beginning of the ith repetition of the loop
in Steps 1-5, the initial movement of the hyperplanes of the cube in Step 2 are all
smaller than 28Z1 and some coordinate ui of the center is greater than 2.5. Then
after the execution of the loop in Steps 1-5 the u coordinate of the center is reduced
by at least 128pf

Proof. The argument is the same as the argument of Corollary 3.2A. [:]

COROLLARY 3.3A. The initial movement of the hyperplanes of the cube in Step
and the distance of the center from all hyperplanes of the1 are all smaller than 12p

matching polytope are always all greater than
Proof. Since the distance of the center from all hyperplanes of the matching poly-

tope is greater than at the start of the first iteration of the loop in Steps 1-5 (as
specified in Step 0 of the algorithm), it follows by successively applying Corollary
3.1A and Corollary 3.2A that the distances are always greater than and hence by
Corollary 3.1A the initial movement of the hyperplanes are smaller than 128Zp"

COROLLARY 3.3B.. The coordinates u,i 1,2,...,v of the center are always
smaller than 3.

Proof. The same argument as in Corollary 3.3A when used along with Corol-
lary 3.2B shows that whenever any coordinate u of the center becomes greater than

3 (1- ), it gets pushed back and hence cannot exceed 3. [:]

COROLLARY 3.4. The final solution to the dual of the matching problem (2.3) lies
in the box {3 > u > 0, /i}.

Proof. By unimodularity of the constraint matrix it follows that all vertices of
the polytope have each coordinate u either 0 or 1.

As mentioned in the algorithm in 4, the final point in the cube, obtained just
before Step 5, is denoted by F. In order to prove that f(F) is close to the minimum of
f(fi) in the cube, we first carry out the following transformation. First, consider any
faces of the cube that are within a distance of 12f of F. Shift these inward toward
the center of the cube so that these pass through

THEOREM 4. At the point F obtained just before Step 5, the function f() is

within () of its minimum in the modified cube obtained after the transformation
described just before this theorem.

Proof. Just before Step 5 at the point F, according to Lemma 2.3, we have

1^(5.4.0) Vf() + : de o.
pC
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The gradient of f(fi) at F can hence be estimated by the gradient due to peC d-
by using (5.4.0). It follows by the convexity of f(fi) that the reduction obtained in
f(fi) by going from F to the minimum of f(fi) in the cube (the minimum point is
denoted by M) is upper bounded by Vf(fi).d0, where do is the vector connecting F

v of()dto M and Vf(fi) is the gradient of f(fi) at F. Therefore Af < i=1 o
Consider hyperplanes of the cube with normals in the direction i. In case f()

decreases as we approach a hyperplane of the cube that was originally within a distance
di < then in the transformed cube, no reduction in f(fi) is possible since this has128p
been shifted to coincide with F. In case f(fi) decreases as we approach a hyperplane

the reduction possible inof the cube that was originally at a distance di > 128p

f() is bounded bY ]()dio, Using (5.4.0) to evaluate o()o with k as (128Z) and

bounded by 4, it follows that [of()[o, is upper bounded by 4pZ. d isupper upper

it follows that the function f(fi) canbounded by the width of the cube which is ,
fall by at most ’ in the direction i in the transformed cube and thus by in
the v directions in the transformed cube.

Our real interest lies not in the function f(fi), but in fl() as defined in (2.4)-
(2.6). In order to estimate the change in fl(fi), we show that the changes in f2()
are much smaller than the changes in f (fi). Preliminary lemmas are first proved
that are used in Corollary 5.1 to derive the desired result. We first show that if
O(fi) Ol(fi) + O2(fi) and the variations of 2 in the region under consideration are
small as compared to 1, then if we have the approximate minimum of , we also
have the approximate minimum of .

LEMMA 5.1. Consider a function () O(fi)+O2(fi) dCned in a closed region
R. Let () be within F of its minimum in R at the point F > 0), i.e., O(F)
O(P) + F for all points P in R. Also assume for some given point C in R, that
[O2(C)- O2(P)[ (1(C)- Ol(F)) for all points P in R. Let the minimum of
in R be at the point M. Then

> ( 1
((I)l(C)- (:I)I(M))(5.5.1) ((I) (C) OI(F))

\ 1 +.2 1+2

Proof. Since O(F) is within F of the minimum of () in R, it follows from the
definition of

(..)
((I)1 (c) (I)1 (F) + 2(C) 2(F)) _> ((I)1 (C) (I)I(M) + 2(C) 2(M)) r.

Therefore

(..a)
((I)l (c) (I)l (F)) k ([(I)l (C) (I)l (M)] + [(I)2(C) (I)2(M)]- [(I)2(C) (I)2(F)]) r.

Using the bounds on [2(C) O2(M)] and [2(C) O2(F)] from the assumption of
the lemma, we obtain the following relation which immediately leads to the required
bound

(5.5.4) (1 + 2)((I)1 (C) (I)1 (F)) (O1 (C) (I)1 (M)) r.
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LEMMA 5.2. In Step 3 of the algorithm of 4 the maximum displacement l
relative to any hperplane of the matching polytope will be at most -g-.

Proof. Por each direction i consider one of the two hyperplanes

1
32p

1. According to Theorem 2, I1 <that is closer to the center. This has dp < ,,dP max
Therefore 161 < i923p According to Corollary 3.3, the nearest hyperplane of-.

the matching polytope is at least at a distance of from the center. I1 for the
max

matching hyperplanes are bounded by and .1..!.+!.! both of which are at mostdp 2dp
Da--"

LEMMA 5.3. Irt each repetition of the loop in Steps 1-5, the maximum total dis-

placement relative to any hyperplane of the matching polytope (denoted by I-1max
will be at most A.

Proof. The total displacement allowed in any coordinate direction from the
center of the cube, within the cube (denoted by %), is equal to half of the side of the
cube, which gives I/1 < 32-" According to Corollary 3.3, the nearest hyperplane of

the matching polytope is at least at a distance of p from the center. I1 for the
max

matching hyperplanes are bounded by and Il+ljl both of which are at most 8-dp 2dp

Next we prove that the maximum variation in f2(fi) in the cube defined in Step
1 of the algorithm is less than the reduction in fl (fi). This will be used along with
Lemma 5.1 to show that fl () is close to its minimum in the cube.

THEOREM 5. If2(C)- f2(P)l - 1/2 {fl(C)- fl(F)}, where P is any point in the
cube and C the center of the cube defined in Step 1 of the algorithm and F the point
obtained in Step 5.

Proof. According to (5.2.1), before making the step

Wp

i--1 pC

5 is determined by (4.1)

E p+ P-kE dp+l P-tkEp P--O"
pM pC p6C

AWlp is used to denote the change of weight (Wp) of the hyperplane p of the matching
polytope in the/th step of the center as obtained in (4.1b) and (4.1c); the total change
in weight Awp after I steps is given by [=1 Awtp, where I is the total number of
steps executed in the loop in Steps 1-5. Similarly Afit is used to denote the change
in f (fi) in the/th step and Af to denote the total change in fl (fi) in I steps. Note
that by Theorem 2 Awtp is always negative. Also by Theorem 2, is bounded by

Wp

4 d2p <
<_

Wp d2p
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-Awtp is bounded in terms of Afit by the following procedure. Take the dot products
of (5.5.5), (5.5.6) with 5 and use (5.5.7). First taking the dot product of (5.5.5) with
5"

pM

Taking the dot product of (5.5.6) with

(5.5.8b) E dp+l ""pEC pEM pC

Combining (5.5.8a) and (5.5.8b) yields

Using (5.5.7) on the RHS of (5.5.8c) gives

(5.5.8d)
i--1 pM

The LHS of (5.5.8d) may be written in terms of Afit, by using the definition of fl (fi)
from (2.4) and taking its Taylor’s series expansion with the quadratic remainder term,
since from Lemma 5.2 it follows that for the hyperplane p of the matching polytope

d, max 4-’" From the definition of fl (fi) in (2.4), it follows that

(5.5.9a)

Rewriting the first term on the RHS in (5.5.9a) it follows that

(5.5.9b) -AAg > +E5’ +
i--1

Equation (5.5.9b) can be written as

l--1

(5.5.10a) -Afit- E j=l Wpp

p.M

V )i=1
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Combining (5.5.10a) and (5.5.8d), we obtain

Ak
(5.5.10b)

k

1--1

peM dP E fldp >---- E

Using (5.5.7) to combine the last term on the LHS and the first term on the RHS of
(5.5.10b), it follows that

1-1

Ak veM =1AkAfll+ >- E AWlp
(5.5.11) -- -- dP 2dp_p6M

Next the RHS is combined with the second term on the LHS to yield a bound on
the perturbation of weights in terms of All. Making use of the facts that AWlp < 0
(Theorem 2), - < 0 (Step 3 of the algorithm), Lemma 5.3 and denoting the distance
of the center of the cube to a hyperplane p of the matchingpolytope as dpo, (5.5.11)
may be written as

Awtp < --Aflt +
p6M

(5.5.12)

Sum (5.5.12) over all steps from 1 to I:

l-1

--E E 4dpl - E Afll + dpl/=1 p6M i=1

(5.5.13)

Upper bounding the last term on the RHS by using the facts that all Awlp (by Theorem
2) and Ak is always negative (Step 3 of the algorithm in 4)"

(5.5.14)

Theorem 2, (--I _< 3). Using Lemma 5.2 to combine the last term on the RHSBy
with the LHS

(5.5.15)
I AkI AWlp < E Afll Afl--E E 8dpl/=1 p6M /=1

If2(C) f2(P)l for any point P is upper bounded by:

I ( )2Awt-EE dp o-X/=1 p
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where ,lYXldp max is the maximum total displacement relative to the hyperplane P M

within the cube defined in Step 1. I-1 is upper bounded by by Lemma 5.3,,dP max
Therefore by (5.5.15) it follows that If2(C)- f2(P)l is upper bounded by -AI1,
which is less than 1/2 {fl(C)- fl(F)}.

COROLLARY 5.1. The minimum of fl(ft) in the transformed cube is assumed to
be at the point M and F is the final point in the cube obtained after an execution of
the loop in Steps 1-5 of the algorithm of 4. Then

1
(fl (C) fl (F)) _> (fl (C) fl (M))

Proof. Substituting F vP:; and a 1/2 in Lemma 5.1 and using Theorems 4
and 5, the corollary follows. [:]

Using Corollary 5.1 and convexity of the function fl (fi), we deduce a result similar
to that indicated in Fig. 1.

THEOREM 6 In case (fl (C) fl (#) _> 96vp), then

1
(fl(C) fl (F)) >_

7681p

in StepProof. The faces of the transformed cube are shifted by at most 128p/
2 of the algorithm as proved in Corollary 3.3A, and by 12 in the transformationp
mentioned just before Theorem 4. Since by Step 1 of the algorithm, each face of the
cube was initially at a distance of 1 from the center of the cube C, it follows that
each face of the transformed cube is at least .1. from C. Therefore if the transformed
cube is magnified by a factor of 192p/, it follows by Corollary 3.4, that it will certainly
enclose the point # (at which fl (fi) is a minimum). By convexity of the function
it follows that if the. minimum of fl (fi) in the cube be at M, then

1
(5.6.1) (fl(C) fl(M)) >_

192p (fl (C) fl (#)).

Combining (5.6.1) and Corollary 5.1

1
(5.6.2) (fl(C) fl (F)) _>

384p
(fl (C) fl (#) 48pZv).

Since by the assumption of this theorem (fl (C) fl(#)) _> 96pZv, it follows that

1
(5.6.3)

768p

COROLLARY 6.1. AfterO*(p) executions of the loop in Steps 1-5, (fl(C) fl(#))
96vp.

Proof. The initial value of fl (fi) is dominated by the contribution due to -i1 Aui,
which gives v(2p); the total value is therefore at most 2v(2p). Therefore
(fl(C)- f()) is initially at most 2v(2p) and according to Theorem 6, in each exe-
cution of the loop in Steps 1-5, (f (C) fl()) falls by a factor of at least (1-
as long as (fl(C)- f (,) 96vp). Since O(log v), the result follows.
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In order to transfer to the primal polytope, we need a bound on Vf(fi). To obtain
this we show that if f(fi) is extremely close to its minimum, then Vf(fi) is extremely
small.

THEOREM 7. In case at the point F obtained after an execution of the loop in
Steps 1-5 in 4, the function

I
+

peM (#- 1)d-1

128#.p2K2v Of its minimum, then

is less than K
Proof. First observe that according to Corollary 3.3, the point P is at least at a

distance of p from all the hyperplanes of the matching polytope (2.3). Assume that
o_ in some direction i is greater than (2p) Consider the point P’ displaced fromOu K

in a direction opposite to o_/x i.e., in a directionP in the ith direction by 64p2f12vg Oui’
so as to reduce fl. The change in f (fi) (denoted by Aft) in going from P to P’ is
evaluated by Taylor’s remainder theorem:

Af
Ofl()

6i + 02/1( + () 2

Oui Ou2 6 0 <_ <_1.

to the assumption that -0J-zl in the direction/is greater thanAccording Ou K

(5.7.1)
1 1{

meE
2

6/2 6/2},]_-zxI + u-O+l ;0<<1.

Here 5i and according to Corollary 3.3, (u+u-l> _p)and also (ui > p)64p22vK 2

Therefore the quadratic terms in 5i are bounded as follows:

ui + ux 1 6i h
2

u+ux-1 #+1 +1
1-

2 ui + uz- 1

-->1 (u+ux-- 1) #+1

2

Also,

(ui g6i)#+1 u,ifH-1 ( > lu#+l1
?i ) --Using (5.7.2), (5.7.3)in (5.7.1)

1 { (ui"bux--1)#-bl
"[-

f-t--1
i,mEE
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Therefore,

1
-Aft _> - (2p)’olhil-/3 (.,+.o-1 +

i,x6E

Now

1 (+- +

is part of the objective function fl(fi), as defined in (2.4), and it follows that it is at
most equal to the initial value of fl (fi) (since by Theorem 6, fl () is being reduced
in each execution of the loop in Steps 1-5 of the algorithm of 4). Therefore, as in
Corollary 6.1,

1 1

’ (ui+u--l)/3-12 U/’o-1
i,z6E

is less than 2v (2p)’o, which is an upper bound on the initial value of fl () (this follows

by the same steps in Corollary 6.1). I1 is upper bounded, as in Lemma 5.2, by
max

observing that (dp > +)and (]6il 6402’O2vK) which gives <d max 16"O2Kpv

Therefore we obtain

(5.7.6) -All >
1282p2K2v

This contradicts the assumption of the theorem and hence l-lou in any direction u

could not be more than (2.
COROLLARY 7.1. After O*(p) executions of the loop in Steps 1-5 in the algothm

0 2 (2p)’o, for all

Proof. Using Corollary 6.1 and Theorem 7 with K laa’oo, we obtain

Ofl < i12288/2p2v2
2,o

(2p)’o Vi. D

COROLLARY 7.2. At the point F obtained just before Step 6,

i--1 i--1 p6M

for all i.where A is e(2p)’o, with levi < 2%-,
vProof. By definition, (2.5), (Vfl Y]peM d-P Y]i=l Ai). According to Corol-

lary 7.1,
Of i122882p2v2

<

Therefore since f 8 [log2 v] + 1 and A (2p)’o, the corollary follows. [3
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COROLLARY 7.3. At the point F obtained just before Step 6 of the algorithm in

4, the distance of the closest hyperplane of the matching polytope, dp,min, i8 less than

P
ThenProof. Assume the closest hyperplane to be at a distance greater than .

from the definition of f in (2.5), (Vf ’peM P-=) and the assumption

it follows that [oyi[ > (2p)f v f v this is notthat all dp > - Ou p Since 2 >> ,
possible according to Corollary 7.1. [i

is that the gradient exerted by theA key feature of gradients that vary as

hyperplanes is dominated by those very close to the center. In case the closest hyper-
plane is at a distance dp,mi, the gradients due to M1 hyperplanes at a distance greater
than 2dp,min can be neglected. In fact, it is proved that the combined gradient due to
all hyperplanes further than 2dp,min is considerably smaller than that due to a single
hyperplane at a distance dp,min.

THEOREM 8. For the dual of the matching problem, (2.3), assume -A
E,L A6, + EeM O, where i

4 <_ w <_ 1, (2p) and Ai ei(2p), where

Next the weights Wp are changed to w so that all of the hyperplanes
that have dp >_ 2dp,min have weights w 0 and the weights of hyperplanes with
dp <_ 2dp,min stay the same, i.e., w Wp, then in order to satisfy the condition

Wv v

Proof. The gradients due to each hyperplane of the matching polytope (p) is

in the positive i direction for all coordinate directions according to the definition of
the matching polytope (2.3). Therefore from the condition that at least one hyperplane

) The gradients due to hyperplanesis closer than dp,min, it follows that A _> 1/2 (d.m
further away than 2dp.minl contribute at most 2dp,mi each to the gradient in the i

direction. Therefore the total contribution to the gradient in the direction due to
these hyperplanes is at most

2fd
which is less than 2-ff"2Av Therefore if the Wp of

p,min

hyperplanes further away than 2dp,min is reduced to zero and ifw be the new weights:

=i + E:=i ’^v v
iei

__
EpeM ppp 0, and since/ 8[log2 v + 1 it follows that

x []

Our real interest lies in obtaining a solution to the primal problem (2.2). We next
show how to transfer from the dual to the primal problem. In general it is not possible
to obtain an interior point in the primal polytope from an arbitrary interior point of
the dual; however, there does exist a correspondence between points on the central
path for the logarithmic barrier potential as was pointed out by Renegar [15]. We first
transfer from the center of the nonlinear potential function to the center of a slightly
perturbed logarithmic barrier function from which we obtain a point in the primal
polytope. The analysis has been reworked from first principles in our framework for
the particular case of the bipartite matching problem.

THEOREM 9. Consider the polytope defined by (5.9.1)"

(5.9.1)
ui >_ 0, 1, 2,...,v,

ui + uj ij >_ O, where (i,j) E E.

In case at an interior point of (5.9.1), an external gradient F given by (-qi,-q2,...)
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be balanced by gradients varying inversely with the distance from hyperplanes, i.e.,

5dpp
0, (Mp > 0,

p

where 5dp .for the hyperplanes ui >_ 0 is wi and for the hyperplanes ui + uj ij >_ 0
is wij. Then consider the dual polytope of (5.9.1)"

fij >_O, (i,j) E E,

(5.9.3) E fiJ -< qi’ i= 1,2,...,v.

(,j)e

the following vector equalityAt the interior point of (5.9.3), given by fij +u-a
is satisfied:

F’ + o.
P

The component of F’ along the fij direction is given by and the summation is
over the hyperplanes of (5.9.3) and Wp for the hyperplanes fiy >_ 0 is wiy and for the
hyperplanes ev f <_ q is w.

(,)e

Proof. Taking the component of (5.9.2) in the i direction gives

(5.9.5) wi V" wij+ A.., -q 0.
u u+uj-i

3

Next define new variables fij for every (i, j) E E which are assigned values as follows:

(5.9.6) fij

Using (5.9.6), the equation (5.9.5) may be written as

Substituting u and uy from (5.9.7) in (5.9.6), we obtain:

This is the same as the ij component of the vector equation (5.9.4). [:]

Next we bound the distance between the center and the optimal vertex in terms
of the gradient--this can be conveniently done for the logarithmic barrier potential
function. It is shown in Theorem 11 how to obtain the center of the logarithmic
barrier function of a slightly modified problem (a weighted matching problem), from
the center of the nonlogarithmic potential function as obtained just before Step 6;
Theorem 10 will then be used to prove the goodness of the result.
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THEOREM 10. Let do be the vector connecting the center of the logarithmic barrier
function to the optimum point and do be the c_omponent of do in the direction of the
gradient of the objective function. In case F + O, with Wp > 0 for alldp
hyperplanes, then do is upper bounded by

(5.10.0) do _<
0)p

P

Proof. Taking the dot product of the vector equation + 0 with d--,dp
i.e., the vector connecting the center to the optimal vertex, we obtain

(5.10.1) F. do EWp "dP

since the optimal point lies within the polytope it follows that (--p" do) <_ dp. There-
fore

(5.10.2) F do <_ E Wp.
p

Equation (5.10.0) immediately follows. [:]

THEOREM 11. The point obtained in Step 6 of the algorithm has an objective
function value within 2-n of the maximum of the modified objective function defined by

4 4jfi .for some fj in the range (1 ) to (1 + ), in the polytope (5.11.0)"
i,j--1
(i,j)eE

fij >_ O, (i, j) E E,

(5.11.0) E fiJ -<(1-e)’ i=l,2,...,v

(i.j)EE

where I1 < --r-.
Proof. Consider the LP (2.3) and the final point F in the dual polytope (2.3)

obtained just before Step 6. Carry out the following transformations. Let the distance
of the nearest hyperplane to F be dp,min. Shift all hyperplanes within 2dp,min of F

dp,min )f and adjustcloser to F so that they are within a distance of of F, where 2

Wp to a new value w so that - Ar. Let si be the shift of the hyperplane ui > 0 and
dp

de,mi-)f W < Setsij the shift of the hyperplane +u > 1/2 Note that since 2 2-w for those hyperplanes further than 2dp,min to 0. Therefore the weights w for all
hyperplanes approach zero. Now the hyperplanes are those of the modified polytope

ui >_ si, i 1,2,...,v
(5.11.1) ui + uj > l+sj, (i j) eE.

2

Since by Corollary 7.3, (dp,min < ), it follows that the shifts si and sij satisfy

-2 >_ 8i siy >_ 0). Also according to Theorem 8, F---7 + Ep dp 0, where F
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--(2p)(1- e;)and ]el < v-
polytope now becomes

>0U

(5.11.2) u + uj > 21 + s’j,i2

Define new variables u so that u ui si. The

i 1,2,...,v

8 8j(i;j) e E, sj sij 2 2’
2sj satisfy (_2p _> sj _> -). Now using Theorem 9, we obtain that in the primal

framework, the following polytope corresponds to (5.11.2)"

fij _> 0, (i, j) E,

(5.11.3) fi _< (2p)(1-e), i- 1,2,...,v.

(,)e

By Theorem 9, the following vector equation is satisfied by the system of planes
where Fi" ii where(5113): F"-+- 0 w < 2-n 2sdp

Scaling the variables fj by (2p)- and Fj" by (2p), we obtain the polytope

fij _> 0, (i, j E E),
(5.11.4) same as (5.11.0) Z fiJ -< (1- e), i= 1,2,...,v.

(,j)eE

The equation of the gradient scales to F’--- + )-p 0 with Fj" (2p)Zij. Now
Thus fijit follows from Theorem 10 that do <using the fact that w _< 2--n,

of the maximum of the modified objective functionderived in Step 6 is within

(i,)

4 ) in the modified polytope described by (5.11.0). l-Iwhere(1 )<<(1+
Next we prove that at fi obtained by the algorithm in Step 6 the objective

( s) of its optimal value in the polytopefunction is within a factor of (1- v) 1-

COROLLARY 11.1. Let fi,o be the point obtained by Step 6 of the algorithm. Then
8at a )(1

i,j=l
(,)e

maximum value in the polytope (2.2).
v

Proof. According to Theorem 11, at fi,0 the objective function iifi has
(i,)e

of its maximum in the polytope (5.11.0). Let the maximum ofa value within
v

fi in the polytope (2.2) be at the point fi,. Since (1 -lem)fii, is clearly
i,j=l
(,)

an interior point of (5.11.0) it follows that

(.ll.g) af,o (1-e) af, 2"
(,)eN (,)N
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Since (fj,0 _> 0) and (fij,1

_
0), it follows from (5.11.5) that

(aij)max fij,O >_ (1- ]lmax)(aij)min E fij,1 2"
i,j--1 i,j--1

Using Theorem 11, (llmx < 1.), the fact that ( 8[log2 v + 1) and substituting
bounds from Theorem 11 for gtij in (5.11.6)"

COROLLARY 11.2. Let fj,o be the point obtained by Step 7 of the algorithm. Then
v 9at fi,o the objective function ,=1 fij is within a factor of (1 ) of its maximum
(,)eE

value in the polytope (2.2).
Proof. Let fij,0 be the point obtained by Step 6 and the maximum of

v,=1 fi in the polytope (2.2) be at the point fij,1. Since according to Theo-

rem 11, the point obtained in Step 6 of the algorithm is an interior point of (5.11.0), it
’lm x)ofollows that the reduction in each fij in Step 7 is at most by a factor of (1 IQ

Therefore using this observation along with Corollary 11.1, it follows that

(5.11.8)

Assuming v >> p, the desired result follows.

7. Concluding remarks. This paper demonstrates the use of a nonlogarithmic
potential function f -p with fl O(logn) for LP. It is a property of this

potential function that once the center is obtained, a constant fractional improvement

may be immediately obtained in the objective function in contrast to the O
improvement obtained by using the logarithmic barrier function. The dieult part of
the algorithm is to obtain the center. For general LP it takes O(v/-) matrix inversions
to find the center of this nonlogarithmic potential function with the result that the
overall complexity of the general algorithm is no better than that of standard path
following algorithms using the logarithmic barrier function. When applied to bipartite
matching, certain special properties of the problem can be used to obtain the center.
This enables us to find an approximate matching in which the number of edges is
within a factor of (1 ) of the optimal matching in O*(p) time and the optimal
matching in O* (v1/) time.

We conclude with two open questions.
1. Can the technique of nonlogarithmic potential functions be extended to general

LP? In case an N-R scheme could be used to follow the center it would probably lead
to a parallel algorithm for general LP that took O*(L) matrix inversions. However,
unlike the log barrier function the dual does not have good properties and it becomes
difficult to apply an N-R scheme.

2. Can the algorithm be modified to yield an O*(1) algorithm, at least for bipartite
matching? The problem here is the same as in question 1 above; it is difficult to apply
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an N-R type scheme, except for the special case considered in this paper when the
center is surrounded by a cube.

Acknowledgments. The author is grateful to Pravin Vaidya and David Atkin-
son for going through the paper in detail and making several constructive suggestions.
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CONVERGENCE OF A FACTORIZED BROYDEN-LIKE FAMILY
FOR NONLINEAR LEAST SQUARES PROBLEMS*

HIROSHI YABE? AND NAOKAZU YAMAKIt
Abstract. This paper is concerned with factorized quasi-Newton methods for nonlinear least

squares problems. A one parameter class of symmetric positive definite quasi-Newton updates is
given that corresponds to the Broyden famiIy. We call this new class of update formula a factorized
Broyden-like family. This family is based on the full rank factorized form of a structured quasi-
Newton update. We prove that a quasi-Newton method using the factorized Broyden-like family
possesses local and q-superlinear convergence properties.

Key words, nonlinear least squares, quasi-Newton method, factorized Broyden-like family, local
and q-superlinear convergence

AMS subject classifications. 65K05, 49D37, 90C30

1. Introduction. In this paper, we consider numerical methods for minimizing
a sum of squares of nonlinear functions

1
(1) f(x)- ll,’(x)ll =,
where r(x) (rl (x),..., rm(X))T rj Rn R are twice continuously differentiable
for j 1,..., m, m _> n, and denotes the 12 norm. We will denote by x. a local
minimizer. These types of problems are among the most commonly occurring and
important applications of nonlinear optimization.

For general unconstrained minimization problems where the Hessian matrix of
the objective function can be calculated, Newton’s method can be used. The method
constructs a sequence of vectors {xk } such that

(2) x+1 xk + akdk,

where ck is a scalar steplength and the search direction dk satisfies the Newton equa-
tion

(3) V2f(xk)d -Vf(xk),

where Vf and V2f denote the gradient vector and the Hessian matrix of f, respec-
tively.

The gradient vector and the Hessian matrix of the function (1) have special forms,
given by

(4) Vf(x)- J(x)Tr(x)
and

(5)
m

V2f(x) J(x)TJ(x) + rj(x)V2rj(x),
j--1
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respectively, where J(x) is the m x n Jacobian matrix of r(x) whose ith row is Vri(x)T.
Since the complete Hessian matrix (5) is often expensive to compute, methods

have been developed that use only the first derivative information. For example,
the Gauss-Newton method and the Levenberg-Marquardt method exploit the special
structure of the Hessian matrix and gradient vector. Since these methods neglect the
second part of the Hessian matrix (5), they can be expected to perform well when the
residual f(x.) is small or the functions r are close to linear. These cases are called
the small residual problems. However, when the residual f(x.) is very large and the
functions r are rather nonlinear, these methods may perform poorly [8]. These cases
are called the large residual problems.

Quasi-Newton approximations to only the second part of the Hessian matrix (5)
have been developed [9]. These strategies are called the structured quasi-Newton
methods. Since the nonlinear least squares algorithms usually calculate the Jacobian
matrix J(x) analytically or numerically, the portion J(x)TJ(x) of V2f(x) is always
readily available, so we only have to approximate the second part of V2f(x). There-
fore, for the nonlinear least squares problem, the search direction dk can be computed
by solving

(6) (J(xk)TJ(xk) + Ak)d --J(xk)Tr(xk),
where the matrix Ak is the kth approximation to the second part of 72f(xk) so that

V2f(xk) J(xk)TJ(xk) / Ak.

Following Dennis [5], we have

(7) V2f(Xk+l )Sk Zk,

where

(8) s x+ x

and

(9) Zk J(Xk+l)TJ(xk+l)Sk + (J(Xk+l) J(xk))Tr(xk+l).
Thus the matrix Ak is updated such that the new matrix Ak+l satisfies the secant
condition

(10) Ak+lSk (J(xk+)- J(xk))Tr(xk+).
Within the preceding framework, Bartholomew-Biggs [2] and Dennis, Gay, and

Welsch [10] proposed robust algorithms for both the cases of large and small residual
problems. The former dealt with the structured symmetric rank one update for the
line search strategy, and the latter dealt with the structured Davidon-Fletcher-Powell
(DFP) update for the trust region strategy. After them, A1-Baali and Fletcher [1]
and Fletcher and Xu [13] proposed the hybrid method that combined the structured
Broyden-Fletcher-Goldfarb-Shanno (BFGS) update and the Gauss-Newton method
for the line search strategy. Dennis, Martinez, and Tapia [11] later derived the struc-
ture principle, and showed local and q-superlinear convergence of the structured BFGS
update. Recently, Engels and Martinez [12] (see also Martinez [15]) extended these
updates to the convex class of structured Broyden family and proved local and q-
superlinear convergence of their method. Huschens [14] has proposed a new method
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based on the extended structure principle and has shown quadratic convergence for
zero residual problems and q-superlinear convergence for nonzero residual problems.

In the case of line search descent methods, it is desirable to maintain the positive
definiteness of the matrix J(xc)Tj(x) -+- Ak in (6). This guarantees that d is a
descent direction for f(x). However it is not clear how to construct update formulae
for Ak such that the matrix J(xk)TJ(x) -+- A is positive definite. To overcome this
difficulty, factorized versions of structured quasi-Newton methods have been studied
by Yabe and Takahashi [19]. They proposed computing the search direction dk by
solving the linear system of equations

(g(Xk) - Lk)T(g(xk) W Lk)d- --J(xk)Tr(xk)
instead of (6), where the matrix Lk is an m x n correction matrix to the Jacobian
matrix such that (J(xk) - Lk)T(J(xk) + Lk) is the approximation to 72f(xk). They
obtained the BFGS-like and the DFP-like updates for Lk in [19] and showed local and
q-superlinear convergence of their methods in [20].

In this paper, we propose a one parameter class of symmetric positive definite
quasi-Newton updates that corresponds to the Broyden family. In 2, we derive a
Broyden-like family and establish its full rank factorized form. This contains the
BFGS-like and the DFP-like updates proposed by Yabe and Takahashi [19]. In 3, we
show local and q-superlinear convergence of a quasi-Newton method with the Broyden-
like family. In 4, we discuss a line search criterion and apply sizing techniques to our
updates.

Throughout this paper, denotes the 12 norm for vectors or matrices, and liE
and IIF,M denote the Frobenius norm and the weighted Frobenius norm for some
nonsingular matrix M, which are defined by

IIQIIF /Trace(QQT) and IIQIIF,M MQM IIF,

respectively.

2. Factorized Broyden-like family. In this section, we derive a full rank fac-
torized form of structured quasi-Newton updates and obtain a significant class of such
updates. Our approach is basically an application of the study by Yabe [17] and Ya-
maki and Yabe [21] for standard quasi-Newton methods to the question of structured
quasi-Newton methods. Consider computing the search direction d by solving the
linear system of equations

(11) (J(xk) - Lk)T(J(xk) - Lk)d- --J(xk)Tr(xk).
From the factorized form of the coefficient matrix in (11), we see that the search
direction dk will be a descent direction for f. From (7), the secant condition for Lk+l
is:

(12) (J(xk+l) / L+I)T(J(x+I) -t- Lk+)sk z,

where Sk and zk are defined in (8) and (9), respectively. In order to find a matrix

Lk+l which satisfies the matrix equation (12), we consider the following problem.
PROBLEM A. Given vectors a E Rn and b Rn that satisfy aTb > O, find a

matrix N Rm n such that NTNa b.
Since it is not so easy to solve Problem A directly, we consider the following

problem instead.
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PROBLEM B. Given vectors a E Rn and b Rn that satisfy aTb > O, find a
matrix N Rmxn such that NTh b and Na h for a vector h Rm satisfying
hTh aTb.

We then have the following lemma.
LEMMA 1. The solution set of Problem A is equivalent to the solution set of

Problem B.
Proof. Denote the solution sets of Problem A and Problem B by

and

SA {N e Rmn NTNa b}

SB {N R"n hTN bT, Na h, hTh aTb},
respectively. Let N be any element of the set SA. Setting h Na yields

hTN aTNTN bT Na h and hTh aTNTNa aTb.

This implies N SB. Conversely, letting N be any element of the set SB, we have

NTNa NTh b.

This implies N SA. Thus the proof is complete.
In order to obtain a general solution to Problem B, we use the following lemma

[4, . 4].
LEMMA 2. The matrix equations

CX D, XE G

have a common solution X if and only if each equation separately has a solution and

CG DE.

Furthermore, ifXo is a common solution of the matrix equations, then the general
common solution is

X Xo + (I C-C)(I EE-),

where is an arbitrary matrix, and C- and E- are any matrices such that CC-C
C and EE-E E, respectively.

Set

X N, C hT D bT E a and G h.

Since h 0 and a 0, the matrix equations hTN bT and Na h separately have
a solution. Then by Lemma 2, the condition hTh aTb guarantees that Problem B
is solvable. Since hbT/aTb is a common solution, it follows directly from Lemma 2
that

hbT
N aTb + (I- (hT)-hT)O(I- ca-).

Since h (/I.lull)u satisfies the condition hTh aTb for any nonzero vector
u Rm, setting (hT) Oa/aTOTh yields a solution to Problem B as follows:

(13) N=
llull

+ I-- aTOTu
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where E R"xn and u Rm are, respectively, any matrix and vector such that
aTTu O.

Now we consider finding a matrix Lk+l that satisfies the matrix equation (12).
Assume that S[Zk > 0. It is clear that we can set in Problem A

N J(xk+l) + Lk+l, a=sk and b=zk.

Moreover by using the idea of the structure principle in [11, p. 165], we choose

J(xk+l) + Lk.

Then (13) yields

1 u LkskuTLk(14) Lk+l Lk +
8Zk ]]u]]z TLkSk

where u is an arbitrary vector such that uTLk8k 0 and

(15) Lk J(xk+l)+ Lk.

Setting

(16) Bk+ (J(xk+) + Lk+)T(J(Xk+l) + Lk+)

and

(17) Bk (L)TLk,
the expression (14) yields

(18) B+l B
TBsskBk

T8kBkSk
ZTZk k T

WkW+ "T" + (Sk Bksk)
8k Zk

where

Wk TBksk uTLksk8k

By using (14) and (18), we would construct a family that corresponds to the
Broyden family. For this purpose, we recall the BFGS-like update and the DFP-like
update proposed by Yabe and Takahashi [19]. Yabe and Takahashi constructed them
by means of the least change secant update technique in the sense of Dennis and
Schnabel [7] under the assumption of Tsk Zk > 0. These are as follows.

(i) BFGS-like update.

(19) Lk+l Lk -- T V 8yZ--ksBs

(20) Bk+l B- BssB zkzTk
T 8ZksBs

Zk Bksk
T
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(21)

(22)

(ii) DFP-like update.

L+ L + L (B)-z
zk(Bk) lZk

B+I B + 1+ sz sz sz
We emphasize that the vector

Lisk(23) u=
7"8kBkSk

in (14) yields the BFGS-like update (19). Setting

k k/ Zk(24) u
SyZk

in (14) yields the DFP-like update (21). Since the standard Broyden family is formed
by a linear combination of the standard BFGS update and the standard DFP update,
we can expect to obtain a Broyden-like family by replacing the vector u in (14) by a
linear combination of (23) and (24). For Ck _> 0, consider

() (1- v/) + 4--;8kBkSk
Then we have

Zk

Bksk z

8kBksk 8kBksk
Wk

Therefore, the update (18) is reduced to

(26) B+l B-
where

TBkSkSkBk
T8kBkSk

(27) Vk

(sB+ srz +

Bksk Zk
T 87Zk"8kBkSk

Since the expression (26) is a Broyden family from Bk to Bk+l, we call (26) a Broyden-
like family. In this case, we call an update for Lk corresponding to (26) a factorized
Broyden-like family. Defining

1
Ak

8Zk T
Zk (Bk_) zk(1 Ck T -- Ck 8Zk8kBkSk

we have

1 T(Bk)-IIlull 2 (1 Ck) T + zk zk 1

B (41 4z"
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Note that the Cauchy-Schwarz inequality guarantees

(sBs)(z z)-(
>0 for>0.

Thus, by substituting (25) into (14), we obtain a factorized Broyden-like family:

(28) L}+I=L+(1-Xk)
skTBs

Zk+ z

where

1
(29) 0k >_ 0, Ak

Tzk ZkT(Bk)-lzk(1 Ck) sk + Ck TTBk8k 8k Zk8k

and the matrices Lk and Bk are defined in (15) and (17). It is clear that the cases

Ck 0 and Ck 1 in (28) are equivalent to the factorized BFGS-like update (19) and
the factorized DFP-like update (21), respectively.

3. Local and q-superlinear convergence. Our objective in this section is to
show that the factorized Broyden-like family given in the previous section satisfies the
bounded deterioration principle given by Broyden, Dennis, and Mor6 [3], and that the
method has the local convergence property. For this purpose, we will use the same
techniques as Stachurski [16]. Furthermore, q-superlinear convergence of our method
follows from the Dennis-Mor6 characterization [6].

Let D be an open convex subset of Rn, which contains a local minimizer x,. We
assume the following "standard" conditions.

Assumption A1. There exist positive constants 1, 2, and p such that

(30) IIV2f(x) v2f(x,)ll 111x- x, p,

(31) IIJ(x) J()ll < 211x [[

for any x and in D.
Assumption A2. XY2f is symmetric positive definite at x,.
It follows easily from Assumption A1 that

(32) IlVf(x) Vf() V2f(x,)(x ")l] g(mex(llx x.ll, I1- x, ll)FIIx 11
and

(33) JJJ(x)ll < g=llx- x, JJp + JIJ(x,)ll.

First we have the following result. This result corresponds to Lemma 2.4 in [16].
LEMMA 3. Assume that Bk is invertible and Bk+ in (26) is well defined. Let

(34) H (Bk) -1.
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Then Bk+l is invertible and its inverse matrix can be represented by

(35)

where

(36) HBFGS Hk +k+l

jBFGS (1 Ck)AHk,

+ T

(37) AHk --(zk Hkzk) SZk -THz szk T
k k k Zk HkZk

a parameter Ck is given by

(38)
T

Ck (1 Ck)Ak sk
T8kBkSk

and , Ak are given in (29).
Proof. The result follows directly from Bk+lHk+ I. D
Furthermore, we have the following lemma concerning the parameter Ck.
LEMMA 4. Assume that Ck >_ 0, Tsk Zk > 0 and the matrix Bk is positive definite.

Let Ck be defined by (38). Then

min(0, 1- Ck) _< Ck _< 1.(39)

Proof. Setting

T(Bk)-Is[zk and b= zka--
T T

8k gk8k 8k Zk

Zk

and using (29), we have

(40)
T

Ck (1-- k)Ak skzk (1-- k)a
sk Bks (1--k)a+ab"

The Cauchy-Schwarz inequality yields

T T -I T2
SkZkJ >_ O, i.e., > 1.(41) b- a

(sk Bks)(zk (Bk) zk) b

(skBksk) a

Thus if 0 _< Ck _< 1, then

(1 --k)a
0<_k<_

(1--)a+ka <-1"

If Ck > 1, then

1 --k1- Ck < b__ i)
Ck < 1.

1 + Ck(
Therefore the proof is complete.
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The preceding lemma implies that if Ck is bounded, then the parameter Ck is
also bounded. This fact is essentially used in the proof of the convergence theorem
below. In particular note that the convex class, i.e., 0 <_ _< 1, implies 0 _< <_ 1.
Most of the lemmas in [16] can be applied to our proof, since we use the form (35) in
order to show local convergence of the factorized Broyden-like family. The significant
difference between our proof and that of Stachurski is that we will deal with the
factorized form (28) to obtain estimates on matrices Lk, Bk, and Hk. In what follows,
define

(42) M V2f(x,) 1/2

and

(43) ak max(llXk+l x, ll, IIx x, ll).

Set

(44) k MHkM, z M-lzk, S’k Msk and rk+ MHk+IM.

Note that by the equivalence of norms, for any n x n matrix C, there exist positive
constants vii and 72 such that

1--11CIIF,M <--IICll IICIIF,M.()

We prepare for the main theorem by establishing several lemmas.
LEMMA 5. Suppose that Assumptions A1 and A2 hold. Assume that xk,xk+ E

D, and .for small,

Then

and

(1 p)llMsll _< sTz _< (1 + p)l]Mskll 2,

where

e;(p + )- 5 / 5u(5.eP / ]lJ(x,)ll) and
p+l

Proof. It follows from (32) that

Thus, using the mean value theorem, we have

r(xk+l) r(x) J(xk / tSk)S dr.
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The definition of zk yields

This implies the first result of this lemma.
The second part follows directly from the result (a) of Lemma 4.2 in [3]. Therefore

the proof is complete.
LEMMA 6. Assume that, for some positive constants and K,

IlgUk V2f(x,)-XilF,M < and IIHk ll Ku.

Suppose that the assumptions of Lemma 5 hold and 0 < p < 1 and < 1. Then

II’BFGS V2f(x,)---k+X [IF,M < I[H- V2f(x,)-X[[F,M- 2 Ull kll 2

where W is some positive constant.
Proof. We use the same estimate as Lemma 3.5 in Stachurski [16]. It follows from

(36) and (44)that

where

Lemma 5 implies that there exist positive constants tl, t2, and t3 such that
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Then setting W t + t2 + 2t3, we have

IIT,IIF -- IIT,IIF + IIT,:IIF / IIT,alIF / IIT,-tlF__
(1 - ;2 " 2;3)O’ Wo.

Denoting

we have

( I)’k
I1,,11 :

Since

I SkS (-k I) I
I111 I111 F_

2 IIHg V2f(x,)-IlIF,M(IIH V2f(x,)--IIIF,M Dk).

IIH V2f(x,)-IlIF,M <_ ,
the inequality

I1( )

holds, and hence

_< 25 (IIH V2f(x,)-IIIF,M Dk)

Dk <_ IIHk Vef(x,)-IIIF,M

Therefore we obtain the result

IIBFGS V f(X, IIF,M"-k+l f(x,)- IIF,M -- IIH-V --1

LEMMA 7. Assume that, for constants p and 5,
T^ > (1 p)ll’ll8k Zk and IIH" V2f(x,)-I IIF,M <
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with O < p < l and O < 5 < l. Then

]IAHIIF’M <- (1 0)2(1 5) + [[kn IIk kll}
2

]

Proof. We use the same estimate as Lemma 3.4 in Stachurski [16]. Using the
inequalities

and

Zk

we have

1 1

sk’k
<

(1-p)ll’ll

and

Since

we can write

We now prove local and linear convergence of our method.
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THEOREM 1. Suppose that the standard Assumptions A1 and A2 are satisfied.
Let be any constant such that 0 <_ Ck <_ . Let the matrix Lk be updated by (28).
Let the sequence (xk} be generated by

(46)

and

Xk+l Xk + Sk and (J(xk) + Lk)T(J(xk) + Lk)sk --J(xk)Tr(xk).
Then, there exist positive constants and 5 such that if

Ilxo x, <- s, xo E D

II[(J(x0) + Lo)T(J(xo) + Lo)] -1 V2f(x,)-llIF,M <_ ,
the sequence {xk } is well defined and converges linearly to the local minimizer x,.

Proof. For given E (0, 1), choose 5 and such that

1
(47) 5 < ,
(48) s _< 1,

(49) 5 <
2e

(0) 25lv(x,) +( s .,
(1) e+l(<(e< +) < ,
()

1 1
1

(4) ’- < o,
P < 6,()

1

where

C2 2 +
C3 (1 +

,( + )
p+l

’ max(l, ’),

and the positive constants - and # are defined below.
Set

(56) NI {x e Rnl IIx x, <_ } C D,

(57) N2 {H e Rnn] [[H- V2f(x,)-I[[F,M (_ 2}.

NOW we prove, by mathematical induction, that the following expressions (E1;k)-
(E9;k) hold for all k _> 0:

(El; k) gk N2,



CONVERGENCE OF FACTORIZED BROYDEN-LIKE FAMILY 783

(E2;k) IIHkll -- ’1, IJBkll C3, JJLkll C2 +

(E3; k) ]]Xk+l X,[[

_
’llXk X,H, Xk+l e il,

(E4; k) llBkl] _< 2P+12(22 +3 + 3 and

(E5; k) IIz V2f(x.)skll
_

Caa[lsll,

(E6; k) (1 p2)llMsll 2

_
skTz (1 + P2)llMkll2,

(E7; k) P<5,]lg HklIF,M < WX C12P+52(242 / )k

(ES; )

HBF(3s V2/(x,)-il k+l IIF,M <_ IIn --V2f(x,)-IlIF,M -I- Wo’l

(E9; k) Ilnk+l Vef(x.)-IIF,M <_ link V2f(X.)-XlIF,M +

where W is some positive constant,

?1
# W + ’Tp + 1-- p

4
T--

(1 p2)2(1- 35)

122P+12(22 + 3),

and

We first consider the case of k 0.
(El;0) It is clear from the choice of the initial matrix.
(E2;0) Since

Ilnoll Ilno V2f(x,)-lll-]" IIV2f(x,)-lll_
2(52 + IIV2f(x,)-lll

_< 1,

the matrix H0 is bounded. It follows from (49) and (El;0) that

IIV2f(x.)li [IHo V2f(x.)-lll < 22llV2f(x.)ll <
-l+v
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By the Banach perturbation lemma,

IlSoll IIH-III <_ (1 + v)llV2f(x,)ll 3,

so we have

IILoll < IIJ(xo) + Loll +

< + .llxo

(E3;0) It follows easily from (32) and (50) that

Ilxx x, _< IlgollllVf(xo) Vf(x,) v2f(x,)(xo x,)l
+ 112f(x,)llllno V2f(x,)-lllllxo x,

_< (CxP + 22llV2f(x,)ll) Ilxo
<_ llxo- x, <_ ,

(E4;0) Since xl N1, J(xl) is available. Thus the matrix Bo is well defined and we
have

IIBo Boll _< II(J(xx)/ Lo)T(j(xl) J(xo))ll / II(J(Xl) J(xo))T(J(xo) + Lo)ll
_< (2[ILoll + I[J(xo)ll + IIJ(xl)ll)llJ(Xl)
< 2p+le:( +V+ +
< +1( + -)o.

Then

Bo Bo Bo + Bo < 2P+I2(22 + v/-3) + if3.

Furthermore, it follows from (51) that

IIB;-IIIIBo Boll <_ 2P+l2l(2ff2 -+-
_< 2"+1(2 +
--pl< 1.

Thus by the Banach perturbation lemma, the matrix Bo is nonsingular. This implies
that Bo is positive definite. Since

we have

Ilnonll < [[B-III <
l--p1 1--p1"

(ES;0) and (E6;0). These follow directly from Lemma 5.
From the positive definiteness of B0 and the positivity of T the matrix L1 is8k Zk

well defined. Thus Lemma 3 implies that the matrices B1 and H1 are nonsingular
and H1 B-1 Then the next point x2 can be defined by

X2 :Xl-BlVf(xl)
=Xl-H1Vf(xl).
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(ET;0) It follows from (E4;0) and (53) that

Ilgo HOIlF,M < l[[goll Ilgoll IIBo Boll < 1
1-p

122p+lcq2(22 + 3)(:r _<

(E8;0) Recall that

(58) Ilno V2f(x,)-XlIF,M Ilnno HOIIF,M + Ilno V2f(x,)-II[F,M 35.

Therefore, setting

3& 4, P P and K
1 Pl

in Lemma 6, we obtain

liB1BFGS V2f(x,)-lllF,M lingo V2f(x,)-IlIF,M 611o112 + Wa,

where W is some positive constant.
(E9;0) The update formula (35) for H1 yields

IIH V2f(x,)-IIIF,M IIH1BFGS V2f(x,)-IIIF,M + I1 -ol IIAHoIIF,M.

Using (E6;0) and (5S), and setting p P2 and 5 35 in Lemma 7, we have

4 (I1o o"oIlZXHoII,M _<
(1 p2)2(1 35) I1’011

Recalling that

I1’o- oll <_ IIM-llllzo- Vf(x,)soll-< IIM-11111’o114o,

I1o ooll IIM(gno v2f(x,)-l)Mlllloll
3211M11211011,

and

IIonl[ IlnonllllMII 2 1 -/91

we have

4 [ I1’o ron’o 2

[IAHoIIF’M (1 p2)2(1 3) k II’oll 2

+ (2 ii-o o’oll +I1’oll
\

i1.oll 2 +o
IInllll-IIoll 1t) IInllll-IIoll o11]
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Noting that

ak max(llxk+l x, ll, Ilxk x, ll) Ilxa x, <
and using the conditions (54) and (55), we obtain

t--1

ilHt V2I(x,I-IIIF,M < ilHo V2f(x,)-IIIF,M /p -’](Plk
k=O

k=O

Ilgo- Y(m,)-II,M + i"
k=o

IIkl{2

28,
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which implies Ht E N2. We can prove (E2;k)-(E9;k) for k t in the same way as the
case of k 0.

This concludes the induction and the proof. D
The following theorem shows q-superlinear convergence of our method.
THEOREM 2. Suppose that all conditions of Theorem 1 hold. Then the sequence

{xk} generated by the scheme (46) with the factorized Broyden-like family (28) con-
verges q-superlinearly to x,.

Proof. It follows directly from the proof of Theorem 1 that, for all t _> 0,

lint V2f(x,)-IIF,M Ilno V2f(x,)-IlIF,M

,p II’kll 2k=0

The preceding yields

p< iiHo V2f(x,)-i IIF,M nt-
1 ,P

-IIn V2f(x, )-I IIF,M
_< Ilno 2f(x,)-IIIF,M /

1 /]p

< 25

p

and hence

which guarantees the convergence of the infinite series

Thus

(59) lim
k- IIkll

Letting k M-1BkM-1 gives

<IIM-tII2Ca(I’-kII/IIMII2IIH-H")
It follows from (E7;k) that

lim IlHk Hk o,
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so (59) yields

Therefore we obtain

II(Bk V2f(x,))Skll

which implies

[[M(M-1BkM-1 I)Mskll IIMskll < [[M[12 IIkk kll
[[Msk[[ [[Ski[ [[k

This is the necessary and sufficient condition that the sequence {xk} converges q-
superlinearly to x, [6]. r

4. Concluding remarks. This paper has been concerned with structured quasi-
Newton methods for nonlinear least squares problems. Among line search descent
methods, the factorized versions of structured quasi-Newton methods were proposed
by Yabe and Takahashi [19], [20]. They gave the BFGS-like and the DFP-like updates
and proved local and q-superlinear convergence of these methods. In this paper,
we have extended their updates. We have found a general solution to the matrix
equations, and by using the structure principle given in [11], we have obtained a
factorized Broyden-like family. Furthermore, we have shown local and q-superlinear
convergence of our method by using a way similar to Stachurski [16]. The significant
difference between our proof and that of Stachurski is that we dealt with estimates
on the matrix Lk and the intermediate matrices Bk and Hk.

For structured quasi-Newton methods, Engels and Martinez [12] and Martinez
[15] proposed the convex class of structured secant update, i.e., 0 _< Ck _< 1 in a
Broyden-like family, based on (6) and showed local and q-superlinear convergence of
their method. On the other hand, the factorized Broyden-like family proposed in this
paper allows Ck > 1 in addition to 0 _< Ck _< 1, and maintains the positive definiteness
of the matrix Bk. It is very interesting to investigate the relationship between our
factorized Broyden-like family for Lk and the Engels-Martinez family for Ak. This
relationship has been slightly, but not completely discussed in [18]. Further research
for this relationship is needed.

One of the main purposes of this paper is to obtain a descent search direction
within the framework of the line search strategy. The discussions in 1 and 2 indicate
that the condition

(60) sz > 0

plays an important role in maintaining the positive definiteness of the matrix (J(xk)
Lk)T(J(xk) + Lk). Dennis, Martinez, and Tapia [11] proved that, for their structured
BFGS update, this condition was locally satisfied and considered the neighborhood of
x, such as the intermediate matrix J(Xk+I)TJ(xk+I) + Ak was positive definite. On
the other hand, we have shown that the condition (60) is also locally satisfied for our
family and have considered the neighborhood of x, such as the intermediate matrix

J(xk+l) + Lk was of column full rank. Both of the two locally guarantee the positive
definiteness of Bk+l.
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Here we discuss a line search criterion such that the condition (60) holds. Recall
that zk Vf(xk+l) Vf(xk) for standard quasi-Newton methods. In this case, the
condition (60) always holds for f(x) strictly convex, and can be satisfied by using a
suitable line search criterion like the Wolfe condition for a general objective function.
It is an open problem to find a line search criterion such that the condition (60) is
satisfied within the framework of structured quasi-Newton methods. However, if we
impose convexity on the objective function, we have the following theorem.

THEOREM 3. Assume that the Hessian matrix V2f(x) is positive definite in Rn
and that dk O. Then there exists a positive constant c such that

(adk)T (J(xk + adk)TJ(xk + adk)(ad) + (J(x + ad) J(xk))Tr(xk + adk)) > 0

for all c, 0 < c < (.
Proof. Define

() d (J(xk + adk)TJ(xk + adk)(Cdk) + (J(xk + adk) J(x))Tr(xk + cdk))
Since

we have

dV2f(xk)dk > 0 and 0(0) 0.

Thus by the continuity of 0(a), there exists a positive constant a such that

> 0

for all a, 0 < a < a. Therefore the proof is complete.
Since sk ozkdk, the preceding theorem enables us to obtain the next point Xk+l

which satisfies the condition (60). Thus, as line search criteria, we may combine the
condition (60) and the Armijo condition

f(xk + akda) <_ f(xk) + #akVf(x)Td,

where 0 < # < 1/2. This must be very useful in showing global convergence of our
method when the Hessian matrix V2f(x) is positive definite in Rn.

In practice, we know that, for zero residual problems (f(x,) 0), the matrix Lk
should ideally converge to zero. If the matrix does not at least become small in those
cases, then our method cannot hope to compete with the Gauss-Newton method.
Since the quasi-Newton updates do not generate the zero matrix, some remedies must
be applied. As possible remedies, the hybrid method was proposed by A1-Baali and
Fletcher [1], and the sizing technique was introduced by Bartholomew-Biggs [2] and
Dennis, Gay, and Welsch [10]. It is easy to combine both of these methods with our
factorized methods. For example, define flk to be a sizing factor and set

N J(xk+) + Lk+, a s, b- Zk, and ( J(Xk+l) + kLk
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in (13). Then using (25), we obtain a factorized Broyden-like family with sizing:

(61) Lk+l ZkLk + (1 V/k) TB,s8k

z
8k Zk

where

Lk J(Xk+l) -t- kLk,

and Ak T T(Bk)-Isz +z(1 Ck) TB,sk 8Zk8k

Zk

We can consider a sizing factor similar to the factors of Bartholomew-Biggs and Den-
nis et al. Note that the factorized BFGS-like and the factorized DFP-like updates
with sizing were first proposed by Yabe and Wakahashi [19], [20]. Thus the preceding
result (61) is an extension of the sized updates of Yabe and Takahashi to a factorized
Broyden-like family.
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Abstract. In this paper we study the convergence of a sequential quadratic programming

algorithm for the nonlinear programming problem. The Hessian of the quadratic program is the sum
of an approximation of the Lagrangian and of a multiple of the identity that allows us to penalize
the displacement. Assuming only that the direction is a stationary point of the current quadratic
program we study the local convergence properties without strict complementarity. In particular,
we use a very weak condition on the approximation of the Hessian to the Lagrangian. We obtain
some global and superlinearly convergent algorithm under weak hypotheses. As a particular case we
formulate an extension of Newton’s method that is quadratically convergent to a point satisfying a
strong sufficient second-order condition.

Key words, nonlinear programming, Newton’s method, quasi-Newton algorithms, exact penal-
ization, trust region
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1. Introduction.

1.1. The family of Newton-type algorithms. In this paper we present a new
algorithm for solving the standard nonlinear programming problem

(P) min f(x); g(x) << O,

with f, g smooth mapping from n to and P, and, given a partition (I, J) of
{1,...,p}, by z < 0 we mean zi <_ O, i E I, zj 0, j E J. Occasionally for K C I we
will denote

K / Zi _< 0, K,
z<<0, zj--0, jJ.

With (P) is associated the first-order optimality system

V/(x) + 0,
(1)

<< 0, > 0, 0.

If (x, A) satisfies (1), then we say that A is a multiplier associated to x. By extension
we say that x is solution of (1) if there exists A such that (x, A) satisfies (1).

We define the quadratic problem

Q(x, M) min Vf(x)td + dtMd g(x) + g’(x)d << 0,
d

with which is associated the optimality system

Vf(x) + Md + g’(x)t# 0,

g(x) + g’(x)d << O, #I >_ O, #t(g(x) + g’(x)d) O.
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1994.
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Denote by L(x, .k)’= f(x)+ tg(x) the Lagrangian associated with (P). It has been
observed by Wilson [26] that, when no inequality is present, the computation of the
Newton step in (1) amounts to solving Q(x, M) with M V2L(x, A), and this allows
a natural generalization for problems with inequality constraints. In order to deal
with the case when second derivatives are not available, a larger class of interest is
the following.

ALGORITHM 0 (Newton-type algorithms).
0. Choose x E Rn M an n n symmetric matrix k - 0.
1. Compute (dk, #k) solution of the optimality system of Q(x, Mk).
2. Linesearch: choose Pk in [0, 1].
3. Xk4-1 xk-- pdk

Choose Mk+l.
k - k / 1, go to 1.

1.2. Local study. Let 2 be a local solution of (P) with which is associated a
unique Lagrange multiplier . The local analysis typically assumes that (x, M) is
close to (2, V2L(2, )) and that pk 1. The question is to determine if convergence
occurs, and at which rate. It happens that in this case dk should not, in general, be
taken as the global minimum of Q(xk, Mk).

Indeed, let us consider the simple example

mingn(l+x); -x_<0, x_<10.

This problem has a unique solution 2 0 associated to the unique multiplier A
(1, 0) and the strongest regularity hypothesis and sufficient second-order condition
(see (8) and (29) below) are satisfied by (2, A). Now let us start Newton’s method at
the solution. We get the quadratic problem

mind-d2/2; 0 _< d <_ 10,
d

whose unique solution is d 10, the worst possible displacement! As the Newton
step is obtained by linearizing the data, is it clear that the quadratic program is
meaningful only if the displacement is not too large. Indeed, in our example, the
"good" displacement d 0 is a local solution of the quadratic program.

Of course if Mk

_
0, which is the case for some quasi-Newton algorithms based on

positive definite updates, and also for Newton’s method when (P) is convex, i.e., has
convex cost and inequality constraints and linear equality constraints, then Q(x, Mk)
is itself convex, and local and global minima coincide. We now quote some recent
results about the speed of convergence of Newton-type algorithms. For this purpose,
we need to define the set of active inequality constraints:

:= {i e 0},

the set of active constraints

 (x)uJ,

the extended critical cone

C(x) := {d e tRn g’(x)d I(<.) 0; g(x)d 0 if > 0, e I}.
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Note that when x 2 we recover the usual critical cone, or cone of critical
directions"

(4) C(2) := {d e n g’(2)d I(<) 0; g(2)d 0 if i > 0, i e I}.

We also define the (standard) second-order sufficient condition

dtV2L(2, )d > 0 for all d e C(2), d - 0,

and the orthogonal projection onto C(xk), denoted by pk.

Note that usually the critical cone is defined as

C(2) := {d e n Vf(2)td <_ 0; g’(2)d I(<) 0}.

Both definitions coincide (as is easy to check using (2)) because we assume the exis-
tence of a Lagrange multiplier. We now quote two results of Bonnans [8].

THEOREM 1.1. Let 2 be a local solution of (1) such that the gradients of active
constraints are linearly independent, be the unique multiplier associated with 2, and
the second-order sufficient condition holds. Then if (xk, #) computed by Algorithm 0
converge to (2, ), then {xk } converges superlinearly if and only if (ifj)

Pk[(V2L(2, ) Mk)dk o(dk).

THEOREM 1.2. Assume that 2 is a local solution of (1), is the unique Lagrange
multiplier associated to 2, and the second-order sujCficiency condition holds. Then
there exists > 0 such that if IIx 211 + ]1) 11 < , and (xk+l, Ak+l) is chosen
so that IIxk+l xkll + I1k+ Akll < 2, then Algorithm 0 with Mk V2xL(xk,)
and Pk 1, i.e., Newton’s method, is well defined and converges at a quadratic rate
to

We note that the existence of a unique multiplier is a qualification hypothesis
slightly weaker than the linear independence of gradients of active constraints (see
Fletcher [14]). Note also that if the following strict complementarity hypothesis holds:

for all in I(2),

then, for (xk, Mk) close to (2, V2L(2,)), Ak is close to ; hence if i E I(2), the
corresponding inequality in Q(xk,Mk) is active and everything goes as if we were
analyzing the problem

min f(x) gi(x) 0, i e 1(2) U J.

Then Theorem 1.1 reduces to a result of Boggs, Tolle, and Wang [6], whereas Theo-
rem 1.2 reduces to the application of the general result on quadratic convergence of
Newton’s method for a system of equations. The novelty in the theorems above lies
in the fact that no strict complementarity hypothesis holds and only the standard
(weak) sufficient condition is assumed.

1.3. Globalization. The local results that we just presented insure a superlinear
or quadratic convergence, provided that the data at the starting point are sufficiently
close to the optimum. When these hypotheses are not satisfied, the algorithm must
be modified, for different reasons.
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(i) It may happen that the optimality system of Q(xk, Mk) has no feasible so-
lution; a possible remedy is to solve a modified quadratic program. This has been
discussed by Fletcher [14]. We will not address this point.

(ii) The point xk + dk may be farther from any local solution than xk. For this
reason it is safe to introduce a linesearch on some potential function; the most popular
potential is the so-called exact penalty function (see Eremin [13], Zangwill [28], nan
[16], Pschenichny andDanilin [22])

Or(x) :-- f(x)

with r > 0 (the penalty parameter) and . defined as follows:

z=( z+ if i6i,
z if E J.

Here I1.11 stands for an arbitrary norm in P, although we note that most often the
gl norm is chosen for practical reasons. The dual norm I1-11, is defined as

I1 11, := max{zt# Ilzl{ _< 1}.

Usually r is chosen so that r > II#kll,, where #k is the multiplier associated to d.
However this potential suffers from the Maratos effect (Maratos [19], Mayne and

Polak [20]). Even when x is close to 2 and x + d 2 O(x 2)2, and r close to I111,,
it may happen that Or(x + d) > 0r(x), and in the context of composite optimization
it has been shown that this may occur an infinite number of times. See Yuan [27].

Various remedies have been proposed, the first of them being to make an ad-
ditional restoration step (Mayne and Polak [20], Gabay [15]), i.e., denoting I1.11 an
arbitrary norm in n, different from the one in P, to compute vk solution of

min I1 11 ;g (x / dk) + g’(xk)v O, i e I,
v

where I is some prediction of the set of active constraints, obtained as a byproduct
of the computation of dk, and to perform a linesearch along the arc

p xk pdk + p2vk.

Other possible remedies are to modify the potential, specifically to use a nondiffer-
entiable augmented Lagrangian [7], and to compare the value of Or(xk+l) to the value
of 0r not only at xk, but also at xk-l, xk-2,... (see, Chamberlain et al. [12], Panier
and Tits [21], Sonnans et al. [9]). To our knowledge, all published papers concerning
the Maratos effect assume that the strict complementarity hypothesis holds.

1.4. Our contribution. In this paper we present an algorithm that has global
and local properties under weak hypotheses on the sequence (Mk} of approximations
of the Hessian of the Lagrangian. At step k of the algorithm, a parameter (k >_ 0
is set and a direction da is computed as a stationary point (if any) of the quadratic
problem

Q, (xk, Mk) 1 ok gminVf(xk)d + dMd + Iid1122 g(xk) + (xk)d << 0,

where 11.II2 is the Euclidean norm. This technique was first introduced by Bell [2].
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We note for future reference that the first-order optimality system of Qk xk, Mk)
is, denoting by #k the Lagrange multiplier,

Vf(xk) d- Mkdk + kdk d- g’(xk)t#k O,
()

g(xk) d- g’(xk)dk << 0; #k >_ 0; (#k)t(g(xk) -t- g’(xk)dk) O.

The parameter r rk of the exact penalty function 0r(x) is adapted at each
iteration in order to allow a linesearch; however, null steps may happen and in this
case ck is increased. We prove that (rk} and {ak} are bounded and that any limit
point of (xk} satisfies (1). Our hypotheses are as follows. First we assume

(7) (Mk}, (xk}, and (dk } are bounded.

Note that if upper and lower bounds on x are present, then (xk} and (dk} are
necessarily bounded. Second, we assume that

(8) the linearized constraints g(x) + g’(x)d << 0 are feasible and qualified,

which means that for any x, (8) is satisfied for at least one d, and for all (x, d) such
that g(x) + g’(x)d << O, the gradients of active constraints of this system are linearly
independent.

Hypothesis (8) may seem excessively strong. If a nonlinear optimization problem
is solved with a random starting point, it might not be satisfied in the neighborhood
of the starting point. We have in mind large-scale real-world applications where,
in order to solve the problem in a reasonable time, the initial point is the result of
some heuristics so that in the region in which the sequence {xk } lies, (8) is satisfied,
although a linesearch may be useful. This is, in particular, the case in the optimal
load flow problem (see [5]).

We show also how to avoid the Maratos effect using a second-order correction;
there we use a very weak hypothesis on the approximation of the Hessian of the
Lagrangian. We show lso how to combine this result with Theorem 1.1 in order to
obtain a superlinearly convergent algorithm.

If second-order derivatives are available we show how to formulate a globally con-
vergent algorithm that reduces locally to Newton’s method, and this seems to be the
first globally convergent extension of Newton’s method for nonconvex constrained op-
timization. Other globally convergent algorithms have been published, e.g., Han [16]
and Fletcher [14], but they assume the approximation to the Hessian to be bounded.
The difficulty is that there is no a priori bound for the estimate of the multiplier.
We give a device that overcomes this difficulty. We note that Bell [2] has a global
convergence result comparable to ours, but he assumes the penalization coefficient rk
to be fixed. By contrast, we deal with the more difficult question of adapting this
parameter.

It may seem surprising that the algorithm includes a penalization of the displace-
ment as well as a linesearch; this is due to the presence of constraints. For fixed x,
when a --+ oc, d solution of Q(x, M) converges to r(x) solution of

min Ildl12 g(x) d- g’(x)d << O,
d

and (if r(x) is nonzero) it may happen that f(x + r(x)) > f(x) and IIg(x + r(x))ll >
IIg(x) in this case the step Pk 1 cannot be accepted whenever ak is large enough.
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2. A globally convergent algorithm with fixed penalty parameter. In
this section we will present some properties of the exact penalty function that allow
the design of a linesearch that extends the one due to Armijo [1] for unconstrained
minimization. The ideas that we present here are classical (see [16]) and this section
must be considered mainly as a way to prepare the more sophisticated algorithms of
3 and 4. We note however two specific features. The first is that our hypothesis on
the norm is as follows:

(9) z Ilznll is a convex mapping.

This hypothesis is easy to check for the p norms, 1 _< p _< c, and in that
case [[.[[ coincides with the distance to the cone generating the partial order x << y.
(The property is not true for all norms, e.g., in 2 consider IIx[[ Ix1[ + Ix2 x][.
If J q} then IIx11 [Ix+11 x+ + Ix2+-xx[. We compute I[(1,0) +[1 2 >
211(1,-1)+11 / 1/211(1,1)+11 .)

The second hypothesis is the choice of directions of sufficient descent. For this we
use relation (10) below.

We define the directional derivative of Or at x in direction d as O(x, d). This
is well defined, even if (9) does not hold, because p g(x + pd) has a directional
derivative w(x, d) (that can easily be computed explicitly) and z Ilzll is convex and
Lipschitz, hence

Or(X +pd) =/(x) + p/’(x)d + rllg(x)n + pw(x, d)ll + o(p)
Or(x) + p[/’(x)d + r#tw(x, d)] + o(p),

where # is some element of the subdifferential of I1.11 at g(x).
We define the "linearized" (at point xk) exact penalty function as follows:

Ok(d) f(xk) + f’(xk)d + rkll(g(xk) + g’(x)d)ll

For any d feasible for Qak xk, Mk), we note that the decrease of the linearized
exact penalty function when step Pk 1 is accepted is equal to Ark (xk, d), where

At(x, d):= rllg(x)nll f’(x)d.

We say that At(x, d) is feasible if

(10) Ar(x,d) Ildll 3,

By Ak we denote Ark (xk, d).
LEMMA 2.1. Let d be a stationary point of Qa(x, M) and # the associated La-

grange multiplier. Then
(i) if (9) holds, then

(11) 9r(x, d) _< -At(x, d).

(ii) The following relations hold:

(12) Ar(x, d) > (r I[#ll,)llg(x)nll + lldll + dtMd + #t(g(x) g(x)),

(13) At(x, d) > (r- IIll,)llg(x)nll + lldl12 + dtMd.
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Proof. (i) From (9) we deduce that

Or(x,d) f’(x)d + rTtg’(x)d,
where is some subgradient of I1. 11 at g(x), i.e.,

IIz ll > II (x) ll + Z E JP.

Choosing z g(x) + g’(x)d, and noting that z 0, we deduce that Ttg’(x)d <_
-IIg(x) II, from which (1 1) follows.

(ii) From (6) we deduce

0 f’(x)d + dtMd + alldl122 + #*g’(x)d.

From the complementarity condition we get that #*g’(x)d--- -#*g(x), hence

-f’(x)d dMd + al[d[[ #*g(x),

and so

At(x, d) alldll2 + d*Md + rllg(x)ll #*g(x)
alldl122 + d*Md + r[[g(x)[I- #*g(x) + #*(g(x) g(x))

>_ alldl122 + d*Md + (r -II#ll.)llg(x)ll + #*(g(x) g(x)).

Thus (12) is proved. Now, as #I _> 0, we get from the definition of g(x) that
#t(g(x)- g(x)) >_ O, and so (13) holds.

Let xk be the current point of the algorithm and dk a stationary point ofQ(xu, M).
From (13) it follows that, at least if rk > II#kll. and ak is large enough, then Ak is
feasible (note that for a sufficiently large, Ildk[I , IIr(xk)ll, hence (10) is satisfied).

From (11) it follows that dk is a descent direction of 0r if/kk > 0. This allows
us to define a linesearch in the following way.

Linesearch rule. LS1. Parameters /E (0, 1/2), fl (0, 1). If Ak is feasible then
compute Pk (fl)t, with g smallest integer such that

(14)
(xk + (/3)tdk) <_ . (xk) -()t,Ak,

xk+l ._ xk pkdk.

We note that (11) and the relation < 1/2 imply that (14) is satisfied for large
enough. Hence the linesearch is well defined. In order to analyse the global properties
associated with this linesearch we deal in this section with the simple case when rk is
equal to some constant r.

We can now formulate a conceptual algorithm.

ALGORITHM 1
0. Data: s0 _> 0, M an n n symmetric matrix, x n k 0.
1. Computation of (dk, #k) satisfying the optimality system ofQ(xk, Mk).
2. If Ak is not feasible, i.e., (10) not satisfied for /kk, stop.
3. Perform the linesearch LS1.
4. Choose ak+ and Mk+

kk+l,
go to 1.
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THEOREM 2.1. Assume that (7) and (8) hold. Let xk be computed by Algorithm
1 in which Ak is assumed to be feasible at each step. Assume that (ak, MC, dk) are
bounded, rk r > O. Then dk --, 0 and the set of limit points of (xk, #k) is a connected
subset of the set of solutions of the first-order optimality system (1).

Proof. We prove that dk - O. We note that Or(xk) decreases, hence converges, so.
that by (14) pkAk O. Assume that for some subsequence k, we have (xk’,ak,,Mk’,
dk’) ---, (, (,//, ) with 0. We observe that Ak, --/ Ar(, ) > 0 by (10) and
that satisfies the first-order optimality system of Qa(&,/I)/); hence 0’(,) _< -/
by (11), which implies for p small enough

+ < p + o(p)

<

hence for k large enough by continuity (as Ak, / > 0)

PO(xk’ + pdk’) <_ O(xk’ - Ar(x’ dk’),

which proves that pk, cannot converge to 0, hence we get / lim Ak, O, from
pkA O, contradicting/ > 0 obtained from our assumption : 0.

Now as dk 0 for any converging subsequence of (xk, k, M, dk), we can pass
to the limit in (6), deducing the boundedness of (#k} from (7) and (8), and so that
any limit point of (xk, #k) is solution of (1). Now as dk O, the set of limit points
of (xk} is connected; by (8) the Lagrange multiplier of (1) (whenever it exists) must
depend continuously on x; the conclusion follows. [:]

In the next section we relax the restrictive hypothesis on rk and on the a priori
feasibility of Ak.

3. A general globally convergent algorithm. This section is devoted to the
statement and analysis of a globally convergent algorithm, more precisely an algorithm
computing a sequence (xk, #k} such that any of its limit-points satisfy the first-order
optimality conditions (1). In this algorithm we must update the two parameters rk
and

For rk the idea is the following: take rk rk-1 whenever it is possible, i.e., if
Ak_l(xk,dk) is feasible and p 1 is accepted by the linesearch; otherwise choose
rk satisfying rk > II#kll.. In order to make the sequence rk constant after a finite
number of steps we choose rk max(rk-l,int(ll#kll. + 2)). Finally the update rule
for rk is as follows:

if Ark_l (xk, dk) is feasible and

(15) rk Or_ (xk + dk) <_ Or_ (xk) 7A_(xk, dk),
max(rk_,int(ll#kll. + 2))if not.

For ak the idea is the following. If Ak is not feasible or Pk is close to 0, then
choose ak+ > ak + e, with el > 0 (because of Lemma 2.1 this will eventually yield
the feasibility of Ak). On the other hand, if A is feasible and Pk 1, then ak+l will
be taken smaller than

Finally we mention the possibility of null steps, i.e., when Ak is not feasible then
xk+l is taken equal to x (or equivalently Pk 0) and ak is increased. We now state
the algorithm.
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ALGORITHM 2
0. Data: a0 _> 0, M n n symmetric matrix, x /irn. Parameters 0 < s < 2,

0 <3 < 1; k --0.
1. Computation of (dk, #k), satisfying the optimality system of Qa (xk, Mk).
2. If k 0, set r_ ]],0[[. + 1.
3. Choice of rk using the rule (15).
4. If Ak is not feasible (null step):

Pk O
xk+ Xk
go to 6.

5. If Ak is feasible: perform the linesearch LS1.
6. Update of

If Pk 1, choose a+l ak/2.
If p (3, 1), choose a+ ak + 2.
If Pk 3 choose
Choose Mk+l.

7. kk+l,
go to 1.

Remark 3.1. We observe that {rk } increases, and {rk} is bounded iff there exists
r > 0 such that rk r for k >_ k0.

THEOREM 3.1. Let xk be computed by Algorithm 2. We assume that (7) and (8)
hold. Then (i)the sequences {rk}, {ak}, and {#k} are bounded;

(ii) the set of limit-points of {xk } is connected, and with each limit point is asso-
ciated a Lagrange multiplier.

We give a proof that makes use of some lemmas below.

Proof. (a) We prove that {rk } !s bounded. If not, then there exists a subsequence
kk’ with rk, > rk,-, and by (15)I[#k ][. --+ . This, and (6)-(8)imply that ak,[[d

c. Now by Lemma 3.1, we obtain I[g(x)]] -- 0 and Lemma 3.2 ensures that for k’
large enough, rk, rk,-1, contrary to the definition of {k’}.

(b) We prove that {ak} is bounded. As {rk} is bounded, we know from Remark
3.1 that r is constant, say equal to r for k >_ k0. Lemma 3.3 says that there exists
& _> 0 such that Ak is feasible if ak _> & and k _> k0.

From step 6 of Algorithm 2, it follows that ak+ _< ak+S2 for all k. By Lemma 3.3,
if ak _> & and k _> k0, then Pk 1 and ak+ <_ ak/2; hence ak+ _< max(&, ako/2)+2
whenever k _> k0.

(c) We now prove (ii). Let & be given by Lemma 3.3. By step 6 of Algorithm 2,
after at most &/l successive null steps, one has ak _> &; by Lemma 3.3 the next step
is not a null step. This means that K := {k -rr; #k > 0} is not finite. The sequence
{xk}ke, can be viewed as generated by Algorithm 1, and we deduce from Theorem
2.1 that {dk}ke: -- 0 and that with each limit-point of {xk } is associated a Lagrange
multiplier. As {xk}kev and {xk}e obviously have the same limit-points, point (ii)
follows. [:]

We now state and prove the three lemmas used in the proof of Theorem 3.1.
LEMMA 3.1. Let {xk} be computed by Algorithm 2. Under hypotheses (7) and

(8), if rk //z cx then IIg(xk)ll -- O.

Proof. (a) Let us verify that IIg(xk)]l converges. Let m "= inf{f(xk),k e }.
Note that m > -cx as {xk } is bounded. Then, as {rk} increases 0(xk+) <_ 0r(xk)
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and so we deduce

rk rk rk-1

hence {llg(x)ll + (f(x) m)/rk-1 } is a decreasing sequence, and so converges since
it is bounded. As rk /z oo and {f(xk)} is bounded since {xk} is bounded, it follows
that IIg(xk) converges.

(b) It suffices now to get a contradiction when assuming that lim IIg(xk)ll is
positive. Let us note that by (6)-(8), if {ak} is bounded, so is {#k} hence
cannot go to cx. Hence we may extract a subsequence k such that ak, --* oo and
xk’ - 2. It is easily checked that dk’ r(2). Now since I1.11 is a Lipschitz
mapping:

0, (xk’ 0, (xk’ -t- pdk’
rk, IIg(x’) ,’, IIg(x’ / pd’) + o(1)
,’’ IIg(-) ,’’ IIg( + ,oa) + o(,.,),

with o(rk,)/rk, -* 0 uniformly on p e [0, 1].
kAs g(x + g (x’)dk << 0 and (7) holds, it follows that

[[g(5 + pd-)[[ <_ (1 p) [[g()l + aop2 for some ao > O,

hence since I1.11 is a Lipschitz mapping and (7) holds:

o,(x’) O,(x’+pd’)>pr,llg()ll r,ao +o(r,)
> ,o,’, IIg(’)ll- ,’,,o,O + o(,’,)

pAk, rk, aop2 + o(rk,).

We note that Ak, Irk, I]g()]l which is assumed to be positive. Using this we
get for some a > 0

0,., (xk’) 0,., (xk’ q- pdk’) >_ Ak,[p alp
2 + o(1)]

and it follows that Pk’

_
for some t > 0. Then this implies that for some a2 > 0

imll(x’+l)ll/ll(*’)ll < -,in contradiction with our hypothesis. E]

LEMMA 3.2. Let xk be computed by Algorithm 2. Under the hypotheses (7) and
k(8), if a subsequence {x } satisfies [Ig(xk’)[[ 0 and ak,[Idk’l[ -- c, then

(i) lid’ I1/11(’)11 - ,
(ii) for k’ large enough, rk, --rk,-1..

Proof. Denote by

1 1
qk(d) := Vf(xk)td + -dtMkd + -akd d,

the cost function of Qak xk, Mk) As IIdll is bounded it follows from the unbounded-
ness of ak, [[dk’ that ak, oo. So we see that for k’ >_ k, qk’ (d) is convex, hence dk’

is a global solution of Qak, (xk’, Mk’). In particular, denoting rk :-- r(xk), we have

(16) q,(dk’) <_ qk,(rk’).
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From the definition of rk we have [[rk}12 _< IldlJu. On the other hand, dividing

(16) by Olk,[[dk’[[, remembering that ak, oc we obtain 1 < limllrk’[12/[[dk’ 112 and
point (i) follows.

We now prove (ii). We may assume that r , for otherwise r is constant for
k large enough (see Remark 3.1) and then the conclusion holds trivially. The idea of
the proof is that the penalization term dominates in the linesearch. Indeed,

Ar,_ (x’,d’) rk’-l[[g(x’)[ f’(x’)d’
=rk,_l[[g(xk’)[[(l 1 f’(x’)d’ [[r’,,2 )

We claim that the term between parentheses converges to 1. By point (i),
f’(xk’)dk’/[[rk’ [[2 is bounded. As rk- F it suffices to prove that [[rk’ []2/[[g(xk’)[[
is bounded. If this is not the case, extracting if necessary a subsequence we may
assume that xk’ . As ][g(xk’)[[ 0, is feible.

Let D(x) be the set {d e n g(x) + g’(x)d << 0}. As (8) holds we may apply
to the feasible sets of Q(x, M) a theorem of Robinson [23] that asserts that for x in
a neighborhood of , d 0 is at a distance of D(x) of order [[g(x)[[. It follows that
the element of minimum norm (x) satisfies (x)[ 0(]g(x)]]), and this proves our
claim.

Now let us prove that if A,_(x’,d’) is feasible by (i) and the boundedness
k k kof ll ll2/]g(x proved above it follows tht d lIW  g(xk’)u l is bounded. Using

(7) and rk,- we deduce that rk,_l[[g(xk )[[/[[dk’[[ 3 . This and our claim
above imply (10), i.e., feasibility of A,_ (xk’,dk’).

On the other hand

0r,_ (Xk’)--0r,_ (xk’-bdk’ rk,- llg(x’ ) IIg(x’ /d’) /f(x’)- f(x’ /d’
and so

(17)
Or,_ (xk’) 0,_ (xk’ -b dk’) A,_ (x’,dk’) rk,_l[Ig(xk’ -[- dk’)ll q- O(dk’)2.

But [I.1[ is a Lipschitz mapping, and from (6) (g(xk’)+g’(xk’)dk’) O, hence [[g(xk’q
d’)][- O(dk’)2. Also d’- O(g(x’)) hence, with (17),

Or,_ (xk’ Or,_, (xk’ q- dk’ Ar,_ (xk’ dk’ q- o(Ar,_ (xk’ dk’ ).

As the rule (15) is used in Algorithm 2, the two previous results imply rk,-1

for any k >_ k, in contradiction with the hypothesis r, oc.
LEMMA 3.3. Let xk be computed by Algorithm 2. Under hypotheses (7) and (8),

if {rk} is bounded, then there exists & > 0 and ko such that Pk 1 whenever ak >_ &
and k >_ ko.

Proof. Since rk is bounded, there exists r such that rk r for k >_ k0 (cf. Remark
3.1). Using (13) we know that

Ak >_ (r- Illzk[[,)[[g(xk)ll q-ak[[dk[[22 -b dktMkdk,

and so, as from (7) {Mk } is bounded, we obtain for some aa > 0

A >_ (r -II#k[[.)[[g(xk)]l + (a
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for k large enough. If Pk # 1 then rk r > II,; hence

(18) 2A (a- a)lldll.

As (dk} is bounded, we deduce that for ak large enough, Ak is feasible. Now

Or(xk) Or(xk+dk) r(llg(x)ll IIg(x / d)ll) / f(x) f(x + dk),

so since (7) holds and f, g are smooth, we get for some a4 > 0

(19) 2Or(xk) O(xk -b dk) >_ Ak aalldll,

hence using (18), for ak large enough

1
Or(xk) Or(xk+dk) >_ -Ak.

As / < 1/2, the rule (15) ensures that the two previous results imply Pk 1, in
contradiction with the hypothesis Pk 1. D

4. A globally and superlinearly convergent algorithm. Let 5: be a local
solution of (P) and its associated Lagrange multiplier. We know that Algorithm 2
is not generally superlinearly convergent, even if xk and Mk -- V2L(, ). This
is due to the Maratos effect (Maratos [19], Mayne and Polak [20]). In this section we
show how to adapt the idea of a restoration step in order to accept the unit stepsize.
We define

I*:={iEI; Ai>0}UJ,
I;:--(ieI; #k > 0} U J.

We first perform a local analysis in which our hypotheses are as follows"

(20)
(Mk}, (xk}, (ak}, (dk} are given such that xk ---, ,
(Mk} and (ak} are bounded,
dk is stationary point of Qk xk, Mk) and dk O.

We define vk as the solution of

(21) min I111v

g(xk+dk)+g’(xk)v<<O,
gi (xk + dk) + g(xk)v 0 for any i e I,

where I1.[[ is an arbitrary norm in n. Under some reasonable assumptions we show
in Proposition 4.1 below that the point x + dk -b vk insures a significant decrease of
the exact penalty function. It could be argued that the computation of vk may be
expensive. A possibility ([20], [15]) is to compute v solution of

(22) min I111 / dk) q- g(xk)v 0 for any i e I.v

If the strict complementarity hypothesis holds, the two corrections are, for k
large enough, identical. This indicates that a reasonable way to solve (21) might be
to solve (22) first and to check if its solution is also the solution of (21). We start
with a technical lemma.
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LEMMA 4.1. Assume that (8), (20), and (21) hold. Then one has for some a > O,
koW

(23) I* c I for k > ko

(24) vk <- all dk II 2,

(25) g(xk + dk d- vk) o(dk)2,

(26) gI* (xk d- dk d- vk) o(dk)2.

Proof. (a) It follows from (20), (6), and (8) that #k . So for k large enough,
I; i > 0} c (i e I; #k > 0} and thus (23) is proved.
(b) Since (8) holds and by definition of I"

g(xk) + g’ (xk)dk << 0,
gi(xk) d- g(xk)dk O, e I,

it follows that

g(x d-dk) << O(dk)2,
gi(xk + dk) O(dk)2, i E I,

hence using again (8), vk 0(dk) 2.
(c) Expanding g(xk + dk + vk) and using (24) we get

(27)
1 )g,, )2g(xk + dk d- vk) g(xk) + g’(xk)(dk + vk) d- -(d (xk)d d- o(d

Moreover, since (21) implies (g(x + d) d- g’(x)v) O, expanding g(x -4- d)
and using z --+ IIzll Lipschitz, we obtain

1
II(g(xk) + g’(xk)dk d- -(dk) (xk)dk / g’(xk)vk)ll o(dk)2

Then, as z -- IIzll is Lipschitz, we have (25).
(d) Since v is solution of (21), the expansion of gI; (xk + dk) yields

1 )tg, ,(xk)vk o(dk)2 .gi(xk) d- g(xk)dk d- -(dk (xk)dk + gi for any e Ik.

Hence (26) follows from (23) and (27),. VI

Then we compute xTM along the path p --. xk d- pdk d- p2vk. The first trial point
is xk d- dk d- vk and if it appears to be necessary to test a small value for Pk, then
the contribution of vk is small with respect to the one of dk, and tl ws us to
preserve the descent property on Or. Specifically the linesearch is as fonows.

Linesearch rule LS2. Parameters - (0, 1/2), (0, 1). Compute vk solution of
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If Ak is feasible, i.e., (10) holds for Ak, then compute Pk ()t with g smallest
integer such that

(28) Or (xk + ()dk + ()2vk) _< Or (xk) ()Ak,
xk+l

__
xk + pkdk + (pk)2dk.

In order to perform a local analysis we are led to assume that (2, ,k) (local solution
(P) and associated multiplier) satisfies the following strong second-order sufficient
condition (Robinson [24]):

(29) for any d e ker g.()\{0}, d*V2L(, )d > O.

Recalling (8) we see that (29) is stronger than the standard sufficient condition
(5), and that both coincide if the strict complementarity hypothesis holds at 2.

The next proposition insures that the new linesearch rule accepts the step pk 1,
if xk is close to satisfying (28). Define

dkT orthogonal projection of dk onto ker gI. (xk),
.=

U "= V2L(, ),

and for z J/ip, 5 by

zi if i E I*,
5i z/+ if not.

PROPOSITION 4.1. Assume (Mk}, (xk}, (ak}, (rk), (dk} given such that (8),
(20), (21), and (29) hold and rk r with r > I111. If there exists o > 0 such that
for xk close enough to 2,

(30) (d)MkdkT + alldkTii2 > 1 (dkT)Hd2(1

then LS2 accepts step Pk 1 for k large enough.
We call (30) the condition of sufficient curvature. A typical condition for the unit

step to be accepted is that Mk is close to H, or maybe in some direction only in some
sense. Our condition is of a somewhat different nature, as we require the curvature
in the tangent direction, i.e., k k k(dT) M dT to be sufficiently positive. This condition is
minimal in the following sense: in the framework of unconstrained optimization, so
that dk d, then it can be checked that a necessary condition for the unit step to
be accepted is (30) in which we change +011dkTII 2 into -0[Id,ll 2, as shown in Lemma
4.2.

LEMMA 4.2. Let be such that Vf(2) 0 and V2f(2) > 0. Let xk --. and
{Mk} be such that dk-- -(Mk)-lVf(xk) vanishes, and

f(xk + dk) <_ f(xk) + /f’(xk)dk.

Then for any o > 0 we have for k large enough

1(dk)Mkdk >
2(1 -’),)dtV2f()d- olldll 2.
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Proof. Choose s0 > 0. Set Hk "= f0(1 -a)V2f(xk + adk)da. We have

1 Hkdkf(xk + dk) f(xk) + I’(xk)dk + -(dk)
with IIMk V2f(2)ll _< 2(1 -7)e0 for k large enough. It follows that

0 <_ f(xk) + /f’(xk)dk f(xk + dk)
1

(- 1)f’(xk)dk -(dk)tHkdk
(l_.y) [(dk)tHkdk_ 1 ]2(l _y) (dk)tHkdk

so that

1(dk)tHkdk >
(1 -1

1

2(1 -)

(d)tHdk

(dk)V2f(2)dk eolldkll 2

as was to be proved. El
Before giving the proof we set some preliminary results.
LEMMA 4.3. For any n n symmetric matrix M and .for any > 0 one has

(31) 2(dk)tMdk >_ (d)tMd- eelldTIl- IIMII(1 / IIMII/e)IIdNII.,

(32) 2(dkT)tMdkT >-- (dk)tMdk eUlldTIl -IIMII(1 / IIMII/eU)IIdNIIu.

Proof. Since dk -dkT + dN we get

k k()M ()M +:()M + () M,

hence the following relation holds:

(33) 2I(d)Mdk(dT)MdkTI <_ 211MIIIIdTIIIIdNII. / IIMIIIIdNII.
As for all s > 0, a > 0, b > 0, one has 2ab 2(sa)(b/s) <_ 2a2 + b2/2, it comes

for a- IId,l12 and b IldkNII211MII

which with (33) gives the conclusion. El
LEMMA 4.4. Under the hypotheses of Proposition 4.1, for k large enough, Ak is

feasible and the following holds:

(34) =:la > o; /x _> alldll
and (/ being the constant involved in LS2, i.e., e (0, 1/2))"

1
dk 2(35) el > 0; Ak _>

2(1 --"y)(dk)tHdk + elll
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Proof. We restrict our attention to k such that xk is close to 2.

(a) Preliminaries. It was already noticed (cf. proof of Lemma 4.1(a)) that under
our hypotheses #k _+ . From this result and the hypothesis r > I111. one has for k
large enough

’- I111, > (- IlXlt,)t2,

and also it comes for "= min{A E I* N I} (and so > 0) that for k large enough

min(#k I* fq I) > -2"Hence, as is
k

_
0 and g(xk) >_ g(xk),

()<((), a(x)) > 7 ((x)" (z))
iEI*rGI- mx(0,-()).

2
iEI.NI

From the definition of g(xk) and (xk) we finally get with (12) that there exists
0 such that for k large enough

A >_ :ll.0(x)ll + o,<lldll + (dk)tMkdk.

Now from (32) with M Mk it follows that for all e > 0

2A,< _> + Oklldkll22 + (dkT)tMtdkT x211dll -lIMkil(1 + lIMkllle2)lldkNll2

As (Mk ) is bounded, (8)holds, and dv is solution of

min Ildl12 gI* (xk) + gI* (xk)d O,
d

we have

(36) dkN O(gi.(Xk)) O([7(Xk)),

hence for k large enough, since IIdll -IIdTIl / IIdNIl > Itd.ll.. we get

(37) A > ll(x)ll + ( e)lldTIl + (dkT)tMkdkT

(b) Proof of (34). Since (8) and (29) hold, there exists 5 > 0 such that for xk

close enough to

(38) for any d e ker gI. (xk), dtHd - 511dll -From (30), (37), and (38) one has for k large enough

A >_ II.(x)ll + x(dkT)HdkT elldll + o(d,)2

> ll.(x)ll + (x6 e)lldll + o(d,)2.
-2
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Hence for k large enough, taking s V/Xh/3 we get

Using (36)we deduce (34).
Hence, as we assume that dk -- 0, it follows that Ak is asymptotically feasible.
(c) We now prove (35). om (30) and (37) we have for k large enough

(d)tgd + 2 2A > (xk) + X d2"

Then using (32) of Lemma 4.2 with M H, we obtain for all > 0

I0()11 + (d) gd lldllN -Ilgll(1 +

Hence one has from (a6) for k large enough,

(a9) > ()g lldll
Take 0 in (0,1) such that O It follows with (a4) (a9), and the relation(1-)"

1 )tHkdk
:(1

(d + [(1 e)a

We now choose 1 (1 -0)a5/2 and , so that (le)a5 22; relation
(35) follows.

LEMMA 4.5. Assume that the hypothesis of Proposition 4.1 holds. Define 2k

xk-2. Then2k=O(dk).
Pro@ om the optimality system of Q(xk, Mk) we deduce that xk satisfies

the optimality system of

min f(z) + xtck g(x) + ek << 0
X

with c Md + akd and e := g’(x)d and so c O(d) and e O(d).
Consider the family of perturbed problems

(Pc,e) min f(z) + ztc g(z) + e << O.
X

For 0, 0, 2 is a local solution of Pe,e satisfying the regularity hypothesis
(the linearized constraints are qualified) and the strong second-order sufficient con-
dition. It follows that for ck, ek close to 0, any local solution xk of the first-order
optimality system of (P,) which is in a given neighbourhood of 2 is such that
2k O(ck) + O(ek) O(dk) (see Robinson [25]).

Proof of Proposition 4.1. We know from Lemma 4.4 that, for k large enough,
is feasible; so it remains to check that (28) holds with / 0. Define

&k+l .: xk W dk T vk,
k+ .= &k+ ,

a e(x*) e(,+l).
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We must prove that a _> Ak. Indeed

(40) a L(xk,) L(&k+I,) + t(g(2c+) g(x)) + r(llg(x)tl IIg(&+)ll).

(41)

Expanding L(., A) at 2 one obtains

1 (k)tHk 1 (5k+l)tHk+ O(k)2 0(5k+)2.L(xk, ) L(k+l, ) + +

Moreover one has

(sck)Hk (ck+l )tHfck+l (k ]ck+l)tH(k
_

_(dk + vk)H(25ck + dk + vk).

So using (24) we get

()g (+)H+ -2(dk)tHk (dk)tHdk -t- o(dk)2

then, since (24) yields k+ k + dk + o(dk) and using Lemma 4.4, we obtain from
(41)

L(xk ) L(&k+l ) _(dk)tHk 1-(dk)Hdk + o(dk)2

Then from (25), (26), and Lemma 4.4 we get from (40)

(42)
1

a-- -(dk)tHk -(dk)tHdk tg(xk) + rllg(xk)ll + o(dk)2

On the other hand we have

A rllg(x) f’(xk)dk
rllg(xk)ll VxL(xk,)dk + tg’(xk)dk.

So expanding VxL(xk, ) at and using Lemma 4.4

Ak rllg(xk)ll- (k)tHdk + tg’(xk)dk + o(dk)2.

Using (23) and the complementarity condition in (6), we get for any i E I*

gi(x) + g(xk)dk 0,

hence -,tg(xk) tg’(x)dk and so

Ak rllg(xk)ll (k)Hdk g(x) -t- o(dk)2

Plugging this in (42) we obtain

1 tHdk 2a -(dk) + Ak + o(dk)

We want a _> Ak, i.e.,

1 tHdk 2(1 /)Ak >_ (dk) + o(dk)
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which is a consequence of (35).
According to 1.4, we now present an algorithm that is globally convergent (as

in 3) and that converges superlinearly when we assume that {Mk } approximates in
some sense the Hessian of the Lagrangian of problem (P) (using 4 and properties of
Newton type algorithms quoted in 1.2). We now state the algorithm.

ALGORITHM 3.
Perform the same steps as in Algorithm 2, replacing LS1 by LS2.

THEOREM 4.1. Let xk be computed by Algorithm 3. We assume that (7) and (8)
hold. Then

(i) {rk } and {ak} are bounded.
(ii) The set of limit points of {xk} is connected and to each of them is associated

a Lagrange multiplier.
(iii) Assume that the algorithm computes the solution dk of minimal norm of the

optimality system of Q, ak(xk,Mk). If tO some 2 limit-point of {xk} is associated a
multiplier such that (29) and (30) hold, then xk --, 2 and Pk 1 for k large enough.
If in addition Pk[(V2L(2, ) Mk)dk] o(dk), then the convergence is superlinear.

Proof. The arguments for proving (i), (ii) are essentially the same as for Theorem
3.1. As they are rather long we do not reproduce them in detail but rather analyse
where the differences are.

Proof of (i). This proof relies on extension of Lemmas 3.1-3.3 for Algorithm
3. Lemma 3.1 is proved by checking that IIg(xk)ll converges if r , oc, and on a
first-order expansion (in p) of IIg(xk + pdk)ll. These last arguments have immediate
extensions as the paths p -- xk + pdk and p xk + pdk + p2vk have the same first-
order expansion, the term vk being uniformly bounded. Simple considerations allow
an immediate extension of Lemma 3.2. For the extension of Lemma 3.3, estimate
(18) on Ak is still valid, and (19) also holds, but with a possibly different constant
a4 (because of the additional term vk) and the conclusion, follows. Now the same
discussion of points (a), (b) of proof of Theorem 3.1 can be used in order to check
that (i) holds.

Proof of (ii). The mechanism of adaptation of {xk} and Lemma 3.3 imply that
Pk’ > 0 for an infinite subsequence {k’}, and we may suppose that {xk’ } . If
Ak, 0 it follows that dk’ ---, 0, hence & is a stationary point of (P). If not, assuming
dk’ 0 and vk’ (note that vk’ is bounded by (24) hence has limit-points)
expanding p --, 0r(& + pd + p20) as in the proof of Theorem 2.1 we deduce that Pk’
cannot converge to 0, hence Or(xk’) - oc, which is impossible. Henceforth 0 0 and
point (ii) follows. Using (29), (30), and applying the sensitivity result of Robinson
[25] to d- 0 solution of Q(2, V2L(2, A)) we deduce that dk 0 for the considered
subsequence.

Proof of (iii). That p, 1 asymptotically for the subsequence {xk’ } 2 is
then a consequence of Proposition 4.1. Indeed #k’ as dk’ -- 0 and (Mk, ak) are
bounded. If Pk’ < 1 for a subsequence then (for k’ large enough) rk,+l > IIAII,, hence
r > IIAII, and the hypotheses of Proposition 4.1 are satisfied: it follows that Pk, 1
for k’ large enough, hence ak " 0 at a geometric rate.

Now by (29), 2 is an isolated stationary point (see Robinson [25]), and by point
(ii) is an isolated limit-point of {xk}. As the set of limit points of {xk} is connected
it follows that all the sequence converges to 2.

If in addition Pk[(V2xL(2 ) Mk)dk] o(dk), then as ak O, Pk[(V2xL(2 )
(Mk + akI)dk] o(dk) hence by Theorem 1.2, xk + dk- 2 o(xk- 2). As vk
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O(dk)2 o(xk 2) we get xk+l o(xk 2), as desired.
We now formulate an algorithm that, assuming that the second derivatives of f

and g are known, is an extension of Newton’s method in the sense that, when xk

is close to some 2 satisfying (29), it computes dk using Mk V2L(xk, #k-l) where
#k-1 is the multiplier associated to dk-l, and xk with a quadratic rate. The rule
is as follows:

choose Mk+l V2L(xk+, Ak+ with

(43)
k+l

#k ifaklldkll + IIMkdkll <_ 1,

#k/(1 + lldll / IIMdll)if not.

THEOREM 4.2. (a) Let {xk} be computed by Algorithm 3 with {Mk} computed
by (43). We assume that {xk}, {dk} are bounded, that (8) holds and that ak+l 0 if
p 1. Then points (i), (ii) of Theorem 4.1 still hold.

(b) In addition, if 2 satisfying (29) is limit-point of xk and dk is the solution of
minimal norm of the optimality system of Qak xk, Mk), then all the sequence {xa}
converges to 2 with a quadratic rate.

Proof. (a) In order to get point (i), (ii) of Theorem 4.1 we must just check that
{Mk} is bounded; indeed Ak+l is bounded by (8) and (42) hence so is {Mk}.

Now as dk --. 0 and (Mk, ak) are bounded, it follows that #k and Ak+l #k
by (43), hence Mk ---+ V2L(2, ) and point (iii) of Theorem 4.1 implies that Pk 1
since (30) obviously holds which implies the convergence of all the sequence to 2 at a
quadratic rate by Theorem 1.2. []

Acknowledgments. Thanks are due to M. J. D. Powell, P. Terpolilli, and an
anonymous referee for their remarks that improved a preliminary version of this paper.
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GLOBAL OPTIMALITY CONDITIONS AND THEIR GEOMETRIC
INTERPRETATION FOR THE CHEMICAL AND

PHASE EQUILIBRIUM PROBLEM*

Y. JIANGt, W. R. SMITHt, AND G. R. CHAPMAN

Abstract. A general class of nonlinear optimization problems motivated by the chemical and phase equilibrium
problem in chemical thermodynamics is discussed. The relationships between Kuhn-Tucker points and the global
minimum are investigated. The relationships are interpreted in terms of common tangent planes to a function with
domain in RN- associated with the objective function, whose domain is in 7N. Necessary and sufficient conditions
for a global minimum are established, which we call the reaction tangent-plane criterion. The conditions related to the
common tangent planes may be considered separately from the feasibility conditions, which allows a novel geometric
interpretation of the overall optimality conditions. Illustrative examples are provided of systems involving up to three
chemical species.

Key words, chemical equilibrium, phase equilibrium, Kuhn-Tucker points, global optimality

AMS subject classifications. 80A10, 80A15, 90C90, 49M37

1. Introduction. The optimization problems discussed in this paper arise in the study
of equilibria in multiphase multireaction chemical systems (see, for example, [1], [2]). We
consider an objective function of the form

(1)
K

F(Y) E ykf(xk),
k--1

where

(2)

with Yl, y2,..., YK real, Xl,... ,XK distinct points in En, and f a twice differentiable real-
valued function defined on the strictly positive region of En.

Problem P is to minimize F subject to the constraints

(3)
K

E ykAxk + cz- b,
k--1

(4)
K

E y z O,
k=l

(5) y>_O,xcX (l<k<K),

whereAisarealmxnrealmatrixofrankm, n >_ m, b#-0 c E",c E",xisan
open set in the strictly positive region of E’, and we assume that the problem has at least one
feasible solution. The most significant and unusual feature of this problem is the fact that K is
unknown a priori. This feature is related to the behaviour of f, which is generally nonconvex.
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K is the number of distinct chemical phases that may exist (see next section) and the number
of positive tk is the number of phases actually observed at chemical equilibrium.

In the thermodynamic setting, one is interested in the globally optimal solution ofProblem
/9, which typically has multiple local optima. Conditions characterizing such local optima
for an important special case of Problem P (A I, z constant 1), the so-called phase
equilibrium problem, are due originally to Gibbs [3]. In recent years, there has been renewed
interest in phase equilibrium problems, as well as in the general case involving chemical
reactions as well as phase equilibrium [4]-[13]. These treatments typically involve analyses
of problems that may be interpreted as involving particular forms of the function f in (1)
which arise in chemical applications.

The purpose of this paper is to derive some general analytical results for Problem/9,
which is shown to be a general formulation of the chemical and phase equilibrium problem,
and to interpret these results geometrically. Of significant importance is their independence
of any particular form for the function f. Limited versions of some of these results have
been presented previously for the special case of phase equilibrium problems (for example,
[8], [9]). The more general chemical and phase equilibrium problem has also recently been
considered by Smith, Missen, and Smith 13], using an approach similar to that of this paper.
Our problem formulation is different and the results are more general.

We derive our results from the application ofKuhn-Tucker theory. It will be shown that the
resulting optimality conditions separate naturally into feasibility conditions (involving all ele-
ments ofY in (2)) and conditions related to the function f (involving only {Xl, fl72,..., XK }).
We denote a Kuhn-Tucker point for Problem P by Y*, where

(6)

For Problem/9, the following conditions are proved.
1. Kuhn-Tuckerpoint andcommon tangentplane conditions. Y* is a Kuhn-Tucker point

for Problem/9 if and only if it is feasible and, for those t > 0, the corresponding : are
points of tangency to a common tangent plane to f whose normal lies in the image of A7.
More precisely, the necessary and sufficient conditions for a Kuhn-Tucker point are that it is
feasible and if y > 0 then there exist constants c* and/3" such that

(7) Vf(a:) A7t*,

(8) f(a:) (o*)TA. +/3

2. Local optimality ofKuhn-Tuckerpoint. Suppose that Problem P satisfies the condition
that the equation A b has a solution. Then, if Y* corresponds to a local minimum, then
for any y > 0 it must hold that

(9) V2f(:r) >_ O.

3. Global optimality conditions. A Kuhn-Tucker point Y* corresponds to a global min-
imum of F if and only if the common tangent plane of item 1 above is nowhere above the
graph of f (i.e., is a supporting hyperplane to the graph of f). We will refer to these conditions
as the reaction tangent-plane criterion.

In the next section, we show how Problem P arises in the study of chemical reaction
and phase equilibria in classical thermodynamics. From the point of view of the analysis
that follows, the chemical equilibrium problem and the phase equilibrium problem are special
cases of Problem P.
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Section 3 establishes the equivalence of Kuhn-Tucker points and the common tangent
plane condition. Section 4 discusses the second-order necessary condition for a local mini-
mum, and in 5 the necessary and sufficient conditions for global optimality are derived. In
6, we discuss the geometrical interpretation of our results and give several examples.

2. Genesis of the problems. An important problem in chemical thermodynamics is the
general chemical reaction and phase equilibrium problem for mixtures, which we refer to as
the chemical equilibrium problem. A special case of this is the phase equilibrium problem.
We discuss each of these in turn.

Consider a closed chemical system of N compounds, or substances, composed of M
chemical elements at fixed temperature (T) and pressure (P). Each compound is distin-

/M N), whose entries aj denote the number ofguished by a formula vector a (1 _< _<
atoms of element j per molecule of substance i. The formula vectors are the columns of the
M N formula matrix

A’ (a’,, a,..., av).
The substances may exist in a number of distinct phases, indexed by k 1,2,..., 7r. Let
n >_ 0 be the mass (in mol) of substance i in phase k, and

N

(10) Y E n _> 0
i--1

be the total mass of substances in phase k. Let xk EN be the composition vector for the
substances in phase k, so that x is the mole-fraction of substance in phase k, where

(1 l) nk ykxm,

(12) x _> 0,

and

(13)
N

E x: 1.
i=1

Finally, conservation of mass for the closed system implies the constraints

(14) yA x b’,
k=l

where b’ > .0 is an M-vector giving the abundance of the atomic elements in the system. We
remark in passing that b > 0 except for electronic charge, where it is 0. Similarly, a > 0
except for ionic substances, in which case it is unrestricted in sign.

At fixed T and P, equilibrium occurs when the Gibbs free energy of the system is aglobal
minimum subject to (10)- (14) [2]. The Gibbs free energy is given by

(15)

The function g, giving the molar Gibbs free energy of a phase, is twice differentiable forx >_ 0,
and satisfies

(16) lim
Og(x)

xi-*O+ OX
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This condition implies that any phase that is present at equilibrium (i.e., has Yk > 0) has
nonzero amount of every substance in the phase (see the Appendix for proof). A further
consequence of(16) is that we may strengthen the inequality (12). The accumulated constraints
are then

(17) yk _> 0,

(18)

(19)

N

’- 1.
i=1

Problem P is obtained by setting n N 1 and eliminating the variables x’ viak,N’

Xk,N 1 xki (1 < k < 7r).
i--1

This gives

X X ]Tggk--(Xtkl’ k2," kn]

f(x g(xk l < k < Tr),

and X S, where S is the standard open simplex

S x E En; x < 1, xi > 0
i--1

Finally, we set

(20)

(21) b=b’ c=av
and K 7r, m M. Then Problem P is obtained by a straightforward calculation.

For the phase equilibrium problem, A is the identity matrix, b > 0, and N M, thus
making it a special case of the chemical equilibrium problem. The phase equilibrium problem
is then

min E
k=l

(22) K

E !=b!s.t. ykggk
k--1

ui>o,

(23)

From (22) and (23), we get

N

Xki 1.
i--1



CHEMICAL AND PHASE EQUILIBRIUM PROBLEM 817

where Q > 0 is a constant. From (23),

N-1

i--1

Substituting in the final equation of (22) gives

or equivalently,

(1 <k<N).

k---1 i=1

However, this is a trivial consequence of the first N 1 members of (22), and hence the final
equation of (22) is redundant. Now let

T
Xk (XI,X2,...,Xk,N_I)
f(xk g(x,; (l_<k_<K),

b (b, b;,..., bN_I)T/Q,
y--y’/Q,

and let n N 1. The phase equilibrium problem then becomes

K

man ykf(xk),
k=l

(24) s.t.
K

YkXk b,
k---1

(25)
K

Eyk- 1,
k=l

0_<yk_< 1,

This is thus a special case ofProblemP withX S, A is the identity matrix, c 0, m n
N l, and z 1. Note that xk and b have the same dimension, and that xk E S, b cl(S).

3. Kuhn-Tucker conditions and the common tangent plane. For Problem P, the
Fritz-John necessary conditions for Y* in (6) to be a local minimum of F are that there

or* E fl*, ’y* EK such thatexists ao,

_,T _* /*(26) ao f(x) ( xk 7 O,

(27) aoyVf(x .--T
--yk a --0 (1 <k<K),

(28) --a*Tc -- 3* 0,
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(29)
K

h ;A; + z* o,
k--1

(30)
K

ho- ;-z* =o,
k--1

(31) /;y--0 (1 kK),

(32) g y* > 0,

(33) a_>O, 7_>0, xX(l<k<K).

Note that for the phase equilibrium problem, z constant, so (28) does not arise; the theorems
that follow do not depend on this equation. Its significance will become apparent in the dis-
cussion of the chemical equilibrium problem (6).

Let I {k y 0}. In view of (29) and (30), I { 1,2,..., N}.
LEMMA 1 (Constraint qualifications). Ifthe rows ofthe matrix A are linearly independent

(i.e., if rank A m), then {Vho, Vhj (1 < j < m),9 (k I) } are linearly independent,
where allfunctions are evaluated at Y*.

Proof We have

(34) Vhff (1,..., 1,0,...,0,

(36) Vg[- eT,o,...,o, o),

where rjT is the jth row of A, cj is the jth element of c, (1 <_ j _< m), and ek is the kth unit
vector.

(37)

Consider

4Vo + ;v. + 4v 0.
j=l

From coordinates K + 1,..., K(n + 1) of (37), we obtain

m

(38) Z ydjr=O (1 <k<K).
j=l

Since not all y are zero, it follows that

(39) djrj O.
j=l

Therefore d d d 0, since the rows of A are linearly independent. From the
final coordinate of (37),

(40) Co + dej O.
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Since dj 0 (1 < j < m), we must have c 0. Now (37) becomes

(41) Z cVgk O.

It then follows from (36) that c 0 (i E I), and the lemma is proved.
Since the constraint qualifications hold, the Kuhn-Tucker necessary conditions give the

following theorem.
THEOREM 1. Let f be differentiable and the rows ofA be linearly independent. If Y* is

a local minimumfor Problem P, then there exists * Em, *, "* EK such that

(42) f(x) _,TA_, _/3*--o k --k--O,

(43) yc (Vf(x ATa*) 0 (1 _< k _< K),

(44)
K

k=l

(45)

(46) 7kYk O, 7k->0, Yk >- O, xaX(l_<k_<K).

Furthermore, when z is a variable (a chemical equilibrium problem), we have also that

(47) --a*Tc +/3* O.

The Kuhn-Tucker conditions may be characterized geometrically by the following
corollary.

COROLLARY 1. If Y* is a local minimumfor Problem P, and J {k y > 0}, then
there exists an m-dimensional hyperplane

which is tangent to f(x) at the points {x k J}.
Proof Let k J. Then y > 0 and (43) gives

(48) Vf(x) ATot*.

Furthermore, 7 0 (by 46), so (42) can be written

(49) f(x) (ATa*)Tx + fl*.

An important consequence of Theorem and Corollary 1 is the fact that Y* is a Kuhn-Tucker
point if and only if it is feasible and, for those y > 0, the corresponding z are points of
tangency to a common tangent plane to f whose normal lies in the image of AT.
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4. A second-order necessary condition. The Lagrangian for Problem P is

(5O)
L(Y) Ykf(xk aT y,Axk b + cz

k:l k:l

--/ Yk Z

k,---1

It follows that

(51)
/ 0 0 ’7f (xl T--otTA 0

0 0 0 Vf(xK)T--otTA
Tf(xl)--ATot 0 yl72f(xl) 0

0 7f(=K)--ATot 0 yKV2f(XK)
o o o 0

0

0

o

Let

(52)

where u E EK and vk En. Then

(53)

Define the set

(54) M- {0" VgT(x*)0 0, k I; VhoT0-0; Vhy0-0, 1 _< j < m}.

Referring to (34)- (36), this becomes, in the notation of Lemma 1,

(55) M- [J" uk --O, k I; uk -w; ukAxk + ykAvk + cw 0
k=l k=l k=l

The following results directly from Bazaraa and Shetty 14].
THEOREM 2. Let f be twice differentiable and the rows ofA be linearly independent. If

Y* is a local minimumfor Problem P, then there exists or* Em, *, 3’ E such that

(56)
K K

T(Vf(x) ATo2 + YkVkV f(Xk)V, >_ 0
k=l k=l

for (] M*, where denotes evaluation at Y*.
COROLLARY 2. Suppose Problem P satisfies the condition that A b has a solution

(which,from the assumedproperties ofA and b, must be nontrivial). If Y* is a local minimum,
thenfor any g > 0 (i.e., k I), V2f(x;) is positive semidefinite, which we write as

(57) V2f(x) _> 0.
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Proof. From (48) of the proof of Corollary 1,

(58) Vf(x)--AT --0

for k 6 i. Furthermore, from Theorem 2, for U E M*, uk -0 for k E I. Hence, the first
term on the right-hand side of (56) vanishes, and we have

(59)
K

T 2ycv V f(xk)vk >_ O.
k=l

Suppose there is an g, g I. such that

(60) 2V f(xe) < O.

Now consider a U given by

(61)

where ve/y 7/: 0 is a (nontrivial) solution of

(62) A b.

It is easy to verify that (/ M*, so (56) becomes

(63) 0TV2LO TV2Ye ve f(xe )ve < O,

which contradicts (59).

5. Necessary and sufficient conditions for a global minimum. For notational conve-
nience, we let

(64)

denote a feasible point for Problem P. Similarly, let

(65) Y+ (Y+,’’’, Y+K, (x+ )T, (x+K)T, z+)T

denote a global minimum for Problem P. Then from (3) and (4),

(66)
K K

+ + +y Axk + cz Z IA + c.
k=l k=l

Multiplying by (e+)T and rearranging, we obtain

(67)
K K

v+(-+) +A (,+)A + (+)%(- z+).
k=l k--1

Furthermore, Y+ is a Kuhn-Tucker point, and by Theorem 1 and Corollary 1, there exist
Lagrange multipliers c+,/3+ such that if

(68) o+ 0,) (,+)A. + Z+,
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then

(69) f(x+) O+(xk+) for yk+ > 0.

Note that, by (47), we can write (for the chemical equilibrium problem)

(70) +() (,+)( + ).

LEMMA 2. In the above notation,

(71)
K

F(Y+) E $0+(5a)"
k=l

Proof By (1), (4), (68), and (69), we have

(72)
K

(Y+) v+(+ A+ + +Z+
k=l

Using (67), we may write

(73)

K

F(Y+) E I#’(t+)TA’k + (Oz+)Tc(;- Z+) + Z++
k--1
K

(,,+)A ++ + [(/+ -(,,+))(z+ )].
k--1

For the phase equilibrium problem, z is constant and so

(74) z+ 2 0.

For the chemical equilibrium problem,

(75) /3+ (a+)TC 0.

Thus, for Problem P, (73) becomes (using (4))

(76)
K

F(v+) ((,+)A + Z+)
k--1

and the lemma follows from (68).
LEMMA 3. Y+ is a global minimum for Problem P if and only if it is a Kuhn-Tucker

point, andfor anyfeasible Y

(77)
K

Z /k(f(ck) 0+()) >_ O.
k--1

Proof. It follows from (1) and Lemma 2 that

(78)
K

F() F(Y+) E k(f(k) O+(k)),
k--1
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and the result follows.
The essence of the following theorem is that a Kuhn-Tucker point of F is a global

minimum for Problem P if and only if the common tangent plane to which it gives rise is a
supporting hyperplane of f, i.e., if and only if the graph of f(x) is never below the tangent
plane.

THEOREM 3 (Reaction tangent-plane criterion). Y+ is a global minimum for P if and
only if it is a Kuhn-Tucker point, and

(79) f(x)-O+(x)_>O VxX,

where 0+ (x) is defined by (68).
Proof Let Y+ be a Kuhn-Tucker point and assume (79) holds. If is a feasible point

for Problem P, then k _> 0, :k E X. Thus by (79),

(80) k(f(ffTk)- O+(k)) 0 (1 _< k _< K).

Summing from to K, we obtain (77), and hence Y+ is a global minimum by Lemma 3.
Now let Y+ be a global minimum for Problem P. By Theorem 1 it is a Kuhn-Tucker

point. Suppose there exists xo E X such that

(81) f(xo) 0+ (xo) < O.

Now there exists at least one of y+,..., y+, say yf, which is strictly positive (since b 0 in
(3)). From (69) and (81),

(82) f(xo) f(xf < O+(x0)- O+ (xf ).

(83)

Consider I7" E E(K+I)(n+I)+1 defined by

,r (Y+l Y--l’ YO, yto, Y?+I’ Y+K’ (X?)T

(_,0, (;, (+,,..., (+, z+,
where

t 1
(84) Yo t+ 1 y?’ Y- t+ 1 yf’

(ss) . t(.? *o) +* (t > o).

(We remark that this Y is physically equivalent to replacing phase j by two phases with
compositions given by x0 and x and amounts given by Y0 and y.) Since X is open, x X
for t sufficiently small. Furthermore, a straightforward calculation shows that

(86) y0 + y6 Yf, y0Az0 + yA vJ-Azf,
so that Y is feasible for Problem/9.

By (83) and (84) we have

(87) F() F(Y+) yof(xo) + yof(xo) yff(xf

-f ---f(xo) + 1 + t
f() f(f)
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A Taylor series expansion about xJ-, based on (85), gives

f(xo) f(x] + tVf(xf )T (xf Xo) + o(t2).

By (48) and (68), this gives

(88) f(xo) f(xf) + t(O+(xf) O+(xo)) +

By (82) we obtain, for sufficiently small t > 0,

f(xo) < f(x) + t(f(xf f(xo)).

When rearranged and divided by (t + 1), this becomes

t 1
(89)

t + 1/(x) + t + 1/(x) f(x-) < O.

Combined with (87) this gives

< o,

which contradicts the minimality of F(Y+).
6. Discussion. In this section, we discuss the geometric interpretation of our results for

both the phase equilibrium and the chemical equilibrium problem. We then give illustrations
for the cases of binary and ternary chemical systems (n 1 and n 2, respectively).
Although the geometric interpretation of the equilibrium criteria for the simplest case, that of
binary phase equilibrium problems, has been discussed previously (for example, [81, [9]) in
a similar way to that contained in the following, this is not the case for ternary systems. Our
discussion in the case of the more general chemical equilibrium problem arises from the new
analysis of this paper. The essence of the approach is to consider separately the conditions
arising from the common tangent-plane conditions and the reaction tangent-plane criterion on
the one hand, and from the feasibility conditions on the other.

The global minimum for Problem P is characterized by the Kuhn-Tucker conditions and
the global optimality criterion of Theorem 3. The Kuhn-Tucker conditions can be separated
into the feasibility conditions

(90)
K

Z yA:r,: b cz*,
k--1

(91)

(92) xa X,

(93) y_>0 (l_<k_<K),

and the common tangent plane conditions (involving only x,..., x)
(94) f(x) *T __, , ATx + Vf(x) c
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We remark that, for the chemical equilibrium problem, it also holds that

(95) /3" c*Tc (kJ),

where J is the set {k y > 0}.
We say that {x; k J} is a CT setfor f relative to A if there exists c*,/3* such that

(94) holds. This means that the x are points of common tangency of a tangent hyperplane
to f. It follows directly from Corollary 1 that Y* (y,..., y*K,xT,... ,X*KT, Z)T is a
Kuhn-Tucker point for P if and only if it is feasible and {x k J} is a CT set for f relative
to A. The fact that the Kuhn-Tucker conditions can be separated in this way is a combined
consequence of the linearity of the objective function F in y,..., YK, and the bilinearity with
respect to Yl,. Y/ and Xl,. Xg of the constraints.

The conditions for a global minimum separate naturally into those involving the CT set
and the reaction tangent-plane criterion of Theorem 3 on the one hand, and the feasibility
conditions on the other. If a CT set satisfies Corollary 2, it is said to be a local CT set (LCT),
and if it also satisfies Theorem 3, it is said to be a supporting CT set (SCT). Thus, a CT set for

f relative to A yields a global minimum if and only if it is also an SCT set and it is feasible.
A key to the geometrical interpretation ofour results in the case ofthe chemical equilibrium

problem is (70) (which does not apply to the case of the phase equilibrium problem). Equation
(70) states that the intersection of the tangent supporting hyperplane to f with the plane f 0
is constrained to coincide with the intersection of the m hyperplanes

(96) Ax + c 0.

Varying the unknown Lagrange multiplier vector c in (70) is geometrically equivalent to
rotating the tangent hyperplane subject to this constraint.

In the following, we consider general examples ofboth phase and chemical equilibrium in
binary and ternary systems. The purpose is to show the interactions between the tangent plane
conditions and the feasibility conditions. For binary systems, we use an objective function f
given by

f(x) 100x + 120(1 x) + x In x + (1 x)ln(1 x)
(97) + x(1 -x)(-157- 183(2x- 1)- 2679(2x- 1)2 + 417(2x- 1)

/ 11207(2x- 1)4 + 341(2x- 1)5 117212(2x- 1)6,

where x is the mole fraction of one of the species. We refer to values of x as the composition
of the system. For ternary systems we use f given by

f(x,x2) 0.76x + 0.77x2 + 0.78(1 Xl x2)
(98) + x In X + X2 In X2 + (1 x x2) In(1 x x2)

-+- 10XlX2(1 Xl

wherex and x2 are the mole fractions oftwo ofthe species. These functional forms are typical
of those used in the chemical engineering literature, and are chosen solely for illustrative
purposes. We remind the reader that f is the molar Gibbs free energy with the argument
reduced by one dimension.

li.1. Phase equilibrium problems. In this case, A is the identity matrix, and the analysis
is relatively straightforward. The most interesting situations occur when CT sets contain more
than a single point.

For the binary system in Fig. l, the lines t t4 illustrate several possible common
tangent planes and their corresponding CT sets. For example, {x, x2} and {x3, x4} are SCT
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1201
001

80-

40-

.o-

o’. o4 o o

sets corresponding, respectively, to t and t2. Line t4 does not satisfy the criteria of Corollary
2 (is not an LCT set), and t3 is an LCT set but not an SCT set.

Although t and t2 both give rise to SCT sets, the feasibility conditions provide the
required additional criteria to determine which (if either) of them solves a given problem,
as well as values of the remaining solution variables. The feasibility conditions (90)-(93)

XT XT) to be a global(recall that c= 0 and z* l) indicate that for Y* (yt y,
minimum, b must be a convex combination of the k points of the SCT set, (x’T,..., xT).
In Fig. l, if b e (xl, x2) or b e (x3, x4), then there exists, respectively, a feasible (y, Y2) or

(y3, y4) that, together with the SCT set, forms the complete solution of the problem. For b in
either of the above two ranges, there are said to exist two phases in the system at equilibrium,
whose compositions are given by the appropriate SCT set. If b lies outside these ranges, there
exists only one phase at equilibrium, with composition x* b.

Different possibilities for a ternary system are illustrated in Fig. 2. For the particular b
shown in Fig. 2(a), the SCT set is {b}, corresponding to a one-phase solution. In Fig. 2(b),
the tangent plane shown touches the f surface at the two indicated lobes. As this tangent plane
rotates around the lobes, the line joining the intersection of the points of common tangency
moves within the triangular feasibility region S in the (x, x2) plane. The solution occurs
when the position of the tangent plane satisfies the feasibility requirement that b be a convex
combination of the points of the SCT set, as depicted in the figure.

Figure 2(c) shows a tangent plane that touches the f surface simultaneously at three
points. For any b lying in the interior of the indicated triangle, the corresponding SCT set
shown gives the compositions of the three phases in equilibrium, since any such b may be
expressed as a convex combination of the three vertices. The coefficients of this combination
yield the amounts {yl, Y2, Y3 } of the three phases.

Finally, in Fig. 2(d) we show a case in which the indicated plane that is tangent to the
two rear lobes in the figure also intersects the lobe at the front of the figure, yielding an LCT
set, but not an SCT set. This case is the analogue of line t3 in Fig. 1.

6.2. Chemical equilibrium problems. In a system at chemical equilibrium, the situation
is complicated by the fact that the tangent plane is constrained to be of the form given by (70).
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I’(x) I’.,)
(a) (b)

.xj%..a..-.’." x

f(x) fix)

--"0.6

F. 2. Phase equilibrium for the ternary system with molar Gibbs free energy, f(el, a:2), given by (98).
and c2 are the molefractions oftwo ofthe species.

Unlike the case for phase equilibrium problems, this causes CT sets containing only a single
point (single-phase cases) to be interesting, as well as those containing more than one point.

In the case of a binary system (n 1), we may have at most m 1. The general case is

(99) A’ (a,, a2)

giving

(100) A (al a2)

and

(101) c- ((-/’2).

The tangent lines to f are given by

(102) ".2)() 0[(0,1 --0,2)a7 + 0,2].

This is a family of lines with intercept a2/(a2 al), for any value of o. Figure 3 shows the
example a 1, a2 2, using the same objective function f as considered in Fig. for
phase equilibrium. For m (for any ’,8, the feasibility conditions (90)--(93) are satisfied
by any oc E . Hence, CT sets are obtained by rotating the line with the fixed intercept until it
becomes tangent to f. Four cases in which this can occur are shown in the figure. The three
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80"

fix) o-

40-

20-

Fro. 3. Chemical equilibriumfor a single-element binary system corresponding to that ofFig. 1, for theformula
matrix A (1,2)T

dashed tangent lines do not satisfy the reaction tangent-plane criterion (two yield an LCT set,
but none yields an SCT set), and the solid tangent line represents the solution of the problem
(i.e., yields an SCT set). The system has a single phase with composition given by the value
of x at the point of tangency. Note that, had this tangent line been simultaneously tangent to

f at two (or more) points, then the corresponding SCT set would represent the compositions
of the appropriate number of different phases at equilibrium.

For a single-element (m 1) ternary (n 2) system, we have

(103) A’ (al, a2, a3),
(104) A (al a2, a2 a3),

and

(105) c a3.

The tangent planes are given by

(106)

This is a family of planes that intersect the (271,272) plane in the fixed line g given by

(107) (al a3)xl -- (a2 a3)x2 q- a3 O.

Since m 1, the feasibility conditions are again satisfied by any x E . Figure 4 shows the
example A (1,2, 3). CT sets are obtained by rotating the plane about the line g until it
becomes tangent to the surface f. The figure depicts the SCT set determining the solution. In
general, the number of phases is given by the number of points in the SCT set (a one-phase
solution is depicted).

The final examples consider a two-element (m 2) ternary system, with formula matrix

(108) A-( aa21 a22a12 a23a13)"
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f(x)

FG. 4. Chemical equilibrium for a single-element ternary system corresponding to that of Fig. 2, for the
formula matrix A 1,2, 3)T.

f(x)

FIG. 5. Chemical equilibriumfor a two-element ternary system corresponding to that ofFig. 2, in a case when
there are two phases at equilibrium.

The tangent planes are given by

This is a family of planes that intersect the (xl, x2) plane at the common intersection point of
the two lines g and g2 given by

(all al3)Xl -F (a12 a13)x2 -t- a13 O,
( ), +( )+ 0.
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f(x)

/"o ;.,
ii 3.6 ...................

"- S"
............. x2

x1
L

FIG. 6. Chemical equilibriumfor a two-element ternary system corresponding to that ofFig. 2, in a case when
there is one phase at equilibrium.

For a two-element system, the feasibility conditions (90)-(93) imply that, in a single-phase
case, the SCT set must lie on the line L given by

(112)

[bl (a, a) b2(al, a,)]x, / [b, (a22 a2) b2(al a,)]x2 b2a bla2

in the (z, x) plane. In Fig. 5 we show an example of this case. CT sets are obtained by
rotating the plane until it becomes tangent to the surface f. In the case shown in the figure,
feasibility is obtained by rotating the indicated plane until the (singleton) SCT set lies on the
line L.

Finally, in Fig. 6, we show an example of the case when there are two points in the
SCT set. To satisfy the feasibility conditions, these points must lie on opposite sides of the
indicated dashed feasibility line L.

NAppendix. With reference to 2, let x,...,x and consider

(A1) G(y,,..., y, (x)T,..., (x)T) Z ykg(x)
k=l

subject to the constraints

(A2) Z -byaAx
k=l

(A3)
N

i=1

(A4) >0, (l<k<r).y >_ 0, x
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Let g(x) be continuous for x > 0 and have continuous second derivatives with respect to xi
for x _> 0, xi 7 0, 1,2,..., N, lim,o+ -oe (1 < _< N), and let

(A5)

be a local minimum for (A1) subject to (A2)- (A4). We wish to show that if Y,l > 0 for some
kl, then x*kl > 0. If it were possible to construct a feasible path that led to Z* for which

Ykl > 0 for some i, then the conditions on g would imply that an arbitrarily small movement
along this path (in the direction of xl,i increasing) would yield a decrease in the value of G.
Thus Z* could not be a local minimum. We must therefore establish the existence of such a
path, but generally this requires conditions on At, bt. In Lemma 4 we establish the existence
of a feasible path under a condition on the chemical composition of the system at the local
minimum. This condition is always satisfied for the phase equilibrium problem.

LEMMA 4. Let g, Z* be as above, and suppose that every substance in the chemical
system is present in the composition determined by Z*. Ify > O, then x > O, (1 < k < 7r).

Proof. Suppose there exists kl (1 < kl < 7r) such that Yl > 0 andx 0, where xli
is an element of xa. Then we can find a k2 (1 < k2 < 7r) such that Y2 > 0 and xa2 > 0.
Otherwise, substance is not present in the system determined by Z*, contrary to hypothesis.

Now let us construct a feasible path which approaches Z*. For t > 0 define

Yl t(A6) tz ..-Z- l,

(A7) y (1 + tl)y,,

(A9) Xkl l+tl

(A10) Xk’ 1 --1 t2 (x/e2,1,... Xk2,i_l Xk2,i t2, Xk2,i+l Xk2,N)T,

(All)

Clearly Z(0) Z*. We will verify that {Z(tl); tl e [0, e)} is a feasible path for e(> 0)
sufficiently small.

For tl > 0 sufficiently small, it follows from (A6)-(A10) that YI > 0, Y2 > 0, Xl >
0 x > 0. Now Z* is feasible, so that by (A3) we havek2

N

(A12) Zxi=l (l_<k_<Tr).
i=l

From (A9), (A10), and (A12) we can now deduce

(A13)
N

Xkl ,i
i=1

N

Xk2
i=1
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It follows from (A11) and (A13) that Z(tl) satisfies (A3).
It is easy to verify (from (A7)-(A10)) that

(A14) y, *A’ *A’A xk, / Yk2A Xk2 Yk, xk, / Yk2 k2"

Since Z* is feasible it follows from (A2) that

b’(A15)
kskl ,k2

YkA.T,k / Yk,A Xk, / Yk2A xk2.

The equation obtained by substituting (A14) into (A15) shows that Z(tl) satisfies condition
(A2), and hence that Z(tl) is feasible for sufficiently small tl > 0.

We now prove that, for t > 0 sufficiently small

(A16) G(z(t)) C(z*) < o.

This contradicts the local minimality of Z*, and establishes the lemma.
Z* and Z(tl) differ only in the elements Yk,, Yk2,Xkl ,Xk:. Consequently,

(A17) c(z(t,)) c(z*) Vlg(;,) + ,(1 VI(:’I) (1"
We write the right-hand side of (A17) as the sum of three terms

(A18) Yk,g(x,) Yk, g Xkl + i + tl
ei

(A19)

tl I(A20) Y;’g xkl + + tlei yk, g(xk,),

(where ei is the ith unit vector) and consider each in turn.
We regard yg(x) as a function of (y, z), and expand a Taylor series about

tl
{i

After considerable calculation, (A18) becomes

(A21)

( )tl
tlYklg Xk + i + tl

ei + Ykl OXj 1 + tl
jELl

/ O((tlykl)2) / 0
1 tl zk’’j

where L1 {j xl,j > 0}. Further calculation shows that this is

(A22) < ( + 1)y,cltl + o(t21),
where

max {jELI,t|E[O,e)

tl
g xkl+ l+tlei eiXkl’j Xkl / Xk’J / tl
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In an analogous way, one can show that (A19) is

(A23) (Tr + 1)y(32/ -[-O(),

where

09
Xk2j -xj (Xk2

L2 {j x;y > 0}.

Finally, (A20) can be written

(A24) Vl( tl )
9 Xkl+l+tl

+ tl tl

Thus, in (A17) as tl 0+, kl C1 c2, and y are bounded but, since

then

tl )g xk + + tl
t

l+t

is unbounded below. Thus for small enough tl, we have

G(Z(tl)) G(Z*) < 0

as required.

Note added in proof. Further elaboration and discussion of the geometric interpretation
results of this paper are contained in Y. Jiang, G. R. Chapman, and W. R. Smith, On the
Geometry of Chemical Reaction and Phase Equilibria, Fluid Phase Equilib., in press.
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THE MOLECULE PROBLEM: EXPLOITING STRUCTURE IN
GLOBAL OPTIMIZATION

BRUCE HENDRICKSONt

Abstract. The molecule problem is that of determining the relative locations of a set of objects
in Euclidean space relying only upon a sparse set of pairwise distance measurements. This NP-hard
problem has applications in the determination of molecular conformation. The molecule problem
can be naturally expressed as a continuous, global optimization problem, but it also has a rich
combinatorial structure. This paper investigates how that structure can be exploited to simplify
the optimization problem. In particular, we present a novel divide-and-conquer algorithm in which
a large global optimization problem is replaced by a sequence of smaller ones. Since the cost of
the optimization can grow exponentially with problem size, this approach holds the promise of a
substantial improvement in performance. Our algorithmic development relies upon some recently
published results in graph theory. We describe an implementation of this algorithm and report some
results of its performance on a sample molecule.

Key words, global optimization, graph rigidity, molecular conformation
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1. Introduction. Consider a set of objects in Euclidean three-space at unknown
locations. We wish to determine the relative locations of the objects, but the only
information available to us is some subset of their pairwise distances. How can we use
this information to compute their positions? We call this the molecule problem. It has
obvious applications in surveying and satellite ranging [19], [31], and a less obvious
but potentially more important application in determining molecular conformation.
It is possible to interpret the nuclear magnetic resonance spectra of a molecule to
obtain pairwise interatomic distance information [10], [33], [32]. Solving the molecule
problem in this context would determine the three-dimensional shape of the molecule,
which is critical for understanding its chemical and biological properties.

The data in an instance of the molecule problem can be succinctly represented by
a graph G (V, E). The vertices V correspond to the objects or atoms, and an edge
eij E E connects vertices and j if the distance between the corresponding objects is
known. We will denote the number of vertices and edges by n and m, respectively,
and the distance associated with edge eij by diy. A realization of a graph is a mapping
p that takes each vertex to a point in Euclidean space. (Some authors prefer the term
embedding, but a realization need not be an embedding in the strict topological sense.)

The molecule problem can be naturally phrased as a nonlinear global optimization
problem. Denoting the position of a vertex i as pi, we can construct a simple cost
function F(p) that penalizes a realization for unsatisfied constraints. One simple such
function is

(1) F(p) -(IPi Pjl 2 di2)2

where I" denotes the Euclidean norm. This function is everywhere infinitely differen-
tiable, and (assuming all the distances are correctly given) it has a global minimum
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of zero, attained when all the distance constraints are satisfied. In principle, F(p)
could be used with any global optimization technique to solve the molecule problem.
Unfortunately, this naive approach is unlikely to work well in practice, due to the
computational complexity of the problem. Saxe has shown that the molecule problem
is strongly NP-complete in one dimension, and strongly NP-hard in higher dimen-
sions [29], so it is unlikely that a general polynomial time algorithm exists. It can
also be shown that F(p) can have an exponential number of local minimizers, which
makes the global optimization problem daunting.

In this paper, we describe an approach to the molecule problem that attempts
to avoid having to solve a large global optimization by instead solving a sequence of
smaller optimizations. Since the cost of an optimization can grow exponentially with
the size of the problem, this approach holds the prospect of a substantial reduction in
computational effort. To achieve this reduction, we will need to exploit some complex
combinatorial structure inherent in the molecule problem, which will allow us to de-
vise a novel divide-and-conquer algorithm. Although an important computer science
paradigm, divide-and-conquer methods have not previously found many applications
in optimization. The purpose of this paper is twofold: on the one hand we present a
novel algorithm for a practically important optimization problem, and on the other
hand we provide a case study of how divide-and-conquer ideas can be applied to op-
timization. It is our hope that the underlying ideas will find application to a variety
of additional problems, a possibility we will reconsider in our conclusions.

A simple observation underlies our divide-and-conquer approach to the molecule
problem. Within a large problem there are often subproblems that can be solved
independently. If we can identify a subgraph that has many edges, it may be possible
to determine the relative positions of the vertices in the subgraph by only considering
the subgraph’s induced edge constraints. Once this subproblem is solved, the entire
subgraph can be treated as a rigid body. In three-space, a rigid body has six degrees
of freedom, but considered independently each vertex has three. So by treating a set
of vertices collectively the number of variables in the problem can be substantially
reduced, greatly simplifying the original problem. Using this approach, the initial
large optimization problem is replaced by a sequence of smaller ones.

If we are to treat a subgraph as a rigid body, we must be certain that the relative
positions of the vertices in the rigid body match their relative positions in the solution
to the full problem. This can only be guaranteed if the subgraph allows only a single,
unique realization (modulo translations, rotations, and reflections), a property we refer
to as unique realizability. In addition to characterizing uniquely realizable graphs, we
need to be able to find subgraphs that have this property within the larger graph that
represents the full problem.

This approach to the molecule problem has been implemented in a code named
ABBIE. Since it decomposes a large global optimization into a sequence of smaller,
more localized problems, the program is named in honor of Abbie Hoffman for his
admonition to "think globally, act locally," although it is doubtful he had nonlinear
optimization in mind! The structure of the ABBIE program is depicted in Fig. 1.

For the purposes of this paper we need to make two assumptions about the data,
which make for an idealized problem. The first assumption is that we know edge
distances with a high degree of accuracy. The second is that there is no special
relationship among the locations of the vertices that generated the data for the prob-
lem. More formally, a realization is said to be generic if the vertex coordinates are
algebraically independent over the rationals. We will assume the realization that gen-
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Find maximal uniquely realizable subgraphs
For Each such subgraph

If subgraph is small enough Then
Position graph with global optimization

Else Break into smaller pieces
For Each piece call ABBIE
Combine pieces with global optimization

Return (realized subgraphs)

FIG. 1. The structure of the ABBIE program.

erated our data was generic, but this is actually a much stronger condition than we
need. There is only a small set of algebraic dependencies that we need to avoid in the
uniqueness analysis. However, within the space of all realizations, the set of generic
realizations is dense, and the nongeneric realizations comprise a set of measure zero.
These assumptions are unrealistic for true data, which can be noisy and imprecise,
but they are necessary for the formal derivation of the algorithm. We believe these
constraints can be relaxed somewhat in practice, as we will discuss in the conclusions.

Most previous work on the molecule problem has been performed by chemists
interested in molecular conformation. Various heuristics have been developed that
rely in various ways upon knowledge about chemical structures. A survey of this
previous work is beyond the scope of this paper, but a good overview can be found
in Chapter 6 of Crippen and Havel [10]. A more detailed description of the current
work is provided in Hendrickson [14].

This paper is structured as follows. The characterization of uniquely realizable
graphs is the topic of the next section. This is followed in 3 by an algorithm to
identify uniquely realizable subgraphs, step 1 in Fig. 1. In 4 we describe ABBIE’s
technique for breaking a large, uniquely realizable graph into pieces (step 3 in Fig. 1).
To finally determine coordinates, steps 2 and 4, ABBIE uses a global optimization
procedure that is described in 5. Experimental results are presented in 6, followed
by discussion and conclusions in 7.

2,. Conditions for unique realizability. Does an instance of the molecule
problem have a unique solution? Saxe has shown this problem to be as difficult as
the original molecule problem: strongly NP-complete in one dimension, and strongly
NP-hard in higher dimensions [29]. However, these results depend upon very special
realizations in which the locations of the vertices are not algebraically independent.
Since we are assuming that our problem is generic, these cases can be excluded, and
the uniqueness question becomes much easier. Strong results can be derived that
depend only upon the underlying graph, independent of the edge lengths.

Two independent necessary conditions for unique realizability are established in
Hendrickson [15], along with algorithms for their detection, and we briefly summarize
these below. Unfortunately, in three and higher dimensions these conditions aren’t
sufficient. We present a sufficiency condition for unique realizability in 2.3 and an
algorithm for identifying it in 2.3.2.

The two independent necessary conditions derived in Hendrickson [15] for a graph
to be uniquely realizable in d dimensions are

1. vertex (d + 1)-connectivity and
2. redundant rigidity.
Of these, vertex connectivity is a well-studied graph property, and efficient al-
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gorithms for verifying (d + 1)-connectivity have been developed [1], [5], [16], [18].
Redundant rigidity is less familiar, but efficient algorithms are known [15] and re-
viewed below. For later reference we will review some simple rigidity theory in 2.1
and 2.2; a more complete discussion can be found in some of the references [2], [3],
[9], [28]. In 2.3 a previously unpublished sufficient condition for unique realizability
is derived and an algorithm to identify it is sketched.

2.1. Graph rigidity. We will call the combination of a graph G and a realization
p a framework, denoted by p(G). A realization is satisfying if all the pairwise distance
constraints are satisfied. Intuitively, a framework is flexible if the vertices can move
while keeping all the edge distance constraints obeyed. More formally, a finite flexing
of a framework p(G) is a family of realizations of G, parameterized by t so that the
location of each vertex is a differentiable function of t and

(2) Vej e E, Ip(t) pj(t)l 2 constant.

Note that a motion of the Euclidean space itself, a rotation or translation, satisfies the
definition of a finite flexing, and such flexings are said to be trivial. If the only finite
flexings allowed by a framework are trivial, then the framework is said to be rigid.
Otherwise it is flexible. In d-space there are d(d + 1)/2 independent trivial flexings.

A linearized version of flexibility is more convenient, so thinking of t as time and
differentiating (2) we find that

(3) Veij e E, (vi vy (pi pj O,

where vi is the instantaneous velocity of vertex i. An assignment of velocities that
satisfies (3) for a particular framework is an infinitesimal motion of that framework.
If a framework has a nontrivial infinitesimal motion it is infinitesimally flexible, and
if not it is infinitesimally rigid.

Clearly the existence of a finite flexing implies an infinitesimal motion, but the
converse is not always true. However, for generic realizations the converse is true [28],
and, since we are considering only generic realizations, we will drop the prefix and
refer to frameworks as either rigid or flexible. Whether a generic framework is rigid
or flexible is purely a property of the underlying graph as indicated by the following
theorem [13].

THEOREM 2.1 (Gluck). If a graph has a single infinitesimally rigid realization,
then all its generic realizations are infinitesimally rigid.

This theorem is crucial for a graph theoretic approach to the molecule problem.
Since the frameworks built from a graph are either all infinitesimally flexible or al-
most all rigid, graphs can be characterized according to the typical behavior of their
frameworks, without reference to a specific realization. This also allows us to be
somewhat cavalier in the distinction between rigid frameworks and graphs that have
rigid realizations. Henceforth such graphs will be referred to as rigid graphs.

In one dimension, rigidity is equivalent to connectivity. In two dimensions a
combinatorial characterization of rigidity was first discovered by Laman [20], and
several different O(n2) algorithms for rigidity testing have been developed [11], [15],

In three and higher dimensions, no combinatorial characterization of rigidity is
known. However, there is an efficient randomized algorithm based on Theorem 2.1 and
(3). Begin by randomly positioning all the vertices. With probability one, the rigidity
of the corresponding framework will be the same as that of the graph. Now construct
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the set of equations (3), where the velocities are the unknowns. The coefficients of the
velocities can be formed into a matrix of size m nd, known as the rigidity matrix,
denoted by M. Each row of M corresponds to the constraint imposed by a single
edge. The null space of this matrix represents the allowed infinitesimal motions of
the framework. Clearly the d(d + 1)/2 trivial infinitesinal motions are in the null
space. So if the rank of the rigidity matrix is nd- d(d + 1)/2, then the graph is rigid,
otherwise with probability one it is flexible.

2.2. Redundant rigidity. A graph is defined to be redundantly rigid if it is
rigid after the removal of any single edge. Redundant rigidity is a necessary condition
for a graph to be generically uniquely realizable [15]. We will define an edge of a rigid
graph to be redundant if the graph remains rigid after the removal of the edge.

In one dimension, redundant rigidity is equivalent to edge biconnectivity. In two
dimensions, an efficient algorithm built upon the combinatorial characterization of
rigidity is described in Hendrickson [15]. In higher dimensions, since no graph theo-
retic characterization of rigidity is known, no characterization of redundant rigidity
exists either. However, the randomized approach for rigidity testing described above
can be extended to check for redundant rigidity.

Since rows of the rigidity matrix, M, correspond to edges of the graph, a frame-
work is redundantly rigid if and only if MT has maximal rank after the removal of any
single column. A column of MT is said to be redundant if the rank of MT remains
the same after its removal. If MT has a set of nd- d(d - 1)/2 linearly independent,
redundant columns, then the framework is redundantly rigid.

Our algorithm for redundant rigidity builds upon a QR factorization of MT.
We maintain a list of linearly independent columns, and a new column is added to
the list if it is linearly independent of the current set, otherwise it is discarded. A
discarded column of MT can be expressed as a linear combination of some set of the
independent columns. The discarded column could replace any of the columns in the
linear combination which form it, without altering the span of the independent set.
Hence, a discarded column identifies a set of redundant columns within the list.

The columns within the list whose linear combination equals a discarded column
can be easily determined. Assume the algorithm has identified k independent columns
of MT, placed together to form an nd k matrix, Ak. The QR factorization has been
proceeding on these columns as they are identified, so there is a k k orthogonal
matrix Qk and an nd k upper triangular matrix Rk satisfying (kRk Ak. If a new
column b of MT is linearly dependent upon the columns of Ak then there must be a

Tvector c satisfying Akc (kRkc b or, alternately, Rkc (k b. In the course of the
QR factorization the column b has been overwritten with Q[b, so it is easy to solve
the upper triangular system for c. The nonzero elements of c identify which columns
of Ak contribute to the linear combination composing b, that is, which columns are
redundant.

This procedure requires the solution of O(m) triangular systems, each of which
requires O(k2) operations, where k is always O(nd), so the total additional time is of
the same order as the QR factorization itself, O(mn2d2).

2.3. A sufficient condition for unique realizability. In one dimension, the
necessary conditions for generic unique realizability discussed above reduce to edge
biconnectivity, which can also be shown to be sufficient. In two dimensions, we know
of no examples of graphs that satisfy the necessary conditions while not being unique,
but the sufficiency of these conditions has not been proven.
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In three and higher dimensions, Connelly has discovered a set of bipartite graphs
that satisfy the necessary conditions above, while still allowing multiple realiza-
tions [6], [8]. In three dimensions the only graph in this set is K5,5, the complete
bipartite graph with five vertices in each partition. This class of graphs was identified
by the unusual properties of their stress matrices, an exploration of which will lead
us to a sufficient condition for unique realizability.

2.3.1. The stress matrix. Consider a framework p(G) consisting of a graph G
and a generic satisfying realization p. A stress for p(G) is an assignment of scalars
wij wji to every pair of vertices of G in such a way that wj 0 if e E, and

n

(a) 0 vi,
j=l

where Pk is the location in ]Rd of vertex k. Note that these are vector equations since
each Pk has d coordinates, so each of the d dimensions must satisfy an identical set of
equations.

The concept of a stress comes originally from mechanical engineering, where the
edges would be considered to be cables or struts under tension or compression. The
framework will be in equilibrium exactly when the vector sum of all the stresses on
each vertex is zero, which is the condition expressed by (4).

Equation (4) defines a stress for a particular realization p. In general, this same
set of values wij will not be a stress for a different realization. However, there is a
very important exception to this general rule. Stresses are useful for our purposes
because of the following result due to Connelly [7].

THEOREM 2.2. Let p be a generic, satisfying realization of G in ]Rd in which the
affine span of the locations of the vertices is d-dimensional. If w is a stress for p(G),
then w is a stress for any satisfying realization of G.

This theorem allows us to greatly narrow down our search for alternate satisfying
realizations. Once we generate a stress for p we only need to consider realizations q
that satisfy the same stress equations.

Assume we have generated a stress for our initial satisfying realization p. We
wish to find a q that can replace p in (4). It will be convenient to rewrite the stress
equations. Let q denote coordinate r of the location of vertex i in realization q. For
each 1 _< i _< n and each 1 _< r _< d we have the following equation.

(5) wij q[ wiiq O.
j----1 j--1

This is just a set of n linear equations repeated for each of the d dimensions. Define
the symmetric, n x n stress matrix, , as follows.

’i,j ZO3ik
k

ifi#j,
ifi-j.

If we denote the n-vector consisting of coordinate r of each vertex by qr, then (5) can
be succinctly expressed as

(6) q" O,
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for each dimension r. Any satisfying realization must satisfy these equations, so our
search for alternate satisfying realizations is now reduced to an investigation of the
null space of .

Each row of the stress matrix sums to zero, so the vector of ones is in ’s null
space. The product pr is identically zero by the construction of the stress. This is
true for each of the d coordinates, so the nullity of the stress matrix is at least d -+- 1.
The linear combinations of these trivial null vectors are the affine linear maps of the
vertices in realization p. That is, any realization in which q, the coordinates of vertex
i, can be expressed as Ap + b will satisfy the same stress equations as p, where A
is any d d matrix and b any d-vector. If there is nothing else in the null space of

then the only possible alternate satisfying realizations are these affine linear maps,
which gives us the following theorem.

THEOREM 2.3. Let p be a generic, satisfying realization of G in ]pd in which the
ajCfine span of the locations of the vertices is d-dimensional. If w is a stress for p(G)
such that has nullity d -}- 1, then any satisfying realization of G must be an ajfine
linear map of p.

Connelly has shown that these troublesome affine linear maps cannot lead to
nonequivalent, satisfying realizations [7]. This gives us the following sufficient condi-
tion for a graph to have a unique realization.

THEOREM 2.4. Let p be a generic, satisfying realization of G in ]Rd in which the
affine span of the locations of the vertices is d-dimensional. If w is a stress for p(G)
such that has nullity d -}- 1, then there is no nonequivalent, satisfying realization of
G.

Determining whether the stress matrix has the proper nullity is what we will call
the stress test for unique realizability.

For a given realization, the stresses defined by (4) are solutions to a linear system
of equations. As such they can be expressed as polynomials in the coordinates of the
vertices. To determine whether or not the stress matrix has nullity 4, simply sum the
squares of all the (n- 4) (n- 4) subdeterminants of . This polynomial will be
zero if and only if the nullity of the stress matrix is greater than four. Thus we have
a polynomial in terms of the coordinates of the vertices that describes our sufficiency
condition. If this polynomial is nonzero for any generic realization, then it is nonzero
for all generic realizations.

THEOREM 2.5. The nullity of the stress matrix is a generic property; that is, it
has the same value for for all generic realizations.

COROLLARY 2.6. If any generic realization passes the stress test, then all generic
realizations will pass.

In other words, the stress test is generic. Our necessary conditions were generic as
well, which provides evidence that unique realizability may itself be a generic property.
Whether or not this is the case is an open problem. Corollary 2.6 justifies using a
random realization to generate the stresses. As we will see in the next section, a
particularly convenient realization to use is the one that was utilized to generate the
rigidity matrix for our redundant rigidity algorithm.

2.3.2. Forming the stress matrix. The sufficient condition for unique realiz-
ability expressed by Theorem 2.4 is not much use for us unless we can readily compute
stresses. Fortunately, this is not a problem. In fact, most of the work has already
been done in the QR factorization of the rigidity matrix M that was described in
2.2. Redundant edges of the graph were identified by linear dependence among the
columns of M. Element [e(i, j), di + r] of M is p -p if the edge numbered e(i,j)
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connects vertices and j, and zero otherwise. Consequently, if the multipliers in a
linear combination of columns of M summing to zero are denoted by (e(i,j) for edge
e(i,j), then for each 1 <_ <_ n and 1 <_ r <_ d

0 Z e(i,j)Me(i,J),di+r

p;).

Equating a(i,j) with wij in (4) we see that the multipliers in the linear combination
constitute a stress. Consequently, the solution vector to the triangular systems solved
in 2.2 identifies a stress.

In the course of a full redundant rigidity calculation many stresses may be found,
one for every discarded row. Each of these stresses generates its own stress matrix,
and any linear combination of stresses is also a stress. Since we are interested in
identifying a stress that maximizes the rank of , almost any linear combination of
the stresses generated in the QR factorization will suffice. In practice we use a sum
of all the stresses, scaled by random multipliers.

The determination of the rank of the stress matrix can be troublesome due to
numerical roundoff problems. The entries in the stress matrix are the result of a
previous factorization, so they may already have modest inaccuracies. For this reason
it is important to determine the rank of gt in as numerically stable a fashion as possible,
so we recommend a singular value decomposition.

3. Finding uniquely realizable subgraphs. The preceding section described
two necessary conditions and a sufficient condition for a graph to have a unique
realization. Step 1 of the algorithm sketched in Fig. 1 requires a further step, the
identification of subgraphs that are uniquely realizable. Ideally, we would like to find
subgraphs that satisfy the sufficiency condition, but it is not clear how the stress
test can be used directly for this purpose. However, the necessary conditions are well
suited for identifying subgraphs, which suggests using the necessary conditions to find
candidate subgraphs, and then confirming their uniqueness with the sufficiency test.
An outline of such an algorithm is presented in Fig. 2.

If Graph is K5,5 Then
Return (No_unique_subgraphs)

Else If not four-connected Then
Recurse on four-connected components

Else If not redundantly rigid Then
recurse on redundantly rigid components

Else Perform sufficiency test
If Pass Then

Return (Graph_unique)
Else Output interesting graph

FIG. 2. ABBIE’s algorithm for finding maximal uniqitely realizable subgraphs.

The only case that is not handled with this approach is a graph that passes the
necessary conditions and fails the sufficiency test. We have yet to discover such a
graph, although we would be very interested in finding one. In practice this approach
seems to work very well, at least on the test problems that will be described in 6.
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Incidentally, our failure to find any graphs that pass the necessary conditions while
failing the sufficiency test provides evidence that such graphs are uncommon, if they
exist at all.

The heart of the procedure described in Fig. 2 is finding (d / 1)-vertex connected
subgraphs and redundantly rigid subgraphs. The vertex connectivity problem is well
studied, and good algorithms for finding maximal subgraphs are known [1], [5], [16],
[18]. However, algorithms for finding redundantly rigid subgraphs have not been pre-
viously considered. In one dimension, this requires finding biconnected components,
for which there are O(m) algorithms [1]. In two dimensions, an O(n2) algorithm for
finding maximal redundantly rigid components is given by Hendrickson in [15]. In
three and higher dimensions, an algorithm needs to rely upon the QR factorization
of the transpose of the rigidity matrix. ABBIE’s algorithm, summarized in Fig. 3,
relies upon the observation that any edge that is not redundant in the original graph
will not be redundant in any subgraph. After removing these nonredundant edges,
the flexes that remain will not affect the redundantly rigid subgraphs. These sub-
graphs can be identified by noticing which subsets of vertices preserve their relative
locations under the remaining flexes, which requires the construction of a basis for
the remaining flexes.

A basis for the space of flexes can be generated by the QR factorization of the
columns of the transpose of the rigidity matrix that corresponds to an independent
set of redundant edges. It is helpful to exclude the trivial motions from the basis by
explicitly adding them as columns at the end of the factorization. This reduces the
size of the space of flexes and so speeds up the determination of subgraphs. If there
are k redundant, independent columns, then the final 3n- 6- k columns of Q form a
basis for the flexes. Sets of vertices whose relative positions remain unchanged under
these flexes are redundantly rigid subgraphs.

Identifying these sets of vertices requires the ability to determine whether the
distance between any two vertices and j changes under any of the allowed flexes.
For each flex this involves the calculation of the inner product (vi vj) (pi pj),
where v is the velocity vector of vertex i under the flex, and p is its location. If this
quantity is zero then the distance between i and j remains unchanged.

A pair of vertices whose distance doesn’t change under any of the allowed flexes
could just as well be connected by an edge, so we will consider such vertices to
be joined by an induced edge. Finding sets of relatively fixed vertices corresponds
to finding cliques in this graph of induced edges. A simple geometric observation
simplifies this task. Let $ be a set of at least three vertices whose relative positions
don’t vary. To determine whether a new vertex v should be added to $ it is sufficient
to check the change in the distance from v to any three vertices in . With three
neighbors at fixed locations the position of v cannot vary continuously.

ABBIE’s algorithm for identifying these cliques begins by looking for sets of three
vertices whose relative locations are fixed. This requires O(n3) time. Once such a
triangle is found, the unique clique containing it can be grown to maximal size by
checking all other vertices against these three in O(n) time. Although the resulting
O(n4) algorithm is asymptotically the most expensive portion of the decomposition,
for the problems discussed in 6, the cost of the entire component finding process is
less than 1% of the cost of the QR factorizations.

4. Breaking large graphs. A maximal uniquely realizable subgraph may be
large, and consequently prohibitively expensive to try to realize directly. As described
in Fig. 1, ABBIE breaks such a subgraph into pieces and recurses on the pieces, before
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Use QR factorization to identify independent set of redundant edges
Use QR factorization to construct basis for remaining flexes
For All independent three-cliques (x, y, z) in induced graph

For All other vertices v
If v has induced edges to x, y and z Then

add v to subgraph containing x, y and z.

FIG. 3. An algorithm for finding redundantly rigid subgraphs.

trying to fit them back together. Ideally, smaller uniquely realizable subgraphs would
be found directly, but we don’t know how to do this. Instead, as indicated by step 3
of Fig. 1, ABBIE breaks the graph by finding a small vertex separator and recurses
on the induced pieces.

In selecting a value for how large a subgraph must be before being broken, a
balance must be struck between two extremes. A small value results in a large number
of small optimization problems, and potentially difficult optimizations fitting many
small pieces together. On the other hand, a large value leads to a smaller number of
large optimizations. For the calculations described in 6 a cutoff of 15 vertices was
used. The value of this parameter seemed to have a very small impact on overall
computation time. The most expensive optimization problems were typically those
that occurred higher up in the chain of recursion, involving many more vertices.
Decisions about how to handle these relatively small components were not of critical
importance.

The fundamental unit of information in the molecule problem is an edge length,
so when a graph is broken into pieces, any edge that does not lie in a single compo-
nent is lost to the recursive positioning procedures. For this reason we would like a
decomposition technique that ensures that any two vertices joined by an edge end up
in the same component. We would also like the technique to divide the graph into
approximately equally sized pieces as this will speed the recursive decomposition. To
accomplish these goals, ABBIE was endowed with a procedure to find a small vertex
separator, and when the separator set is added to each component no edges are lost.

Forces between atoms are strongly repulsive at small distances, so each atom
effectively has an exclusion zone in which no other atoms are located. In addition,
distances can only be measured if two atoms aren’t too far apart. These geometric
constraints place the underlying graphs in the class of k-overlap graphs, which are
known to have vertex separators of size O(n2/3) [23]. For the problems described in
6, the separators found were uniformly small.

There are a number of different heuristics for finding small vertex separators,
and for no compelling reason, ABBIE uses an algorithm described by Liu [22]. This
algorithm uses a minimum degree ordering to generate an initial separator, which is
then improved by a bipartite matching technique.

5. The optimization routines in ABBIE. Any program to solve the molecule
problem must eventually assign coordinates to vertices. The combinatorial prepro-
cessing described above merely delays this eventuality so that the actual positioning
problems are smaller. The positioning problems that ABBIE needs to contend with
involve fitting together two types of objects so that a set of distance constraints are
satisfied: vertices, and subsets of vertices whose relative positions have already been
determined which we will call chunks. These chunks can be treated as rigid bodies
with at most six degrees of freedom in three-space.
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ABBIE solves these problems using a three-phase approach: variable reduction,
variable selection, and global optimization. In the first phase the program uses a
combinatorial analysis to try to merge chunks and vertices together. For instance,
if a vertex has four edges connecting it to a chunk then the vertex will generally
have a unique location relative to the chunk, so the vertex can be merged into the
chunk. This phase reduces the size of the resulting optimization problems and will be
described in greater detail in 5.1.

After exhausting its bag of combinatorial tricks ABBIE resorts to a nonlinear,
global optimization. All the possible locations and orientations of the vertices and
chunks are expressed by a set of translational and rotational variables. Several dif-
ferent sets of variables are possible and ABBIE attempts to select a set that will
minimize the cost of the optimization. This selection process is described in 5.2.
ABBIE constructs a cost function that penalizes a realization for not satisfying an
edge length constraint, so that the sum of the penalties will be zero only when all the
constraints are satisfied. To find a realization where this function goes to zero, ABBIE
generates random values for all the variables and uses them as a starting vector for
a local minimization. This process is repeated until a zero value is found, indicating
that all the constraints are satisfied, and that the locations of the vertices constitute
a satisfying realization. Details of this nonlinear optimization will be given in 5.3.

Much more sophisticated techniques to solve this global optimization are possible.
In fact, most previous approaches to the molecule problem have focused exclusively
on this aspect, as discussed in Chapter 6 of Crippen and Havel [10]. Our goal in this
work was to test the feasibility of the divide-and-conquer approach to the molecule
problem, and it is our expectation that the overall approach will be successful, even
though the component optimization techniques are quite simplistic. Better global
optimization methods like tunneling [21] or efficient stochastic algorithms [27] could
transparently replace the routines described in 5.3.

5.1. Combinatorial positioning techniques. To reduce the number of vari-
ables in the global optimization, ABBIE first tries to combine small numbers of chunks
and vertices into larger chunks. ABBIE has five different heuristics for enlarging
chunks, which are synopsized in Fig. 4. The success of these techniques depends upon
specific sets of vertices not being coplanar, which is ensured by the assumption that
the final solution is generic. In the first technique, if two chunks have at least four
vertices in common then they can only be combined in one way, and ABBIE merges
them. Second, if a vertex has four edges incident to a chunk then the vertex can be
uniquely positioned relative to the chunk, and the chunk enlarged. ABBIE can use
direct edge lengths that were given in the data, or induced lengths generated by a
chunk that contains the two vertices.

The remaining three heuristics start with a base chunk and add pairs of objects
to it. Consider a vertex with three direct or induced edges to the base chunk. We will
call such a vertex three-valent to the base chunk. The location of the vertex relative
to the chunk has only two possibilities, distinguished by a reflection of the vertex
through the plane of its neighbors. If this ambiguity can be resolved then the vertex
can be added to the chunk. A similar result applies to a chunk that shares three
vertices with the base chunk. Such a chunk will also be called three-valent to the base
chunk. The last three heuristics for enlarging chunks make use of this observation.
The third technique allows two three-valent vertices to be added to a chunk if there is
a direct or induced edge between the two vertices. The length of this edge is used to
resolve the ambiguity of the reflections of the vertices. Note that this technique does
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not work if the two vertices have the same three neighbors in the base chunk.
The fourth heuristic adds two three-valent chunks to the base chunk. There are

several ways in which the reflection ambiguity can be resolved. The two chunks can
share a vertex that is not in the base chunk, or there can be a direct or induced edge
between vertices in the two chunks that does not involve a vertex in the base chunk.
Again, if the two sets of three shared vertices are the same then the ambiguity cannot
be resolved.

The last technique involves adding a three-vMent chunk and a three-valent vertex
to the base chunk by resolving the reflections with a direct or induced edge between
the vertex and the chunk. Again, if the three adjacent or shared vertices are the same
then the ambiguity cannot be resolved.

Until No Change
For All Chunks X

For All chunks Y, 4-valent to X
Merge X and Y

For All vertices v, 4-valent to X
Merge v into X

For All pairs of vertices v and w, 3-vMent to X
If valencies differ And reflections can be disambiguated Then

Merge v and w into X

For All pairs of chunks Y and Z, 3-valent to X
If valencies differ And reflections can be disambiguated Then

Merge X, Y and Z

For All chunks Y and vertices v, 3-valent to X
If valencies differ And reflections can be disambiguated Then

Merge X, Y and v

FIG. 4. ABBIE’s combinatorial positioning heuristics.

ABBIE applies these techniques to all combinations of chunks and vertices until
no more merging is possible. The vast majority of positioning problems encountered
in the test problems were resolved this way, without any need for the nonlinear op-
timizer. Additionally, more complicated heuristics are possible, and would probably
be worth implementing. As the numerical results in 6 will show, the nonlinear opti-
mizations dominate the execution time of ABBIE. Hence, it is our expectation that
the additional cost of more complex techniques would be more than compensated for
by the reduction in size and, consequently, cost of the optimization problems.

5.2. Selecting optimization variables. The optimization problems ABBIE
must solve involve sets of chunks and vertices. Vertices have three translational de-
grees of freedom, and the location and orientation of a chunk can be described by
three translational and three rotational variables. To describe rotations of chunks,
ABBIE defines an axis of rotation using a standard (0, ) system, and an amount
of rotation. This representation has fewer singularities than the more familiar Euler
angles.
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There are many possible ways to parameterize the motions of the vertices and
chunks. For instance, any of the chunks can be held fixed while the others are al-
lowed to move. The selection of optimization variables in ABBIE was designed to
minimize the computational effort required by the global optimization. ABBIE solves
the global optimization problem by a sequence of local minimizations, so there are
two factors which determine the total cost of the global optimization: the cost of
each local minimization and the number of local minimizations required to find the
global optimum. We need to analyze these two quantities before we can explain the
procedure for selecting optimization variables.

To find a local minimizer from a random starting point, ABBIE uses a trust region
approach, repeatedly forming and factoring the Hessian matrix. This factorization
tends to dominate the cost of each iteration, requiring (q3) floating point operations,
where q is the number of variables. It is difficult to estimate the number of iterations
each local minimization will require, as this depends in a complicated way on the local
topography of the penalty function, so ABBIE assumes that the cost of each local
minimization is simply proportional to the cube of the number of variables.

The number of local minimizations required to find the global optimum depends
on the size of the region of attraction of the global minimizer relative to the size of
the entire domain. Assuming this region of attraction is of average size, the number
of local minimizations will be proportional to the number of local minimizers in the
problem. Since this number can grow exponentially with the number of vertices, the
number of local minimizers can be approximated as 2q/, where is an empirical
parameter. After some experimentation, ABBIE was given a value of 8 for 3 for the
test problems described in 6, but an appropriate value for this parameter depends
on the class of problems under consideration.

There is one additional factor to consider in estimating the cost of an optimiza-
tion. Note that edge lengths remain unchanged if a chunk is replaced by its mirror
image, but there is no continuous rigid body motion to transform between these two
realizations. ABBIE cannot know in advance which of these two parities is the correct
one, so it has to try them both. Since only one will fit properly with the remainder
of the graph, if a particular chunk is assigned an arbitrary parity then all the others
must be made consistent. Since parities are selected randomly as a local optimization
is started, this adds an additional factor of 2k-1 to the number of local minimization
attempts, where k is the number of chunks in the optimization problem. In prac-
tice, there may be additional information available to the chemist that can determine
the proper parities. If so, exploiting this knowledge should greatly improve perfor-
mance, but the current incarnation of ABBIE assumes that only pairwise distances
are available.

Combining these three factors, we can approximate the total cost of a global
optimization as O(q32k-12q/Z). ABBIE tries to select a set of optimization variables
that minimizes this estimated cost function.

In performing a local optimization, one base chunk is held fixed at the origin
to remove translational and rotational ambiguities. (If no chunks can be found, a
single edge is used, and an additional vertex is constrained to lie in the x-y plane.)
ABBIE tries all of the chunks in turn as candidate base chunks, and selects the one
that minimizes the estimated cost of the optimization. If a second chunk shares three
vertices with the base chunk then it has no continuous degrees of freedom. If a chunk
shares two vertices with the base chunk its motions can be described with a single
rotational variable. If a chunk has a single vertex in common with the base chunk
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then it has three degrees of freedom, and if it shares none it has six. All chunks add
a factor of two to the parity consideration.

In evaluating the candidate base chunks ABBIE adds the remaining chunks in a
greedy manner, trying to minimize the estimated optimization cost. This process is
sketched in Fig. 5. At each step ABBIE selects the remaining chunk with the largest
number of vertices that are not yet contained in an accepted chunk. This chunk
is accepted and the variables describing its motion included in the optimization, or
rejected and ignored, depending upon which action reduces the estimated optimization
cost. If the chunk is accepted it increases the number of chunks by one, and it can
increase the number of variables in the optimization. If it is rejected, its vertices that
are not yet in an accepted chunk are assumed to wander freely, each adding three
to the number of variables. ABBIE processes all of the remaining chunks in this
way, determining the cost of selecting this base chunk, as well as generating a set
of variables for the optimization. ABBIE selects the base chunk that generates the
lowest estimated optimization cost, and the corresponding variables are used in the
global optimization.

Best_Cost :- (x

For All vertices v, free(v):= TRUE
For All Candidate base chunks X

k:=l
q:=0
For All vertices v in X, free(v) := FALSE
While any chunks remain

Select next chunk Y having maximal free vertices
t := Number of free vertices in Y
If Y 3-valent to X Then r := 0
Else If Y 2-valent to X Then r := 1
Else If Y l-valent to X Then r := 3
Else If Y 0-valent to X Then r := 6
Accept_Cost := (q + r)32k2(q+r)/z
Reject_Cost (q + 3t)32k-12(q+3t)/Z
If (Accept_Cost < Reject_Cost) Then

q:=q+r
k:=k+l
For All vertices v in Y, free(v) := FALSE

Else discard Y
End While
t := Number of remaining free vertices
q:=q+3t

Cost := q32k-12q/
If (Cost < Best_Cost) Then

Best_Cost :- Cost
Best_Base_Chunk := X
Optimization_Variables := those identified above

FIG. 5. ABBIE’s process for selecting optimization variables.
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5.3. ABBIEs global optimization technique. To finally position the set of
chunks and vertices ABBIE finds the global minimizer of a function that penalizes a
realization for violating constraints. Many different penalty functions are possible and
ABBIE uses a particularly simple one. For each edge eij that needs to be satisfied the
program computes a value P (Ip-pjl2-d)2, where p is the location of vertex i,
and dij is the desired distance between vertices i and j. This is the simplest possible
function that has continuous derivatives of all orders and is greater than zero whenever
a constraint is violated. The full penalty function for edges is then F1 Pi., where
the sum is taken over all edges in the graph which aren’t contained in any chunks.

Positioning problems in ABBIE can involve multiple chunks, other than the base
chunk, that share one or more vertices. These vertices must be forced to coincide in
a satisfying realization, so ABBIE needs a penalty term to enforce this constraint.
The obvious candidate would have the same functional form as that for edges but
with a zero distance. Unfortunately, this function has a singular Hessian. For this
reason the program uses a simpler penalty P IP -Pjl 2. Summing all of these
types of constraints together gives F2, a second component to the cost function. The
full penalty function is then F F1 + F2. We note that the full penalty function is
composed of both quartic and quadratic functions. For large deviations from satisfi-
ability the quartic terms should dominate the quadratic ones, while near the solution
the opposite should occur. In practice this seemed to cause no problems.

To find a zero of this penalty function ABBIE generates a random starting value
for each of the optimization variables, including random parities for each chunk. The
program then performs a local minimization, and this process is repeated until a
functional value of zero (or almost zero) is found or until a limit on the number
of trials is exceeded. This is an extremely simple global optimizer and much more
sophisticated techniques could easily be used instead.

For local optimization ABBIE uses a modified version of the NTRUST code of
Mor and Sorensen that is based upon the trust region method described in Mor
and Sorensen [24]. This approach was selected for ABBIE because trust region tech-
niques tend to be robust, and our function and its derivatives are fairly inexpensive
to evaluate explicitly. NTRUST treats the Hessian as dense, which can be inefficient,
but this is not a serious problem for ABBIE since the divide-and-conquer approach
avoids large problems. The ability to scale variables was added to NTRUST to cope
with the different ranges associated with translational and rotational variables.

6. Results. ABBIE has been tested on simulated molecular data provided by
Palmer [25], [26]. The input data consisted of simulated distance constraints, corre-
sponding to measurements that could be made in a typical NMR experiment. How-
ever, in our case the distances were given precisely, whereas true experimental data
has limited precision. The molecule that generated our test problems was bovine
pancreatic ribonuclease A, a typical small protein consisting of 124 amino acids and,
after discarding end chains, 1849 atoms. The three-dimensional conformation of ri-
bonuclease is known, so all pairwise distances could be determined. For our purposes,
the data set consisted of all distances between pairs of atoms in the same amino acid,
along with 1167 additional distances corresponding to pairs of hydrogen atoms that
were within 3.5/ of each other. The former set of values can be deduced from the
chemical structure, and the latter could in principle be measured by two-dimensional
NMR spectroscopy experiments. Combined, this made for a total of 15,046 edges.

Proteins are constructed of chains of amino acids. Since the shapes of the amino
acids are well known, the conformation of the protein is determined by the angular
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parameters where the amino acids are joined. In fact, one common approach to
the analysis of protein conformation is to treat these angles as the only degrees of
freedom [12]. Under this assumption, if the locations of any four noncoplanar atoms
in an amino acid can be determined, the locations of the remaining atoms in that
amino acid can be easily computed. This allowed us to reduce the size of the graphs
that were passed to ABBIE. Within each amino acid, we discarded vertices that had
no edges to vertices outside of that amino acid, until there were only four vertices left.
In addition, any amino acid that had six or fewer edges to other amino acids could
not be uniquely positioned. These amino acids were removed, further reducing the
size of the graph.

A single problem would give only limited insight into the strengths and weakness
of ABBIE, so we generated a set of related test problems of varying sizes by extracting
leading subchains of amino acids from the ribonuclease. The six different problem sizes
used are presented in Table 1. The second column presents the number of vertices
and edges in the initial, unadulterated graphs. These graphs were reduced in size by
exploiting protein structure as discussed above, resulting in the graph sizes described
in the third column. These are the graphs that were passed to the unique realizability
algorithms. The final column presents the size of the largest uniquely realizable
subgraph that was found within each of the reduced graphs.

TABLE 1
Sizes of the test problems; vertices (edges).

Amino Initial
acids graph
20 292 (2263)
40 604 (4902)
60 902 (7264)
80 1193 (9556)
100 1491 (12038)
124 1849 (15046)

Reduced
graph

63 (236)
S (SS)
310 (1392)
a05 (SOa)
504 (2e7)
698 (3292)

Largest unique
subgraph
57 (es)
174 (786)
287 (1319)
377 (1719)
472 (2169)
695 (3283)

It is worth noting that the edge density for the full molecule is greater than that
for any of the leading subchains. This is a consequence of the tendency of proteins
to form compact structures. Leading subchains need not be as compact, and so the
number of pairs of atoms that are close together is reduced.

For the runs described below, subgraphs were considered too big to directly realize
if they contained more than 15 vertices. All larger subgraphs were divided into pieces
using the small vertex separator heuristic from 4. Also, the stress test to verify unique
realizability was turned off. Besides the intrinsic reduction in effort, this allowed for
some economy in the redundant rigidity calculation [14]. If a subgraph passed the
necessary tests, but wasn’t truly uniquely realizable, disabling the stress test could
lead to incorrect coordinates being computed for the subgraph. However, this would
be detected when the subgraph would be used in later optimizations since it would
be unable to fit properly with the remainder of the full graph.

6.1. Performance of the unique realizability algorithms. ABBIE’s algo-
rithm for finding uniquely realizable subgraphs consists of alternate phases of a four-
connected components routine and a redundant rigidity code. The redundant rigidity
algorithm requires a QR factorization as described in 2.2. The four-connectivity
algorithm in ABBIE removes two vertices at a time and checks for biconnectivity,
requiring O(mn2) time. Although there are asymptotically more efficient algorithms
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for this step [16], [18], the QR factorization requires O(n3) time, so a more complex
algorithm for four-connectivity was deemed unnecessary. The total time spent in these
portions of the code as a function of the reduced graph sizes is presented in Table 2
for the six different problems. These times are all a small fraction of the optimization
time. These and all subsequent timings are for CPU time on a Sparcstation 1+. As
expected, both the four-connectivity and the redundant rigidity times grow roughly
as the cube of the number of vertices.

TABLE 2
Total minutes spent in unique realizability routines.

Amino Redundant
acids rigidity
20 0.16
40 4.22
60 18.82
80 45.96
100 84.47
124 333.09

Four-
connectivity

0.
5.36
48.78
57.84
115.04
323.98

Whereas the four-connectivity routines are entirely deterministic, there is a degree
of randomness involved in the redundant rigidity calculations. The values in the
rigidity matrix come from a random realization of the graph. For some realizations
this can lead to numerical problems in the QR factorization. This was observed in
practice for the largest problem, involving the factorization of a 10853283 matrix.
In particular, the factorization had a difficult time determining when a value should
be considered to be zero. After several attempts with different random number seeds
a realization was generated with excellent numerical properties. For this factorization
there was a gap of nearly five orders of magnitude between the smallest value that was
accepted as nonzero, and the largest that was rejected. Additional runs demonstrated
that as long as there was a reasonable gap between these values the redundant rigidity
calculations were essentially deterministic.

6.2. The vertex separator heuristic. The algorithm for identifying small sep-
arators ran rapidly and produced good separators. For the largest problem the total
time spent in the separator routines was only 1.55 minutes, a minuscule fraction of the
total running time. A plot of the size of the separator set versus the size of the graph
is shown in Fig. 6 for all the invocations of the algorithm in the set of test problems.
Except for the smallest graphs, the vast majority of separators have between 5-10%
of the total number of vertices. Note that no separator smaller than four could ever
be found, for it would imply that the graph was not four-connected, and hence not
uniquely realizable.

The idea of using a small separator heuristic was based on our hope that it would
typically divide the graph into two halves, each of which had a good chance of being
uniquely realizable. The technique succeeded in dividing the graphs into two pieces of
approximately equal size, but unfortunately they were not always uniquely realizable.
Often each half would contain a large uniquely realizable subgraph along with a few
smaller unique subgraphs and maybe some isolated vertices. These various pieces
must eventually be combined with an invocation of the global optimizer, and the cost
of an optimization depends critically on the number of subgraphs and isolated vertices
being combined. When this number is large the optimization problems are difficult.
As the results in the next section indicate, the total cost of each of the problems was
dominated by the cost of a few large optimization problems generated in this way. In



852 B. HENDRICKSON

6O

5O

4O

3O

2O

l0

0 100 200 300 400 500 600 700 800
Graph Vertices

FIG. 6. Separator size as a function of graph size.

this sense the vertex separator approach was a disappointment. It would be preferable
to have an alternate technique for dividing large problems into smaller ones that is
more successful at generating a small number of uniquely realizable subproblems.

6.3. The optimization routines. As expected, the global optimization rou-
tines dominated ABBIE’s running time. This is partially a consequence of the NP-
hardness of the molecule problem, but it is also a reflection of the simplicity of the
optimization routines encoded in ABBIE. A sophisticated optimizer should be able to
reduce the running time substantially, so the times presented below should be taken
as only a rough measure of the relative complexity of the optimization problems.

To determine the coordinates of the vertices ABBIE first employs a combinatoric
approach to combine chunks and vertices as described in 5.1. Most of the optimiza-
tion problems encountered in the set of test problems were completely solved this way.
For all our problems the combinatorial operations were extremely efficient relative to
the optimizations. For the largest problem all the combinatorial phases consumed a
total of less than 50 CPU seconds, while the optimizations required many days.

The optimizer in ABBIE searches for a global minimizer by repeated local mini-
mizations from random starting points. To mitigate concerns of particularly lucky or
unlucky sequences of starting points, each of the six problems was run three times.
The cost of the decomposition routines remained virtually unchanged, but the opti-
mization time varied by as much as two orders of magnitude, as indicated by Table 3.

As discussed in 5, the cost of an optimization problem should grow as 2k-l,
where k is the number of chunks being combined. However, for our test problems we
already knew the correct answer, and hence the appropriate parity for each chunk.
We exploited this knowledge to reduce the actual computational effort by ensuring
that all the parities for each optimization were correct. The resulting running time
was then multiplied by 2k-1 to approximate a more realistic, unbiased run. The
results in Table 3 were generated this way. Additional information may be available
to the chemist that would resolve parities more directly. For instance, amino acids are
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TABLE 3
Total minutes spent in global optimizer.

Amino acids Trial 1
20 1.9 10
40 4.5 104
60 6.6 106
80 8.8 105
100 1.3 105
124 2.5 105

Trial 2
9.0 102

7.5 105

2.2 106

3.6 105

3.9 10a

1.1 105

Trial 3
4.3 102

1.2 106

4.7 106

3.5 103

2.8 105

1.8 x 105

Average
1.1 x i0
6.6 x 105

4.5 x 106

4.1 x 105

1.5 x 105

1.8 x 105

generally found in only one of their two possible mirror images. This kind of insight
could be used to greatly improve the performance of the optimizer.

The total optimization time presented in Table 3 shows an unexpected dependence
on the size of the graph being realized. Except for the smallest problem, the two largest
problems are the least expensive ones. This result is especially surprising since we
expect larger problems to have to perform more optimizations. This expectation is
borne out by the results presented in the second column of Table 4. Clearly, the
optimization problems for the 40 and 60 amino acid problems are more difficult than
those for the larger problems. We believe this is a consequence of using leading
subchains of the protein to generate the intermediate test problems. As remarked
above, unlike a full protein, a leading subchain will not generally form a compact
structure. With a less dense conformation, there is less geometric data to work with.

Another way to consider the problem complexity is to look at the number of
difficult optimization problems. We will consider an optimization problem to be large
if it involves at least 25 variables. (Recall that if the vertices are treated individually
each of them contributes three variables.) Not surprisingly, the number of large
optimization problems increases with problem size, as indicated by the last column
of Table 4.

TABLE 4
Number of optimizations.

Amino Total
acids optimizations
20 2
40 7
60 15
80 21
100 22
124 32

Large
optimizations

For each of the test problems, the total optimization time is dominated by this
subset of large problems; they always consume more than 99% of the total optimiza-
tion time. A breakdown of these large problems is given in Table 5, in which the
number of trials necessary to find the global optimum for the three trials is shown as
a function of the number of variables and number of chunks in the optimization prob-
lem. The trials always had the parities of the chunks correct, so for a more correct
measure of the difficulty of the problems the number of attempts should be multiplied
by 2k-1. With this dependence on parities removed, the number of trials should de-
pend solely on the topography of the penalty function. Generally, we would expect
the penalty function to become more complex as the number of variables increases,
but the experimental data reveals a much more complicated situation. For example,
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the problems encountered in the test problem with 100 amino acids show exactly the
opposite behavior. The optimization with 30 variables is much more difficult than
those with 39.

TABLE 5
Breakdown of large optimization problems.

Amino Number of
acids variables (chunks)
20 34 (7)
a0 4 (s)
60 54 (7)
80 25 (5)
80 42 (7)
00 3 (s)
100 30 (5)
00 3 ()
124 33 (7)
124 39 (8)
e4 ()
124 28 (5)
124 39 (6)
124 31 (5)
124 39 (10)

Number of starting attempts
Trial 1 Trial 2 Trial 3
241 101 55
1425 17451 25443
183092 61871 129258
40 387 124
77470 25085 209
6 6 14
57013 17088 101326
1391 147 924
5395 417 2226
30 1960 575
2745 2213 447
632 364 502
22917 518 12261
5 1 2
238 829 498

Average
132
14773
124740
184
34255
9
58476
821
2679
855
1802
499
11899
3
522

The values in Table 5 reveal why the test problems with 40 and 60 amino acids
were so difficult. The optimization problems encountered were the largest of any
in the test set. This led to a large number of trials, each of which involved large
Hessians. In addition, these problems involved many chunks, which further increased
the running time. However, the examples in the table indicate that size alone is a
poor predictor of computational difficulty.

Without exception, the large, expensive problems all occurred while trying to
combine a large number of chunks and vertices that were created by the small ver-
rex separator. An alternate technique that decomposed a large graph into a small
number of uniquely realizable subgraphs would reduce the incidence of such difficult
optimizations with a corresponding dramatic improvement in run time.

Having said this, it is still true that the cost of an optimization problem tends to
increase sharply as the problem size grows. This justifies the divide-and-conquer idea
underlying ABBIE.

7. Conclusions and future work. The divide-and-conquer approach to the
molecule problem exemplified by ABBIE shows promise at solving large, practically
interesting instances of an NP-hard problem. This technique should work on a large
class of instances of the molecule problem. Instances with many extra edges should
decompose easily into manageable pieces, while those with very few edges will quickly
be broken into uniquely realizable subgraphs. It is in the intermediate region where
the decomposition approach may fail, when there are just enough edges for a unique
solution but not enough for subgraphs to be unique.

Our recursive decomposition has several distinct advantages over other approaches
to the molecule problem. First, if there is not enough information to uniquely solve the
problem (the typical situation in chemical applications) ABBIE will identify and solve
unique subproblems. The remaining degrees of freedom in the problem describe the
range of solutions that are compatible with the data, and investigating this solution
space is now reduced to a much smaller problem. Chemists are often interested in
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this information for its own sake. The range of solutions may be related to the actual
flexibility of the molecule, in which case the motions identified by ABBIE may have
important physical significance.

Second, for many applications it is only a small portion of the molecule that is of
interest, like a binding site. Even if there is not enough data to uniquely position the
full molecule, ABBIE may be able to solve for the subproblem of interest. ABBIE
will automatically identify the portions of the molecule that can be solved uniquely.

Third, the graph algorithms in ABBIE determine whether or not there is sufficient
data to solve an instance of the problem. This knowledge can be used to direct further
experiments. In this way, poorly posed problems can be readily identified and avoided.

Fourth is the problem of inconsistent data. In any physical experiment there can
be some measurements that are in error. This is a difficult problem for all of the
approaches to the molecule problem, and they typically find a solution that nearly,
but not exactly, satisfies all the constraints. If there are a few bad values that are
causing the confusion, identifying them would be extremely useful as they could then
be discarded. The only previous techniques for identifying bad data .involved repeated
attempts to solve the full problem, each time discarding a few edges. If one of the
runs produced an acceptable answer then a discarded edge must have been causing
the confusion. Our recursive decomposition has the potential to simplify this task.
Inconsistent data would be indicated by the inability to solve a particular subproblem,
narrowing the location of the erroneous data to the values in this subproblem.

In addition to inconsistent data, we would like to be able to deal with the real-
istic problem in which distances are not known exactly. Much of the theory about
unique realizations will no longer apply in the presence of measurement uncertainty.
We believe that the underlying ideas will still be applicable in this case, but in a more
heuristic way. For instance, a graph that violates the necessary conditions for unique-
ness will still have multiple realizations in the presence of data uncertainty, which can
still permit the decomposition into smaller subproblems. However, uniqueness is now
harder (and probably impossible) to guarantee. But as long as the range of satisfying
conformations of a subgraph remains relatively small, the decomposition approach is
still appropriate. Instead of treating a solution to a subproblem as a rigid body, sim-
ply use it as a starting conformation for the subset of vertices, allowing their relative
locations to change as the optimization proceeds. If the solution from the subprob-
lem is near to the correct solution, then this should provide a good starting point
for the succeeding optimization. This should significantly reduce the optimization
effort. By treating the solution of subproblems as intelligent starting points for later
optimizations, the overall difficulty of the problem should be reduced.

The algorithms in ABBIE could be improved in a number of ways. One of the
asymptotically faster four-connectivity algorithms could be used, and sparse matrix
algorithms could be used in the redundant rigidity calculations. Much greater savings
could be realized by improving the optimization phase, by far the most time con-
suming portion of the code. The number of optimization variables could be reduced
using more sophisticated combinatorial heuristics than those described in 5.1. A
more sophisticated global optimization routine could be employed, like the stochastic
technique of Rinnooy Kan and Timmer [27]. Stochastic techniques also have the ad-
vantage of being easy to parallelize [4]. Additional possible approaches to the global
optimization problem would be the tunneling algorithm of Levy and Montalvo [21],
or a simulated annealing approach [30]. In addition, there are various optimization
tools that could improve the performance of the local optimizations. A quasi-Newton
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approach could be used so that instead of refactoring the Hessian matrix at each step,
the factorization would be approximated and updated in linear time. Also, sparsity
within the Hessians could be exploited.

An alternate way to substantially reduce the cost of the optimizations would be
to reconsider the way in which uniquely realizable subgraphs are decomposed into
smaller problems. As mentioned in 6, the cost of the optimizations was dominated
by problems involving many subgraphs. These problems were induced by the prolif-
eration of smaller subgraphs generated by ABBIE’s vertex separator algorithm. An
alternate method that identified small uniquely realizable subgraphs more directly
could have a dramatic impact on runtime.

More generally, we believe the basic ideas described in this paper have applica-
bility beyond the molecule problem. Divide-and-conquer techniques have not been
commonly used in optimization, primarily because it is difficult to figure out how
they can be applied. There are three aspects to the molecule problem that make a
recursive decomposition possible. First, the penalty function describing an instance
of the problem expresses equality constraints, since each edge must achieve a specific
distance. Second, the penalty function consists of a sum of simple subfunctions, each
relating only a small number of variables; that is, it is partially separable. This allows
for the identification of subproblems that completely contain a set of constraints. If,
instead, the subfunctions coupled many variables, then it would be difficult to de-
compose the problem. Third, there is a deep combinatorial structure to the molecule
problem that allows solvable subproblems to be identified. The first two of these prop-
erties are fairly common in optimization settings. Although the specific structure we
have exploited is unique to the molecule problem, it is likely that other optimization
problems have analogous structure that can be similarly utilized. Any problem that
contains subproblems that can be solved independently should be amenable to the
type of divide-and-conquer approach described here. The challenge is to identify this
structure.
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AN INFORMATION GLOBAL OPTIMIZATION ALGORITHM
WITH LOCAL TUNING*

YAROSI2AV D. SERGEYEVt

Abstract. We propose an algorithm using only the values of the objective function for solving unconstrained
global optimization problems. This algorithm belongs to the class of the information methods introduced by Strongin
[Numerical Methods in Multiextremal Problems, Nauka, Moskow, 1978] and differs from the other algorithms of this
class by the presence oflocal tuning which spies on the changes ofthe Lipschitz constant ofthe objective function over
different sectors of the search region. We describe two versions of the method: for solving one-dimensional problems
and for solving multidimensional problems (using Peano-type space-filling curves for reduction of dimensionality).
In both cases we establish sufficient conditions of convergence to the global minimum. We also report results of some
numerical experiments.

Key words, global optimization, Lipschitz functions, numerical methods, convergence
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1. Introduction. Many numerical algorithms (see, e.g., the monographs and survey-
scoped papers of Archetti and Schoen 1], Dixon and Szeg5 [2], [3], Hansen, Jaumard, and Lu
[8], [9], Horst and Tuy 10], Rinnooy Kan and Timmer 17], Strongin 19], T6rn and Zilinskas
[23]) have been proposed to solve the one-dimensional unconstrained multiextremal problem

(1) f* f(x*) min{f(x) x e [a, b]},

i.e., to find the global minimum f* of a function f(x) and a global minimizer x* over an
interval [a, b]. Consider a situation where little is known about the objective function f(x).

(i) f(x) is given in the form of a black box subroutine, which has a point x E [a, b] as
input and f(x) as output.

(ii) Lipschitz condition

(2) If(x’)- f(x")[ <_ LIx’-x"l, x’,x" e [a, b],

with an unknown constant L, 0 < L < oc, holds for f(x).
For solving the problem (1), (2) the information approach has been proposed by Strongin

[19], [20]. The information algorithms are derived as optimal statistical decision functions
within the framework of a stochastic model representing the function to be optimized as a
sample of some random function. In this paper we present a new information algorithm based
on the following idea.

Suppose that we have executed k iterations and have evaluated the objective function f(x)
at points x x2,..., xk (we call these trial points). Original information algorithms produce
a new trial point xk+l to evaluate f(xk+l) using an estimate # of the Lipschitz constant L

(3) p max{lf(x) f(xj__)l/(x xj_) 2 _< j _< k},

where

(4) a:x <x2<...<xk_ <xk--b
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are trial points X1, X2,..., X/e renumbered by subscripts in order of increasing coordinates.
Here we construct local estimates #j of local Lipschitz constants Lj for every interval
[xj-1, xj], 2 <_ j <_ k, where

(5)
If(x’)- f(x")l <_ Lylx’-x"l, x’,x" [xy_,xy],

#j Lj, #j <_ <_ L, 2 <_ j < k.

Thus, we try to tune the algorithm to the behaviour ofthe objective function over every interval
[xj_ 1, xj], 2 < j < k. As will be shown hereafter, this approach permits us to accelerate the
search compared to the original information methods.

The rest of the paper is constructed in the following way. In 2 the method is presented
and sufficient conditions of convergence to global minima are proved. Section 3 contains
a generalization on the multidimensional case based on the Peano-type space-filling curves.
Section 4 describes results of some numerical experiments. Section 5 concludes the paper.

2. The one-dimensional algorithm. Let us describe the one-dimensional version (ODV)
of the information algorithm with local tuning.

Starting points x1, x2,..., xm, m _> 2, are fixed in such a way that x a, x2 b, and
the other m-2 points are chosen arbitrarily. Values f(x1),..., f(xm) are calculated at these
points. To choose the (k + 1)th trial point xk+l k > m, we execute the steps of the following
algorithm.

Step 1. Reorder the trial points x1, x2,..., xk as shown in (4). Thus, the numeration
by superscripts indicates the order of producing trial points in the course of time and the
numeration by subscripts defines subintervals in which the search region is divided by the trial
points (this numeration is changed after every iteration).

Step 2. Estimate Lipschitz constants Lj, 2 <_ j < k, from (5) by the values

(6) #j max{)j, 3’j }, 2 < j < k,

where

(7) i=j-l,j,j+l
Xi Xi--1 k 1, k

ifj 2, ]
if3_<j_<k-1, J,ifj k,

(8) j #(Xj Xj_l)/Xmax,

(9) Xmax- max{xi- xi-l 2 < i < k},

where # is from (3) and zi f(xi), 1 < < k. If #j < set #j , where > 0 is a
parameter of the method.

Step 3. For all intervals [xj_ 1, xj], 2 < j < k, calculate characteristics

(10) R(j) r#j(xj-xj_l)+(zj-zj_l)2/(r#j(xj--Xj_l))-2(zj+zj_l), 2 < j < k,

where r > 1 is a reliability parameter.
Step 4. Execute the new trial at the point

(11) xk-t-1 0.5(xt nt- xt-1 (zt zt-1)/(r#t)),

where

(12) t argmax{n(j)" 2 _< j k).
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This algorithm belongs to both the class of sequential characteristical algorithms (see
Grishagin [4], [5] and Grishagin, Sergeyev, Strongin [6]) and the class of partition algorithms
(see Pinter [16]). In terms of the information approach (see Strongin 19], [20]) after normal-
ization the characteristic R(j) is interpreted as probability of the global minimizer location
within the interval [zj_ 1, zj] (where formula (11) estimates this location) in the course of the
(k + 1)th iteration.

In our approach we tune #j on the basis of local estimate ,kj and the global one 7j,
which controls authenticity of the local information in consideration. We execute this control
by comparing the length of the current subinterval [xj_l, zj] with the maximal (among all
subintervals at the search region) length Xrnax. If the interval [xj_l, xj] is very wide, then we
cannot trust the local information and must use global estimates.

If we know that there are d sectors within the search region where the objective function
behaves differently, it is convenient to use d global estimates #h, 1 _< h < d, of the type (3).
Thus, #h will estimate the Lipschitz constant over the hth sector, 1 < h < d. In the following
consideration we suppose that this additional information is absent.

The parameter introduced in Step 3 reflects the following idea. If the estimate of the
Lipschitz constants L is less than we nevertheless suppose that L is at least equal to .

Note that all values #j from (6) are recalculated at the (k + 1)th iteration only if Xmax

or # have been changed after the kth iteration. In the opposite case #j are calculated only for
the intervals

Ix x,]

where xk is the point chosen according to (11), (12) at the kth iteration. For all other intervals
the values #j remain the same.

Let us consider some convergence properties of the information algorithm with local
tuning.

LEMMA 1.1. If {xk } is a trial sequence generated by ODV in the course ofminimizing a
function f(x), x E [a, b],satisfying(2)andx’ isalimitpointof{xk } suchthatx’ 7 a, x’ 7 b,
then there exist two subsequences converging to x’, one from the left and the otherfrom the
right.

Proof. Let x’ belong to an interval [xs-1, xs], s s(k) after the kth iteration. Since x
is a limit point and due to (10)-(12), we have

lim (xs(k) x(k)-l) O.

Thus, in the case x’ {xk}, sequence {zs(k)_ } converges to x’ from the left and {x(k)}
converges from the right.

To demonstrate the lemma in the case x E {xk }, we suppose that there is no sequence
converging to x from the left (the case when the right convergence is absent may be considered
by analogy). Thus, there exists a number k such that trials do not fall in the interval

X ]gt[Xs(k)_l, Xs(k)], Xs(k) k >

For the characteristic R(s) of this interval, the following chain of relations takes place"

R(8) rZs(X’ Xs-1) nt- (zs-1 f(x’))e/(r#s(x xs-1)) 2(/(x’) + z_)
rs(X’-- Xs_l)[1 + (zs-1 f(x’))2/(r(x xs_))2

4/(x’)
(Z _l -4/(x’) > -4f(x’).
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To obtain the last estimate we have used the inequality

rtz > If(x’) Z-ll/(x’- X-l),

which holds due to (6), (7). On the other hand for the characteristic R(s + 1) of the interval
[x’, xs(k)+l], we obtain

lim R(s(k) + 1) -4f(x’)

since x is a limit point of (xk }. Thus, for sufficiently large k > kt, it follows that

R(s(k)) > R(s(k) + 1),

and due to (11), (12) a new trial will fall in the interval [xs(k)-, xq. This fact contradicts our
assumption about the absence of sequence converging to x from the left.

LEMMA 1.2. For all trial points xk, k >_ 1, f(xk) >_ f(x’).
Proof. Assume that an iteration d has produced a point xd such that

zd- f(xd) < f(x’).

Consider the characteristic R(j) of the interval [xd, xj]

R(s) r#j(xj xd) + (zj f(xd))2/(r#j(xj xd)) 2(f(xd) + zj)

r#j(xj xd) + (zj f(xd))2/(r#y(Xj xd))
--2(2min{zj, f(xd)} + Izj f(xd)l)

--Izy f(xd)l(rtzy(Xj xd)/IZy f(xd)l + IZy f(xd)l/(rzy(Xj xd)) 2)
--4 min{zj, f(xd)} > --4 min{zj, f(xd)} > --4f(c’).

Thus, new trials do not fall in the interval containing x and, at the same time, x is a limit
point. We have contradiction that completes the proof.

LEMMA 1.3. Ifthere exists another limitpoint x" 7 x’, then f(x") f(x’).
Proof. Lemma 1.3 follows immediately from Lemma 1.2.
LEMMA 1.4. If the function f(x) has a finite number of local minima in [a, b] then the

point x is locally optimal.
Proof. If this lemma is not true then due to Lemma 1.1 a point y such that f(y) < f(x’)

will be produced. But this is impossible because of Lemma 1.2.
Let x* be a global minimizer of f(x) over [a, b] and {k} be the sequence of all iteration

numbers {k} { 1,2, 3,...}. The following theorem establishes sufficient conditions of
global convergence of the sequence {xk } to x*.

THEOREM 1.1. Ifthere exists an infinite subsequence {h} ofiteration numbers {h} c {k}
such thatfor an interval

[Xj-l,Xj],j j(1), e {h},

containing the point x* at the lth iteration, the inequality

(13) r#5 _> Kj + (Ky _M) 1/e

holds, then x* is a limit point of {xk}. In (13) we have used the designations

(14) Kj max{(zj_l f(x*))/(x* xj_l), (zj f(x*))/(xj x*)},
(15) My -IZj_l zjl/(xj xj-1).
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Proof Suppose that there exists a limit point x x* of the trial sequence {xk }. Taking
into consideration (10) and Lemma 1.1 we can conclude for an interval [x-l, x], i(k),
containing x at the kth iteration of ODV, that

(16) lim R(i(k))--4f(x’).
k---cx

Consider now an interval [Xj_l, xj], such that

(17) x* E [xj_l,xj],

and suppose that x* is not a limit point of {xk}. This signifies that there exists an iteration
number m such that for all k > m

Xk+l [Xj--I,Xj], j -j(k).

Estimate now the characteristic R(j(k)), k >_ rn of this interval. On the basis of (17) and
(14) we can write

(18)
(19)

zj_- f(x*) < Kj(x*-xj_),
zj- f(x*) < Kj(xj- x*).

Then, summing (18) and (19) we obtain

zj_ + zj _< 2f(x*) + Kj(xj xj_).

From this inequality, using (13) and (15) we can deduce for all iteration numbers E {h} that

(20)
R(j(1)) (xj xj_ )(r#j + M (r#j) 2(Zj-1 + zj)

>_ (Xj Xj_l)(r#j + M (r#j) -1 2Kj) -4f(x*) >_ -4f(x*).

Since x* is a global minimizer and the sequence {h} is infinite, then from (16) and (20) it
follows that an iteration number l* will exist such that

(21) R(j(l*)) > R(i(l*)).

But, according to the decision rules (6)-(12) of ODV, this signifies that the/*th trial will be
executed at the interval (17). Thus, our assumption that x* is not a limit point of {xk } is not
true and the theorem has been proved.

COROLLARY 1.1. Given the conditions ofthe theorem all limit points of {xk } are global
minimizers off(x).

Proof. The corollary is easily proved on the basis of Lemma 1.3.
Let X* be the set of global minimizers of the function f(x). Corollary 1.1 ensures that

the set of limit points of {xk } belongs to X*. Conditions when these sets are identical are
established by Corollary 1..2.

COROLLARY 1.2. Ifcondition (13) isfulfilledfor all points x* X*, then the set oflirnit
points of {xk } coincides with X*.

Proof. This corollary is a straightforward consequence of the theorem and Lemma 1.3.

3. The multidimensional algorithm. Consider a generalization of the problem (1), (2)
to the multidimensional case

(22) F* F(y*) min{F(y) y e D},
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(23) D= {y E tN ay < yj <by, 1 < j < N},

where F(y) is a Lipschitz function with a constant K, 0 < K < cxz.
There exist at least three types of possible generalization ofODV to the multidimensional

case. The first one is the well-known multistep scheme of nested optimization (see, e.g.,
Pijavskii 14])

min.., min F(y1, yN),
Y! YN

where every one-dimensional problem may be solved by ODV. The second one is the scheme
of generalization of one-dimensional algorithms proposed in Pinter [15]. In this paper the
third approach, based on reduction of dimensionality using Peano (or Hilbert) curves (see
Strongin [19], [21], Strongin and Sergeyev [22]), is applied.

As it has been proved in Strongin [19], solution of the problem (22), (23) may be obtained
by minimizing a function

(24) f(x) F(y(x)), x e [0, 1],

in the metric

(25) ,,(x’,x") Ix’ x"l l/N,
where N is from (23) and y(x) is a space-filling Peano-type curve. In Fig. we present an
approximation of this curve. For the reduced function, f(x) the Hrlder condition with the
constant L 4Kv/- takes place

(26) lf(x’)- f(x")l < LIx’-x"l l/N, x’,x" e [0, 1],

where K is the Lipschitz constant ofthe function F(y) (see Thm. 2.1 in Strongin and Sergeyev
[22]).

In this section we present a multidimensional version (MDV) ofthe information algorithm
with local tuning to solve the problem (24), (26) in the metric (25).
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Suppose that k trials have already been done. To choose the (k + 1)th trial point we
proceed according to the following steps of MDV.

Step 1. Execute Step 1 of ODV.
Step 2. Evaluate the values #j according to (6), replacing xj xj-1 by (xj Xj_I) 1IN

in (3), (7), (8), and Xmax by (xmax) 1/N in (8). The values f(x) are replaced by F(y(x)).
Step 3. For all intervals [xj-1, xj], 2 < j <_ k, calculate characteristics R(j) according

to (10), replacing xj xj-1 by (xj Xj_l) 1/N.
Step 4. Execute the new trial at the point

Xk+l 0.5(Xt -’[- Xt--1 (2r)-l(Izt Zt_ll/t)N sign(zt zt-,),

where t is from (12).
The algorithm stops when

)I/N(27) (xt xt- < e,

where e >_ -r/(4v/-) is the given search accuracy and 7- 2-m corresponds to the ruth
approximation of the Peano curve (see Strongin and Sergeyev [22]).

Remark. Note, that in spite of the ODV belonging to both classes of characteristical and
partition algorithms in the one-dimensional case, MDV does not belong to the second of these
classes in the multidimensional case. In fact, in our approach the interval partitioning takes
place only after the Peano transformation of the original domain has been executed, whereas
in partition algorithms the N-dimensional domain is partitioned.

LEMMA 2.1. The results described in Lemmas 1.1-1.4 for ODV take place for MDV
also.

Proof The corresponding results for MDV are obtained by repeating the proofs of Lem-
mas 1.1-1.4 introducing in the formulas the same changes that have been done in (6)- (11)
to pass from ODV to MDV.

The following theorem generalizes Theorem 1.1 to the multidimensional case.
THEOREM 2.1. Ifthere exists an infinite subsequence {h} ofiteration numbers {h} c {k}

such thatfor an interval [xj-1, xj], j j(1), E {h},from (17) the inequality

2-2/N 2 1/2(28) r’#j _> 21 1/NKj -}-(2 Kj M)
holds, then x* is a limit point of {xk }. Here

(29) Kj max{(zj_, f(x*))(x* xj_,) -’/N, (zj f(x*))(xj x*)-’/N},

(30) Mj Izj_l z.l(x xj_)-1/N.

Proof. Following the scheme of the proof of Theorem 1.1 we compare the characteristic
of the interval [x_, x] containing a limit point x x* and the characteristic of the in-
terval (17). For the first of these, (16) takes place. Let us estimate the characteristic of the
interval (17).

From (29) and (17) we can obtain the inequalities

(31) Zj--1- f(x*) <_ Ky(x* Xj_I) l/N,

(32) zy- f(x*) < Ky(xy- X*) 1IN.
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Now, Using (31), (32), and the designation

O (X* Xj_I)/(Xj Xj_I)

we deduce

,Zj_ -}- Zj 2f(x*) + Ky ((x* Xj_l) 1/N t_ (xj x*) 1/N)
2f(x*) + Kj(tx1/N + (1 o)l/N)(xj Xj_l) 1/N

<_ 2f(x*) + Kj(xj Xj_l)/N max{c1/N + (1 a)I/N 0 l}

2(f(x*) + 2-I/NKj(xj Xj_I)I/N).

Using this estimate and (28), (30), we obtain

R(j(1)) rpy(xj xj_) 1/y + (zj-1 zj)2(rj)-l(xj xj-1) -1IN 2(Zj_l + zj)

+ 4/(x*) -4/(x*)

for all iteration numbers {h}.
Thus, analogous to the coesponding p of the Theorem 1.1 proo we can conclude

that the inequality (21) holds and, consequently x* is a limit point of the trial sequence {xk }
produced by MDV.

COROLLARY 2.1. Corollaries 1.1 and 1.2 of Theorem 1.1 take placefor MDV also.

Proofl The proof is completely analogous to the proofs of Corollaries 1.1 and 1.2.
For MDV the propey of the bilateral convergence to x* in the metric (25) has been

presented (see Lemma 1.1), Let us establish a connection between convergence to a global
minimizer x* of the reduced problem (24)-(26) and convergence to the solution y* of the
original problem (22), (23). To chaactefize the type of convergence at the N-dimensional
space, we introduce the notion of/-lateral convergence.

Let (yk}, yk D, be the sequence of points in D coffesponding to the trial sequence
{xk } generated by MDV, i.e.,

where y(x) is the Peano curve. Then, there exists a point

(33) u’ (U’l,

coesponding to a limit point x of {xk }. We paition the region D from (23) by N planes

in 2g sectors with the unique common veex y from (33). We give the following definition.
DEFINITION. Convergence of {yk} w y is 1-lateral if there exist secwrs, containing

subsequences of {yk } converging w y.
The Peano curves used forreduction ofdimensionality establish acoespondencebetween

subintervals of the curve and N-dimensional subcubes of D (for the detailed description of
the Peano cues, see Strongin [19], [21] and Strongin and Sergeyev [22]). Eve point on
the cue approximates an a-neighbourhood in D (see Fig. 1). Thus, the points in D may be
approximated differently by the points on the curve in dependence on the mutual disposition
between the curve and the point in D to be approximated. Here by "approximation" of a point
y D we mean the set of points on the curve minimizing the Euclidean distance from y.
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For example (see Fig. 1), the point A has four images on the curve,/3 has three images, C’
has two, and F has only one image. It is easy to show that the number of the images ranges
between 1 and 2u. These images may be placed on the curve very far from each other in spite
of vicinity in the N-dimensional space (see, for instance, images 1 and 2 of point A in Fig.
1). Thus, the point * from (22) may have up to 2u images also, i.e., it is approximated by
n, 1 _< n _< 2N, points * such that

(34) y.i y(x.i), 1 <_ i <_ n, ]ly* Y*]I <- e,

where e > 0 is defined by the Peano curve y(x) and II" is Euclidean norm. Thus, to obtain
e-approximation y*i of the solution y*, it is enough to find one of the points x*i from (34).
The above observation allows us to state the following result, connecting processes of solving
problems (22), (23), and (24)-(26). The proof is obvious and we omit it.

PROPOSITION. If the point y* from (22) has n, 1 <_ n <_ 2N, images on the Peano curve
andfor m ofthem the conditions of Theorem 2.1 arefulfilled; then convergence to y* will be
1-1ateral, where

< 2N--n+m.
Thus, the type of convergence inherent to MDV differs from the convergence of the other
methods, which also do not use derivatives (see Pijavskii 14], Strongin 19], [20], Mladineo
[13], Horst and Tuy [11], Pinter [15], and Wood [24]) in the following.

(i) All these methods have 2N-lateral convergence.
(ii) To guarantee convergence to y* these methods need the knowledge of the precise

Lipschitz constant K for the whole region D. In contrast with these, MDV needs only the
fulfillment of the condition (28) (which is considerably weaker than the Lipschitz condition)
for one of the images of y* (i.e., for a number of sectors at the neighbourhood of y* and not
for the whole region D).

4. Results of numerical experiments. We have done numerical experiments with the
information algorithm with local tuning on the Mini-Supercomputer ALLIANT FX/80. Two
series of experiments have been executed. In the first one we use the set of 20 test functions
proposed in Hansen, Jaumard, and Lu [9] to compare performance of one-dimensional global
optimization algorithms. We confront ODV with the following global optimization methods
which as ODV do not use derivatives: Kushner 12], Evtushenko [7], Pijavskii 14], Strongin
19], [20]. These algorithms are denoted in Table 1 as KM, EA, PA, and SM, correspondingly.
Following the schemes of these methods we have used the precise values of Lipschitz constant
(see Hansen, Jaumard, and Lu [9]) executing experiments with KM, EA, and PA. We have
done all experiments with the accuracy e 0.0001 (b a), where e is from (27) (for the one-
dimensional case N 1) and b, a are from (1). The parameters of the methods have been
chosen as follows" for KM 3’ 1, for SM r 2.

Now let us discuss the choice of the ODV parameters and r. The first of these is chosen
as a small number greater than the number representing zero in the computer taken for ODV
implementation. We have used 10-6. To choose r we must use (13). Taking into account
the fact that Mj may be equal to zero and # is close to Kj we must choose r > 2. In our
experiments we have used r 2.

Global minima have been found by all the methods for all test functions except KM for
Problem 17. Table 1 contains numbers of trials executed by the methods. In Fig. 2 we present
Function 3 together with the trial points produced by ODV (the first from top to bottom line of
sign + under the graph of the function) and by the original information algorithm (the second
line of sign 4-). As it is seen from the figure, ODV provides high density of trials only in the
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TABLE
Results ofnumerical experiments with one-dimensional testfunctions.
Problem KM EA PA SM ODV

2327 4363 149 127 35
2 4693 1205 155 135 36
3 416 373 195 224 136
4 1241 2559 413 379 41
5 4153 607 151 126 45
6 4425 2146 129 112 54
7 4281 1560 153 115 39
8 355 389 185 188 132
9 3908 1068 119 125 42
10 1488 1887 203 157 40
11 6401 522 373 405 72
12 5633 1787 327 271 66
13 2289 3809 993 472 45
14 5377 347 145 108 50
15 6067 1251 629 471 63
16 1638 3953 497 557 53
17 529 951 549 470 101
18 5211 1762 303 243 41
19 2252 2054 131 117 34
20 3385 2545 493 81 42
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-15 l." +lq-+-t-lq-+++++++ l:l If-’: +qltq- II

0 -8 -6 -4 -2 0 2 4 6 8 i0
FIG. 2. Trial points produced by ODV and SM in the course ofsolving Problem 3.

neighbourhood of global minimizers. To solve this problem ODV has executed 136 trials in
contrast with 224 produced by SM. The improvement (see Fig. 2) has been obtained in the
regions (neighbourhoods of global and deep local minima) where local Lipschitz constants
are less than the global one.
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0
0 0.2 0.4 0.6 0.8

FIG. 3. Trial points produced by SM.

TABLE 2
Average results ofnumerical experiments with 100

two-dimensional multiextremalfunctions.
Speedup Speedup

Method r % Trials Time (trials) (time)

SM 2.9 100 1575.12 70.036
MDV 2.9 98 351.37 11.150 4.49 6.28
MDV 3.1 100 425.62 15.396 3.71 4.55

In the second series of numerical experiments we have tested MDV and SM using 100
two-dimensional multiextremal functions from the following (see Grishagin [4]) class:

f(x) Z [Ajaj(x) + Bjbj(x)]
=1 j=l

2 2/1/2+ Z [Cyay(x) Dyby(x)]
i=1 j=l

where 0 <_ X 1, 0 _< X2 1, and

aij(x) sin(iTr x,) sin(jTr x2),
bij(x) cos(iTr Xl) cos(jTr x2),

and Aij, Bij, Cij, Dij are random coefficients from the interval [-1, 1]. Level curves of one
of these functions are shown in Fig. 3.

All experiments were performed with initial points {0.2, 0.4, 0.6, 0.9} and the search
accuracy e 0.001, where e is from (27). Both the methods have used the Peano curve
approximation of the 12th order. MDV has used ( 10-6. Table 2 contains the average
results of the numerical experiments. We demonstrate dependence of the MDV performance
on the reliability parameter r. To choose r we must use (28). Taking into account the fact
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FIG. 4. Trial points produced by MDV.

that Mj may be equal to zero and #j is close to Kj, we must choose for N 2 the parameter
r > 22-1/2. The column % shows a quantity of experiments in which global minima have
been found.

To solve the problem presented in Fig. 3, SM has produced 701 trials which are indicated
by the sign +. The region with the most density of trial points is the global minimizer
neighbourhood. In Fig. 4, we present 308 trials executed by MDV with r 2.9 to solve the
same problem. It is seen from the figure that MDV has unilateral convergence to the global
minimizer and outside of its neighbourhood density ofMDV trials is also less than SM density.

5. Conclusions. We have described an information algorithm for solving unconstrained
global optimization problems. The algorithm proposed does not require the knowledge of
derivatives or the Lipschitz constant and uses only the values of the objective function to
achieve the global solution. This algorithm differs from the other methods belonging to the
class of information algorithms by the presence of local tuning that spies on the changes of
the Lipschitz constant of the objective function over different sectors of the search region.

For the one-dimensional version of the algorithm, the property of bilateral convergence
and sufficient conditions of convergence to global minimizers have been established. Anal-
ogous results have been obtained for the multidimensional version of the method (using the
Peano curves for reduction of dimensionality). A notion of the/-lateral convergence has
been introduced and it has been demonstrated that the algorithm proposed has this type of
convergence.

Numerical experiments executed with some well-known test functions confirm the the-
oretical results and demonstrate quite satisfactory performance of the information algorithm
with local tuning compared to the other methods tested.
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Systemistics, University of Calabria, Italy, where he was a visitor.
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POTENTIAL TRANSFORMATION METHODS FOR LARGE-SCALE
GLOBAL OPTIMIZATION*
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Abstract. Several techniques for global optimization treat the objective function f as a force
field potential. In the simplest case, trajectories of the differential equation m -Vf sample
regions of low potential while retaining the energy to surmount passes that might block the way to
regions of even lower local minima. A potential transformation is an increasing function V:R R. It
determines a new potential g V(f), with the same minimizers as f, and new trajectories satisfying

dV Vf. We discuss a class of potential transformations that greatly increase them --Vg ---attractiveness of low local minima and that provide, as a special case, a new approach to an equation
proposed by Griewank for global optimization. Practical methods for implementing these ideas are
discussed.

Key words, generalized descent, global optimization, Newtonian dynamics, potential transfor-
mation methods, PT methods, SNIFR
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1. Introduction. In this paper we present an approach to the global optimiza-
tion of an unconstrained objective function f E C (R) with numerous local minima
in high dimensions. While the problem of local optimization has a solid mathematical
theory and several highly efficient and practical algorithms, the problem of global op-
timization has proved to be much less tractable. Nevertheless, a number of methods
have been proposed. We will give a quick summary of some of these methods and
indicate some applications in the physical sciences, particularly in chemistry. Follow-
ing [9, p. 3], we group the methods we discuss here into those that are stochastic in
nature and those that are deterministic.

1.1. Stochastic methods. The simplest practical stochastic method is the mul-
tistartmethod [9, p. 6], in which a random point is selected from a uniform distribution
to initialize a local minimization algorithm. The process repeats until a stopping crite-
rion is met. Of course, many initial points are selected in areas showing little promise
of producing a new estimate for the global minimum. More efficient algorithms select
a number of points at once and use a clustering method [3], [36] to place them into
groups from which only one local minimization is performed. Alternatively, in the
multilevel single linkage method [34], a critical distance is selected, and local mini-
mization is initiated from each point generated unless it is within the critical distance
of a point already used. These and similar ideas form the basis for several methods
used by the chemical community. Investigations of small organic molecules (up to
about 50 atoms--150 independent variables) were made by Chang, Guida, and Still
[7], by Ferguson and Raber [14], and by Saunders [31].

A method particularly attractive to workers in the physical sciences is simulated
annealing [22], in which the objective function is considered as the energy of a col-
lection of atoms and an analog of temperature is used with an annealing schedule of
melting and cooling to attempt to freeze the system at a global minimum. Such meth-
ods applicable to macromolecules were pioneered by workers in Scheraga’s laboratory
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[28], [24]. Donnelly [11] applied simulated annealing in a study of interacting propane
molecules.

Stochastic ordinary differential equations (ODEs) can also be used to generate
trajectories for global optimization. Aluffi-Pentini, Parisi, and Zirilli [1] have sug-
gested using the Ito stochastic differential equation

dx -Vfdt + edw.

Solutions of this equation asymptotically approach probability densities with peaks at
the global minimizers of f, and sharper peaks when e is small. This suggests making e
a function of t converging to zero as t - , an idea similar to the annealing schedule
used in simulated annealing. Applications in drug design have been made by C. Tosi
and co-workers [15].

1.2. Deterministic methods. The theoretical advantage of stochastic meth-
ods lies in the possibility of proving that the probability of finding global minima
approaches unity as the number of search steps increases without bound. For large-
scale problems, however, the time required to assure a reasonably high probability
makes such approaches very expensive. The deterministic methods we consider here
offer no similar assurances of finding global minima but in practice may detect ac-
ceptably low values of the objective function much more quickly.

Some deterministic methods modify the objective function. Levy and Montalvo
[23] use a descent algorithm, introducing singularities at local minima as they are
found so that the algorithm does not return to them. Piela, Kostrowicki, and Scher-
aga [27] allow the objective function to "diffuse" so that most suboptimal local minima
disappear; they then trace the remaining minima back to the original objective func-
tion.

ODEs have been used in a number of ways to construct deterministic trajectories
to search for global minima. The simplest such ODE is that for continuous steepest
descent,

(t) -Vf(x(t)),

in which the search direction is always directly downhill. Trajectories commonly
converge quickly to nearby local minima, making this method generally impractical
for global minimization. Much more complicated behavior results if the equation for
simple Newtonian dynamics

(1.1) m(t) -Vf(x(t)),

is used instead, where the objective function f is considered to be the potential for
the force field F -Vf, and the trajectory is that of a particle of constant mass m.
Physical intuition suggests that trajectories seek out regions of low potential, while
conservation of total energy gives the particle the ability to climb to passes possibly
leading to basins of attraction of even lower minima [33], [4].

Molecular dynamics (MD) [25] is essentially Newtonian dynamics with a molecu-
lar potential function. It has found extensive use in the estimation of thermodynamic
properties of macroscopic systems [2] and in macromolecular energy minimization.
Practitioners using constant-temperature MD couple the system to an external tem-
perature bath [4], which absorbs or dispenses the kinetic energy required to maintain
a constant speed, as a means of avoiding potential orbiting about suboptimal local
minima and also permitting more careful investigation of low potential values. In
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dynamical simulated annealing (DSA) Car and Parinello [6] propose instead applying
to MD, Kirkpatrick’s idea of varying the temperature to alternately melt the system
out of suboptimal minima and freezing it into lower energy configurations. DSA has
become enormously popular in the solid-state physics community, where it has been
used in structure calculations using density functional theory [20].

Incerti, Parisi, and Zirilli [21] propose incorporating a dissipative term into (1.1),
yielding

m(t)(t) + c(t)+/-(t) -Vf(x(t)),

where m > 0 and c < 0. Instead of an annealing schedule, appropriate choices for the
variable mass rn and dissipative coefficient c can be used to achieve convergence to a
low value of f.

in a deterministic approach very different, from those just surveyed, Griewank
[17] introduced the idea of a target level, c, as the current estimate of the value of
the global minimum, and proposed some apparently very non-Newtonian dynamics
for global optimization. In its final form, his equation is

(1.2) I/- (1 +) T]ii ii 
Vf(x)[f(x) c)].

Trajectories for this equation exhibit the following two characteristics, among others.
(i) Like Newtonian trajectories, they are continually deflected toward the di-

rection of the negative gradient. Increasing c increases the sensitivity to the local
gradient.

(ii) The speed v ]]]] of propagation along the trajectory equals the height,
f-c, of the objective function above the target level; contrary to Newtonian dynamics,
the particle accelerates uphill and decelerates downhill. Convergence to any local
minimum above the target level is impossible, since the speed is always positive for
values of f above the target level.

Initial applications of this differential equation in [10] showed that it performs
quite well in chemical problems which are replete with singularities, and hence often
difficult to treat. However, an unacceptable amount of time was spent accurately
propagating the molecular configurations. The secondary goal of solving the ODE
seemed to be in conflict with the primary goal of efficiently searching the configuration
space for global minima.

Consequently, Rogers and Donnelly [30] developed a discrete dynamical system
modeled on the characteristics of Griewank’s trajectories, using significantly larger
stepsizes than are consistent with the accurate solution of an ODE. This algorithm has
since become known as SNIFR. It has been applied to determine low energy molecular
configurations [8], [18] and central configurations in celestial mechanics [32]. Butler
and Slaminka [5] recently showed that SNIFR clearly outperformed simulated anneal-
ing on a standard set of test problems, all of dimension _< 10. In spite of this practical
success, it is difficult to analyze theoretically the performance of SNIFR, since it is
designed simply to mimic efficiently certain heuristics of Griewank’s equation.

The purpose of this paper is to describe a new method based on standard New-
tonian dynamics, satisfying well-understood principles such as the conservation of
energy. A surprising conclusion is that the paths traversed by the trajectories of
Griewank’s clearly non-Newtonian equation are in fact Newtonian paths, subject to
the same well-understood principles. Moreover, we propose a highly efficient imple-
mentation of this method for global optimization.
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2. Potential transformation (PT) methods. There are some obvious draw-
backs to the straightforward application of simple Newtonian dynamics to the problem
of global optimization. Although trajectories tend to seek out regions of low potential,
the kinetic energy of the particle in these regions is high. Since curvature is inversely
proportional to the particle’s kinetic energy, the local gradient in such regions has
little influence in guiding the trajectory to local minima. To attempt to make low
local minima more attractive, we introduce an increasing potential transformation
V R --. R, which is used to define a new function g V(f) with the same equi-
potential surfaces as f, but with revised values on these surfaces. The fact that V is
increasing guarantees that the values of x that produce local and global optima are
precisely the same as for the original potential function.

Subject to the new potential, the particle satisfies

dV
(.) , -V -V.

a]

Since the trajectories are generated by a gradient field, energy is conserved. Thus
if v I111, the kinetic energy is Tv 1/2mv2, and the initial energy is E0 Tvo +
V(f(x0)), then, for all t >_ 0,

(2.2) T, + V(f) Eo.
It will prove useful later to observe that, for a given energy level E0, T is thus
completely determined by the value of f.

Although much of what follows can be shown for more general functions, we will
concentrate on potential transformations of the type

v(f) -(f

using Griewank’s idea of the target level, c, and using e > 0 as a parameter. Equation
(2.1) implies that the effect of the potential transformation on the gradient is governed
by

dV 2V
(2.4) - -f-c"

The effect of this particular transformation is, first, to flatten the potential func-
tion for values of f sufficiently above the target level, thus lessening the effect of local
perturbations; and, second, to place points at the target level at the base of an infinite
potential well, making them more attractive for solutions of (2.1). Also important
is the effect on the speed of the particle when searching relatively low values of the
objective function. This is best shown by an example.

If the initial potential energy of a stationary particle of unit mass subject to
standard Newtonian dynamics is f0 50, then, when f 1, its kinetic energy is
T(1) 49, and its speed is v(1) 9.9. For 1 and c 0, the corresponding trans-
formed potential values would be V(50) -.0004 and V(1) -1, with a kinetic
energy of T(1) 1 and a speed of v(1) 1.4. Substituting these parameters into
(2.4) yields dV/df 2, so it follows from (2.1) that the force field is approximately
doubled when f- c 1. Since trajectory curvature is proportional to the magnitude
of the force field, and inversely proportional to kinetic energy (see (4.5)), the trans-
formed potential results in much greater curvatures in response to the local gradient,
increasing the likelihood of the particle being deflected into the enhanced basins of
attraction of local minima near the target level.
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3. Coarsely discretized ODE solvers. Of course, the use of ODEs to find
global minima is simply a tool; the primary goal is efficient global minimization.
High-order methods and small stepsizes can use up many function evaluations without
yielding much progress in searching the domain of the objective function for regions of
attraction of global minima. Moreover, while an ODE may efficiently find low values
of the objective function, it may not be very effective at finding the actual minimizers.

For these reasons, we attack the problem of global optimization in two phases.
In the first, the global search phase, we employ a coarsely discretized ODE solver,
i.e., a low-order method, such as the first-order Euler method, with a relatively large
stepsize, to efficiently search for low values of the objective function. In the second,
the local optimization phase, one or more of the points just found are used to start
an efficient local optimization algorithm to accurately determine the position of the
minimizers. More details on the implementation will be given in later sections.

4. Reparameterization. This is not to say that the spatial stepsize during the
search phase can be arbitrary. Large stepsizes can be tolerated where the objective
function is high, since the goal in these regions is to sample a large area for lower
values. On approach to the target level, however, the trajectories should be more
accurately tracked in order to carefully examine the region for global minima. One
way to accomplish this is through the use of variable stepsize ODE solvers, but our
experience with these suggests that the attempt to control local truncation errors leads
to unacceptably small steps near the target level, where curvatures can be extremely
high. We have had more success by reparameterizing the solutions of (2.1) so that
the speed with which they are traversed decreases as the curvature increases. This
results in variable spatial stepsizes, even with the use of a simple fixed time-stepsize
ODE solver.

We first obtain a general formula for reparameterizing the original potential func-
tion; the formula for a transformed potential can easily be obtained from it by substi-
tution. First, recall that the arc length s of any twice-differentiable trajectory, x(t),
satisfies ds/dt v =_ I111. Defining x’ _= dx/ds, we have

dx dx ds
(4.1) d- ds dt

vx’

so that IIx’ll II+/-ll/v 1. Differentiation of x’. x’ 1 yields x". x’ 0; consequently
x" is always orthogonal to xp.

Assuming that x represents the path of a particle of constant mass m subject to
a force F and that Tv 1/2mY2 is its kinetic energy, (4.1) yields

d (mvx’)ds (mv’x’ + mvx")vs
Tx’ + 2Tvx".

In view of the orthogonality of x’ and x", we have

(4.3) Px,F Tx’ and Qx,F 2Tvx",
where

P,F =- (x’. F)x’
is the tangential component of F and Qx,F F- Px,F is the normal component of
F. Note that these projections can be computed in terms of , since

.F
Px,F PF +/-.

v2
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Equation (4.3) can be solved for x" to yield

1
(4.4) x"

2Tv
Qx,Vf

which is a function of x and x’ for a given trajectory because Tv E0 V(f(x)) by
conservation of energy. This is, in fact, the ODE for the reparameterization of the
original trajectory by arc length, and so it yields the definition of the curvature of the
trajectory:

2Tv

To insure that another ODE produces the same trajectory, we must retain the curva-
ture given by (4.4) at each point.

Suppose then that this trajectory is reparameterized by T, SO that the new speed
satisfies a ds/dT =_ s. Equation (4.2) then becomes

**m x Tx + 2Tx’.

We require that the speed a for a given trajectory be a function of the potential
f alone, so that the kinetic energy T 1/2ma2 also depends only on f. Then

Tx’ dT x’)x’ P VS,

Substituting this and (4.4) into (4.6) then yields the reparameterized ODE for the
original potential:

p;,vsd$ -vQ;,Vs"
For the transformed potential, the equation for the curvature (4.5) becomes

(4.8) a

Substituting (2.2) and (2.4), we have

(4.9) diS/dr -2eV 2e
T, (f c)(Eo V) (f c)(1 Eo/V)"

The idea is to choose the speed a to be small wherever the curvature a is large, e.g.,
when (f c)(1 Eo/Y) .. O. This suggests choosing

(4.10) a-#(S-c)(1 -E)m -where # is included only for dimensional consistency: its magnitude is unity and it
has units of mass speed/energy (speed) -1. The equation satisfies the above
condition that a is a function of f alone along a given trajectory, since E0 and c are
constant and V is a function of f.
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To obtain from (4.7) the ODE for the transformed potential, note that dTa/dg
(dT,/df)/(dV/df) and Vg (dV/df)Vf. Thus (dT,,/dg)P;Vg (dT,,/df)P;Vf,
and (4.7) becomes

(4.11) m x=
df Vf Tv df QVf.

Equations (4.9) and (4.10)yield

T,, dV
Tv df ma

and

dT,df =m’f =a# 1-(l+2e)--
Thus (4.11) becomes the final equation for the PT method:

Note that is a uniless number with magnitude of ; if physical units are not a
concern, then can be omitted.

It can be shown that the norm of the derivative of P is I1 11-1, which is un-

bounded for x near 0. However, the norm of the derivative of P. P. is

bounded (by 2, in fact), and it follows hat 0/0 is bounded. If VI is bounded
over the region accessible to a particle with energy Eo, then it is easily seen that
0 /0x is also bounded. Thus, choosing to compensate for the trajectory cur-
vature in this way yields existence and uniqueness conditions for (4.12), as well as
bounds on the errors of numerical approximations.

Inaccuracies in our coarsely discretied solver can cause the speed of the computed
trajectory to deviate rapidly from (4.10). Consequently, we renormalie at each step
to enforce (4.10).

g. Nelatonshp o rewank’s ODN. Equation (4.10) for the speed for this
ODE is reminiscent of the equation for the speed for Griewank’s ODE (1.2), in that
the speed is approximately equal to f- c for values of f near the target level. This
is not an accident. If the initial energy is taken to be E0 0 and is ignored, then
(4.12) becomes

which is easily seen to be equivalent to (1.2) when m 1. Since all values of the
transformed potential (2.a) are negative, an energy level of E0 0 imposes no upper
limit on the value of f, and trajectories with unbounded potential are possible for
Griewank’s ODE. Equation (4.12), however, allows the choice of an upper bound for
he potential, fax, resulting in E0 g(fax). Then, if g N0, all the energy has
been converted to potentiM energy, leaving ero kinetic energy. Thus conservation of
ener for (2.1) prohibits the trajectory from surpassing this limit, and fmax provides
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control over high values of the objective function, just as the target level, c, provides
control over the lower values. It can be seen from (4.10) that, like Griewank’s particle,
ours accelerates uphill near the target level, but, as in Newtonian dynamics, ours
decelerates uphill near the upper energy limit.

It is important for this discussion to realize that the clearly non-Newtonian be-
havior exhibited by a solution of (4.12) results from reparameterizing, for numerical
reasons, a trajectory that originates from the Newtonian equation (2.1), with poten-
tial V given by (2.3). To be more precise, if f is used as the potential function, certain
Newtonian trajectories result. Introducing a potential transformation changes these
trajectories to new ones, which are still Newtonian--but with a new potential function.
As a simple example, consider the harmonic oscillator with potential f(x) r2 x. x,
resulting in a force field satisfying Hooke’s law: mi -Vf -2x. Excluding degen-
erate cases, the resulting trajectories are ellipses centered at the origin. Now consider
the potential transformation (2.3) with c 0: g(x) Y(f(x)) _f-2 _r-a.
The new ODE is

4e x
m=-Vg=

r4+1r"
The qualitative features of the trajectories associated with these attractive inverse
power laws are well understood [16, pp. 76-82]. In particular, if e 1/4, we have mi[

-(1/r2)(x/r), an example of the inverse square law governing classical planetary
motion, with trajectories which are conic sections with one focus at the origin [16, p.
96]" a single branch of a hyperbola for E0 > 0, a parabola for E0 0 (Griewank’s
equation), or an ellipse for E0 < 0 (the case discussed in the preceding paragraph,
with E0 V (fmax) _rmax-4 < 0). The trajectories for g are clearly different
from those for f, but they are still Newtonian: particles attached to the origin by
weightless springs have been replaced, conceptually, by celestial objects subject to
the gravitational attraction of the sun. The subsequent reparameterization does not
change the path of these new trajectories, only the way in which they are traversed.
Thus, in the special case of Griewank’s equation (E0 0) with c 0 and e 1/4,
the parabolic path about the sun of the planet, or, rather, what must be a comet, is
traversed with speed given by (4.10)"

Instead of following Kepler’s law and generating equal areas in equal times, the comet,
after reparameterization, slows as it approaches the sun, then speeds up as it moves
farther away. While the behavior of solutions of the reparameterized ODE are clearly
non-Newtonian, they allow for much better numerical approximation of the Newtonian
parabolic path with a fixed time-stepsize ODE solver for orbits that approach near
the sun, which represents a singularity in the force field.

Thus, in (4.12), one’s intuition of Newtonian dynamics for the transformed po-
tential is still applicable to the path of the trajectory, but not to the behavior of the
particle itself.

Certain other characteristics of Griewank’s equation become much more intuitive,
once the Newtonian nature of the trajectory paths is recognized. For example, in [17,
p. 17] it is observed that the direction of the velocity vector is a weighted average of
the previous gradient vectors. We now see that this follows directly from (2.1)"

o

1 dVd dV
Vf o Vf dT,
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dVwith as the weighting factor.
As a second example, consider the table [17, p. 23] specifying the circumstances

in which convergence or divergence can be proved for Griewank’s ODE when f is
homogeneous of degree 5. We assume for simplicity that the origin is the center
point, from which it follows that Vf(x). x f(x) for every x E Rn, and we deal
with r2 x.x, rather than with r, since the former has a simpler derivative, and the
latter has no derivative at all at 0. We have dr2/dt 2x. and

d2r2 dV dV
2m. + 2mx. 4T- 2x. d.--Vf 4T- 2d---f.m-

Note that this implies that d2r2/dt2 depends only on the value of f (this is not true of
d2r/dt2--another reason for dealing with r2 instead). Applying (2.4) and (2.2) yields

m 4 dt (f-c)-24(E0-V) f-c f= 1- -0 f-c"
i--p-

Since E0 0 for Griewank’s equation, we see that the sign of dr/dt is the same as
the sign of (1- e)f- c as long as neither f- c nor T is ero. This is the expression in
(16) of [17, p. 24] needed to argue the cases in the table in that paper. Our derivation,
however, follows a more conventional line of reasoning about the qualitative behavior
of trajectories subject to homogeneous potentials.

6. Netting the parameters. The purpose of this paper is to introduce a new
method, and to indicate its general strengths and weaknesses. We are not concerned
here with particular stopping rules or complicated automated algorithms for param-
eter determination, since these can be implemented in several, possibly problem-
dependent, ways; the apparent success or failure of the resulting algorithm may de-
pend more on these decisions than on the basic properties of the algorithm itself.
However, a few comments about the parameters e, c, and fnx are in order.

First, for arbitrary global optimization problems, there is the natural question of
how one estimates the value of the global minimum to obtain a value for the target
level, c. The determination of fmx presents a similar problem. In some problems,
e.g., solving f(x) 0 by minimizing II ’(x)ll , the global minimum is known to be 0.
Similarly, some types of problems may yield a natural upper bound on the objective
function. In general, however, neither is known. One strategy is to set initial values
for c and fx, and then, if f drops below c, to lower the value of c according to
some schedule. It is also possible to raise c if a sufficiently long interval has passed
with no new overall minimum occurring. As we will see later, the exact value of c
is not as important as might be thought; a value a bit below the global minimum is
usually better than one set exactly at it. Consequently, a better strategy may be to
lower c if f is sufficiently close to it, as opposed to actually below it. Similarly, if
V(f) is sufficiently close to E0, the value of E0 might be raised, in hopes of allowing
the trajectory to traverse a high pass from which it would otherwise be excluded, and
which might lead to regions of even lower minima. If this is done, it is important
to realize that the particle’s kinetic energy has been correspondingly increased, and
its speed needs to be readjusted accordingly. In this way, both c and fmax might be
updated progressively as the algorithm progresses.

The value of c, as well as the stepsize used, is another matter. We treat both as
constant for the duration of the run, and determine their values from a few initial
runs.
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The stopping criterion obviously has a strong effect on the number of function
evaluations required for a run. A number of sophisticated stopping criteria have
been suggested. The most theoretically appealing satisfy some Baysian criterion.
Unfortunately, these tend to require a large number of function evaluations even in
relatively small dimensions. For many practical problems, the dimensions are so
large, and the lack of current knowledge of a global minimum is so scarce, that it
is acceptable to simply set an affordable number of function evaluations and let the
algorithm exhaust them.

7. Evaluation of the PT method. In order to gauge the effectiveness of the
potential transformation method we compare its performance to the performance of
several other global optimization methods on two difficult test problems. The methods
chosen for comparison are multistart (MS), Newtonian dynamics (ND), simulated
annealing (SA), and SNIFR (SN). The first test problem we propose appears similar
to, but is much more difficult than, a problem proposed originally by Griewank [17].
It has a single global minimum and a number of sub-optimal local minima growing
exponentially with the dimension of the objective function. The second problem arises
in molecular physics when one models the forces existing between nonbonded atoms
in clusters or in protein molecules. Here the rate at which the number of local minima
grows with dimensional is much faster than exponential, and the potential is highly
singular. Algorithms for the chosen optimization methods are detailed in the form of
pseudocode in the following subsection.

7.1. Problem I: The p-function. The first function we consider uses the p-
norm of a vector,

Ilxll 
i=1

where p _> 1. Define the Cl-function f" R’ N by

2

(7.1) f(x)
Ilxllp + ]]sinxll 2P

where the sin of a vector is taken componentwise, A 90 and 3 < x < 3 We-._ _.
let the value of p vary with n, and determine it by choosing a constant w (in this case,
w 1.4) and solving

(7.2) w n2/p

for p. Some resulting values for p are shown in Table 1. The values of f along an axis

TABLE 1
Values of p.

and along a diagonal are given by

x2

c,(x) f(x, 0,..., 0) - + sin 2x
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TABLE 2
Minimum values for c(x) and d(x).

BinNumber 0 1 2 3 4 5 6

Minimum of cn ]0.00010.08]0.43410.97611.7312.7113.9041
Minimum ofdn 0.000 0.152 0.607, 1.367 2.429 3.796 5.465

Untransformed

a

X 4Pi

FIG. 1. The p-function in 2-dim (untransformed).

and

(7.4) dn(x) f(x,...,x) n2/p (X--- + sin2x) wc(x).

These values are independent of dimension, which indicates that the shape of the
function in high dimensionsmand its difficulty as a global optimization test function-.
should be similar to that in low dimensions.

Except for the origin itself, the local minimizers of the p-function occur on or
near the boundary of n-cubes centered at the origin and containing the minimizers

137r < X < 137r occurringof (7.3). There are thirteen such minimizers in the range ---- ---,
near the minimizers of sin 2x, i.e., near multiples of 7r. Since (7.3) is symmetric about
0, there are only seven different minimum values, and six n-cubes. These values for
Cn and the corresponding values for dn are shown in Table 2. The local minima near
the boundary of each of the six n-cubes are bounded by the’ values shown for each
bin. Since the minimum value for dn is smaller than the minimum value for cn for the
next bin, the n-cube for any minimizer can be identified from the pair of values of cn
and dn in Table 2 that contain the value of f at the minimizer. Thus the minimizers
are grouped into seven bins, b0,..., b6, with only the origin in b0. The bin number is
a measure of how close the minimum is to the global minimum. A surface plot of the
p-function in two dimensions is shown in Fig. 1.

7.2. Problem II: Microclusters. The second problem we consider is the de-
termination of the ground-state of a system of unit-diameter spheres interacting via
a pairwise-additive potential v, Let r denote the Cartesian coordinates of sphere i,
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Lennard-Jones

1.5 2 2.5 3

FIG. 2. Lennard-Jones potential.

and let r,j be the vector r rj. Then the Lennard-Jones potential [2] is defined by
the formula

v(r,) Ilr,yl1-12 -llr,yl1-6,

a sketch of which is shown in Fig. 2.
Note that the equilibrium interparticle separation occurs at r 21/6, and re-

pulsive forces dominate at shorter distances, while attractive forces dominate out to
about r 3. A system of N such spheres has the potential energy

N-1 N

f=E E v(ri,j).
i--1 j--i-q-1

Scientific interest in this problem stems from the fact that modern experiments
reveal the existence of structural regularities in small clusters of atoms produced in
supersonic beams [13]. Though the real structural problem is a many-body one, forces
between neutral atoms are rather weak and short range. It is therefore expected that
an additive two-body potential such as the Lennard-Jones can provide a tractable
computational model for the atomic interactions.

The complexity of even so simple a model is daunting. The history of this problem
and previous attempts to "solve" it have been reviewed in depth by Hoare and McInnes
[19]. They exhaustively studied the problem for cluster sizes ranging from 6 to 13
spheres, for which they report the following number of potential-energy minima: 2;
4; 8; 18; 57; 145; 366; 988. One sees that the number of cluster configurations (local
minima) rises much faster than linearly; in fact these authors estimate the number of
distinct local minima by:

g(N) exp(-2.5176 + .3572N / .028N2).

Thus for even a small cluster with 15 atoms one expects to find on the order of 10,750
local minima. A cluster containing 25 atorns is expected to have somewhere in the
neighborhood of 101 local minima! This explosive growth of cluster configurations
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makes space covering, or other exhaustive techniques, quite impossible for all but the
smallest clusters.

Finally, it is known (see [25] for a recent monograph) that the three-dimensional
structure of proteins is likely largely determined by a myriad of weak forces of the van
der Waals type, which can be effectively modeled (in part) using the Lennard-Jones
potential. Since even a small protein can have of the order of 1040 potential-energy
minima, the sphere-packing problem serves as a prototype for many of the structural
problems of interest in the chemistry and biochemistry communities.

7.3. Pseudocode. In treating Problem I we compared the relative performance
of MS, ND, and PT on the p-function in dimensions up to a maximum of N 50.
The smallest problem exhibits 3.7 105 local minima, while the largest has on the
order of 1055 local minima. All algorithms were applied in a similar fashion, as shown
by the pseudocode listed in Fig. 3. The algorithm to be applied is chosen by the call
SWITCH (method).

MS samples the objective function at a set of points randomly selected from
a uniform distribution over the region of interest. Each step requires one function
evaluation.

PROCEDURE MS
xs random variable

END PROCEDURE

ND and PT are methods based on integrating an ODE; they thus require an
integration timestep h and integration method. Other system parameters are the
total energy E0 (ND and PT), gradient sensitivity e (PT only), and target level c (PT
only). Pseudocode for PT or MD then looks like the following:

PROCEDURE (ND, PT)
SET-TARGET (for PT)
GRAD(f, x)
SCALE(+/-)
PROPAGATE(x - xs)

END PROCEDURE

GRAD evaluates the gradient of the objective function. SCALE normalizes the veloc-
ity vector to enforce conservation of energy for ND or (4.10) for PT. PROPAGATE
uses Euler’s method to move the ODE one timestep forward. Target setting/resetting
is required on each step; we will take this up momentarily.

Much more elaborate integration methods than Euler are clearly possible, but we
have found Euler adequate to our needs as we do not pursue a goal of highly precise
search trajectories.

The final procedure of importance is the target-setting routine used by PT. We
prescribe a constant target set slightly below the global minimum in cases where this
is known beforehand. In the case that the global minimum is not known in advance
we have used the following procedure with success:

PROCEDURE SET-TARGET
IF ((f- c)<_ .1) THEN
c=c-1
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Initialize:
max-trials number of runs for a dimension

steps
method
wlen
wind
c
epsilon
fmax
h time-stepsize
xs starting
fs FUNC (xs)
gfs GRAD(f ,xs)
FOR trial 1 TO max-trials

FOR w I TO wind
fw fs
XW XS

FOE s I TO wlen
SWITCH (method)
fs FUNC(xs)
IF (fs < fw) THEN

fw fs
xw xs

ENDIF
NEXT s
OUTPUT (fw, xw)

NEXT w
fn fw(1)
F0R w I T0 wind

LOCAL (xw, fw)
IF (fw <_ fn) THEN

fn fw
xn xw

ENDIF
NEXT w
BIN (xn, fn)

NEXT trial

maximum iterations

optimization method
MIN(5OO,steps/lO) window length
steps/wlen number of windows

target level

gradient sensitivity
maximum function value

coordinate
function value

gradient

FIG. 3. FUNC computes the objective function. OUTPUT stores coordinates for each window,
LOCAL performs conjugate gradients, BIN assigns the bin number of the local minimum.

END PROCEDURE

In Test Problem I (with a known global minimum at the origin) we chose c -0.2
constant for each trial run. Target setting in Problem II was approached by setting
the initial target level one unit lower than the initial function value. Application of the
procedure above then kept the target level moving down as the algorithm discovered
lower values of the objective function.
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TABLE 3
MS, ND, PT comparison.

BIN: 0 1 2 3 4 5 6
MS: 20 30
ND: 15 31 4
PT: 49 1
MS: 1 32 17
ND: 3 20 23 4
PT: 48 2
MS: 3 27 20
ND: 1 19 26 4
PT: 19 31
MS: 4 44 2
ND: 2 4 34 10
PT: 1 26 23
MS: 18 32
ND: 3 28 19
PT: 50

Dim
5

10

2O

3O

5O

In summary, each step of each of the computational methods we employ begins
with a starting vector x and returns a new vector, xs, at which the objective function
will be evaluated. The computational overhead of MS and SA is one function evalu-
ation per step; that for ND and PT is one function and one gradient evaluation per
step.

8. Results and discussion.

8.1. Problem I. We tested the optimization methods against Problem I in the
following way. First, the dimension, N, of the problem was set and a number of
steps chosen. In this study we took 32,000 steps (one function/gradient evaluation
per step) in each of 50 trial runs, drawing the starting points from a uniform random
distribution over the domain of interest -, 1, 2,..., N). Each trial run
was subdivided into windows: the lowest function value and associated vector in each
window were stored for local minimization using conjugate gradients. Following local
minimization, the lowest of all minima found on a given trial run was assigned a bin
number as described above. Runs using MS, ND, and PT are summarized in Table 3.

PT used a gradient sensitivity e 1. and target level c -.2 found by experiment
with a few runs in dimension 10. A timestep of h 0.4 was used by both PT and
ND. E0 fmax was set at 30.

At first, 32,000 steps (function/gradient calculations) may seem an excessive num-
ber. However, recall Fig. 1, in which we display the p-function in two dimensions.
The hilly terrain observed here is tame compared to the situation in higher dimen-
sions. In 10 dimensions, for example, there are roughly 101 local minima of the
p-function over the domain we consider. The probability of finding a random point
in bins b0, bl, b2,..., bj in d dimensions after s steps is

Py(s,d)=l- 1-
13

s
13

or approximately P0 2 10-7, P :0137, P2 .8964 after 32,000 steps. Thus
MS performs as expected, while PT performs remarkably well. In 10 dimensions one
observes that PT finds the global minimum fully 96% of the time, nd is otherwise in
bins 0 or 1 100% of the time. In 50 dimensions the function has roughly 5 x 1055
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Transformed

0
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.1.

-20
0

Pi Pi

X Pi

FIG. 4. The transformed p-function.

Pi

local minima, and the probability of finding a minimum in bins 0, 1, or 2 using a single
run of 32,000 steps is roughly P2 6 10-17. We observe that the PT method finds
minima in bins 0, 1, or 2 100% of the time. By contrast, ordinary (i.e., untransformed)
Newtonian dynamics performs poorly on the p-function. In fact, ND seems to be easily
trapped by suboptimal minima, performing even less well as a global minimizer than
MS.

Of course, PT is also based on Newtonian dynamics, and it, too, can be trapped
by suboptimal minima, though with much lower frequency than one observes in New-
tonian dynamics. The reasons for both the improvement in performance, and the
residual difficulties, of the PT method are suggested by Fig. 4 in which we display the
transformed potential in two dimensions for the current choice of system parameters
( 1, c -.2, fmax 30). Minima further out from the origin than those in bins
0, 1, 2 have virtually disappeared under the effects of the potential transform, while
those nearer the origin remain, and are deep. Thus, should the particle come near the
origin, our data suggests that it remains trapped in one of the suboptimal minima
for the remainder of the trajectory. Efforts to circumvent trapping by taking a target
c 0 were not successful in this initial study. More work in this area is needed, as
will be reported in due course.

As a reference, we also applied the SA algorithm to this test problem, using the
version published earlier in [11]. Initial acceptance frequencies of roughly 65% were
gotten by starting at a temperature To 1, and a step length 5. The annealing
schedule was a customary one, Ts+l 0.95 Ts, where we used 5,000 equilibration
steps on sweep s, and a total of 40 sweeps overall. Thus the total number of function
evaluations in the SA calculation was 200,000 per initial point, or roughly six times
the number of function evaluations used in the trajectory calculations reported in
Table 3. For this reason, the results are reported in a separate table, Table 4. We
repeat the MS calculations of Table 3, extending them to 200,000 steps per initial
point, to enable a comparison of the algorithms.

As expected, SA consistently outperforms MS in Table 4. But even with only a
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BIN:
MS
SA
MS
SA
MS
SA
MS
SA
s
SA

0 1

8 42
’3
4O

TABLE 4
SA results.

4O
10
2
41

47

3 4 5 6

4O 8

8 42
3

26 24
49 1

Dim
5

10

2O

3O

5O

TABLE 5
SNIFR results.

BIN: 0 1 2 3 4 5 6 Dim
SN 49 1 5
SN 50 10
SN 39 11 20
SN 5 45 30
SN 5O 5O

sixth of the number of function evaluations, PT consistently outperforms the popular
annealing method. One reason for this is clear: gradient information is extremely
valuable in the optimization of differentiable objective functions. Notwithstanding
the strong theoretical results for the Gibb’s probability distribution associated with
SA, PT gets much lower, much faster. Clearly, SA is not the algorithm of choice when
gradient information is available.

Finally, we include a comparison with the SNIFR algorithm discussed in 1.2.
SNIFR is a discrete dynamical system, which relies on a maximum and minimum
stepsize, rather than a timestep, in propagating the state vector. Parameters for
SNIFR were chosen as in previous work [12], [30]: e 1, maximum step length
max 1, and scale factor # 0.25. As in the PT calculations, we chose a fixed
target, c -.2, and took 32,000 steps from each of the 50 starting points. The
pseudocode for the SNIFR is identical to that given for ND and PT, although the
content of the subroutines is different. In Table 5 one sees that SNIFR almost always
finds the global minimum for problems with dimensions ranging up to about d- 20.
Beyond this its performance deteriorates, though by dimension 50 all minima are still
in bins 0 or 1. In any case, SNIFR’s performance is the best of any of the algorithms
discussed here. Still, PT is not far behind, and it has the advantage of resting on
a firm theoretical base, while SNIFR was devised as a discrete dynamical system
mimicking the heuristics of Griewank’s equation, and hence also of PT. The fact that
PT is based on a modified Newtonian dynamics provides a powerful conceptual basis
for understanding how it works and for seeing how to modify it in other situations, as
in global optimization problems involving constraints [29]. SNIFR has not performed
well in earlier tests involving constraints. It is also clear that SNIFR can be modified
to impose an upper bound on its trajectories by making it mimic the general PT
equation, rather than Griewank’s special case.

8.2. Problem II. We next investigated the ability of PT to find minima which
were at least as low as those found by previous authors. Extensive tabulations of
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TABLE 6
Sphere-packing results.

14 N e -Energy
0 44.880

cx) 47.845
1000 1. 47.845

16 0 55.907
(x) 56.816

1,000 .9 53.757
1,000 1. 52.807
1,000 1.5 54.941
2,000 .9 55.195
2,000 1. 54.909
2,000 1.5 54.941
5,000 .9 56.816
5,000 1. 56.816
5,000 1.5 56.816

23 0 89.696
cx 92.844

5,000 .8 90.265
5,000 .9 92.844
5,000 1. 91.198
5,000 1.1 90.984

24 0 91.194
97.349

5,000 .9 96.239
5,000 1. 96.517

10,000 .9 97.349
10,000 1. 96.517

25 cx) 102.37
10,000 .9 96.533
30,000 .9 101.08
10,000 1. 99.528
30,000 1. 102.37
30,000 1.5 101.08

results for the energies of ground-state microclusters of Lennard-Jones atoms have
been assembled by Hoare and McInnes in [19] and by iorthby in [26]. In particular,
we were interested to know how the PT method performed as a function of the number
of steps taken, and as a function of the gradient sensitivity .

We chose a timestep size appropriate to a typical molecular dynamics calculation,
h .001, and used the target setting/resetting procedure described in 7.3. For each
cluster we chose initial coordinates for each sphere randomly on a cube of edge-length
three units (remember that the potential is negligible beyond three units). Starting
coordinates which would have produced overlapping spheres were discarded, due to
the strongly repulsive behavior of v near the origin (refer to Fig. 1). A computa-
tional window of length of 500 steps was chosen; as in the previous computations the
minimum found in each window was saved for polishing by conjugate gradients.

Results of our calculations are summarized in Table 6. Entries labeled N 0
refer to a local minimum obtained by direct application of conjugate gradients to the
starting point. Local minima reported as global minima are labeled by N c in the
table. We report PT results as functions of the number of steps, N, and the sensitivity
value e.

Note that we find the global minima in all cases we studied. Interestingly, the
number of function/gradient evaluations is quite small considering the complexity (i.e.,
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the number of local minima) of the objective function. The largest system we studied
contains 25 particles (72 independent variables), for which we obtain the global min-
imum with only 30,000 function/gradient calls. Results for the 16-atom cluster show
clearly that slight changes in the gradient sensitivity can have a strong influence on
the minima obtained. Note especially that increasing e does not always produce lower
minima: increasing this parameter too much can lead to undesirable "orbiting" of
local minima (see [30] for interesting pictures regarding this phenomenon). Reducing
e too much has the effect of reducing sensitivity of the dynamics to the local gradient.

These calculations show that one should not rely too heavily on precisely chosen
values of the system parameters. Rather, choose a stepsize that does not produce
too drastic a variation in the objective function, begin with gradient sensitivities near
e 1, and employ a simple target setting routine.

9. Conclusion. In this paper, we have introduced the potential transformation
algorithm for large-scale global optimization. The algorithm results in a second-order
ODE which is shown to contain Griewank’s ODE as a special case. However, our
implementation of the algorithm is quite different, since our experience has indicated
that the use of a coarsely discretized ODE solver is more efficient for the problem of
global optimization than the use of accurate solvers with small stepsizes. Moreover,
we have found that setting the target level too close to the global minimum results in
speeds that are too low for efficient coverage of the region of interest. Consequently,
we recommend maintaining a target level somewhat below the current estimate of the
global minimum.

Although we have used potential transformations in this paper only in conjunction
with Newtonian dynamics and the numerical technique of reparameterization, the idea
of transforming the objective function in this way before applying a minimization
algorithm is an independent one, which might find application in other methods.

Of course, no single trajectory or finite number of trajectories can be guaranteed
to provide the global minimum of any problem in high dimensions. Indeed, as previ-
ous authors have observed, the problem of finding the global minimum of a function
is inherently unsolvable. Tbrn and ilinskas [35, p. 7] observe that, "From a practical
point of view, the problem may be stated also in a different way: There exists a goal
(e.g., to find as small a value of f(.) as possible), there exist resources (e.g., some
number of trials), and the problem is how to use these resources in an optimal way."
The PT algorithm performs well in these initial tests. The method has a strong theo-
retical foundation and can easily be extended to equations of motion with constraints.
Applications of the constrained algorithm to problems in protein structure are now
underway, and will be reported in the near future. Computer programs that perform
these calculations are available on request from the second author.
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EXISTENCE AND REGULARITY OF SOLUTIONS TO A
VARIATIONAL PROBLEM OF MUMFORD AND SHAH: A

CONSTRUCTIVE APPROACH*

YANG WANGt

Abstract. We study a variational problem arising in the approach of Mumford and Shah to
the image segmentation problem of computer vision. Given f E L(D) for a domain D in R2, the
simplified Mumford-Shah energy associated to a decomposition D fll U U fiN is

N

Eo[r, ] (f(x) ct,

where a > 0 is a constant, c, is the average of f(x) on i, and where IFI is the length of the bound-
ary of the regions gti not in OD. Mumford and Shah showed, using geometric measure theory, that
for a continuous f a minimizing F* exists that is piecewise C2. We prove this result constructively,
and also extend it to show for general bounded measurable f that a minimizer exists. Furthermore,
we prove that every minimizer must be piecewise C1,1. Our approach is to study E0[F,a] on the
class of piecewise linear F.

Key words, image segmentaion, Mumford-Shah energy, minimizer, Hausdorff metric

AMS subject classification. 49JXX

1. Introduction. The segmentation problem in computer vision is the problem
of subdividing an image into regions in such a way that in each region, the image is
relatively uniform. Mumford and Shah [10] proposed to do this by minimizing energy
functionals that encode penalty measures for properties of a good segmentation. Let
f E L(D), where D is a domain in R2, represent the light intensity of the image. A
decomposition of D is

where each region i is closed and has a boundary 0ti that is piecewise C Let
F UiOti \ OD be the boundary of the segmentation. Mumford and Shah propose
to find such a decomposition and an approximating function u(x) by minimizing the
Mumford-Shah energy

where #, > 0 are constants (weight parameters) and Irl is the length of F. In addi-
tion to this energy functional, Mumford and Shah introduced a simplified functional
obtained by letting #, -0 and #2/2-a > 0. Then Vu -= 0, and the simplified
Mumford-Shah energy is

N

where cn is the average of f(x) over gti. It is this simplified Mumford-Shah energy
functional that is the subject of this paper.
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Mumford and Shah [10] proved, using methods from geometric measure theory,
that if f(x) is continuous on D then there exists a solution F* to

Eo[r*, a] if Eo[r, a],

where F* is piecewise C2. In this paper, we present a constructive approach to
finding minimizers of Eo IF, hi, that is based on studying Eo [F, a] over piecewise linear
boundaries F. Using it we rederive the existence result of Mumford and Shah, and
we show, more generally, that for any bounded measurable f E L(D) there exists a
minimizer F* that is piecewise C1. Furthermore we show that for every minimizer F*
it must satisfy a weak curvature bound: the unit tangent vector of , (parametrized
by arc length) of any Cl-segment of F* satisfies a Lipschitz condition where the
Lipschitz constant depends only on D, a, and maxD [f(x)]. The constructive nature
of our approach is in obtaining such F* as a suitable limit of piecewise linear Fn’s, and
constraints on the behavior of the Fn’s, e.g., angles between segments. In principle it
is possible to develop a computer implementation of this approach.

Now reconsider the general Mumford-Shah problem (1). It is much harder. Mum-
ford and Shah conjectured that there is a minimizing solution to

E[u* F*, #, ] inf E[u, F, #, ]

where F* is piecewise C and u* WI,2(D \ F*), but this conjecture has never been
proved. Existence results have been achieved for a weaker problem where F is only
required to be a relatively closed set and IF[ is replaced by Hausdorff one-dimensional
measure; cf. [8], [7]. Such an existence result has recently been obtained [1], [5].
Shah [12] obtained some results on a one-dimensional simplification of the problem,
and Richardson [11] obtains asymptotic information on solutions as #-c. Both of
these authors use a geometric measure theory approach relying heavily on existence
theorems. The elementary constructive approach of this paper offers a potentially
promising approach to some of the questions.

2. Basic results. Let C {A c R2 A is compact }. The Hausdorff metric on
C is defined as

dH(A, B) sup inf Ix- Yl + sup inf Ix- y[
xEA yEB xEB yEA

for A, B C. It is easy to show that dH is indeed a metric on C. The following are
well-established facts (see [6]).

PROPOSITION 2.1. 1. (C, dH) is a complete metric space.
2. Let {A} c C and A1

_
A2

_
A3 Then

lim A N A
i----1

in the metric space (C, dH).
3. Suppose {Ai} is a sequence in C and limn- An A in (C, dH). Then

A- A
n--1 i--n
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4. Let D be any compact subset of R2 and CD {A c_ D A is closed in D}.
Then CO i8 a compact subset of C in (C, dH).

For simplicity we shall write Eo[r] in place of Eo[r, a] from now on. Given any F
and D \ F [.J gt, where each gt is a connected component of D \ F, we can separate
the energy

Eo[r] . 9[n (f cai)2dx + lrl

into two parts"

square energy:

length energy:

Es[r] ./ (f cni)2dx;

EL[F]

Recall that ca denotes the average of f(x) over Ft. Notice that the square energy
Es[.] can be defined for any closed subset A

_
D.

LEMMA 2.2. Let {A}>o CD. IrA1

_
A2

_
A3 _...,{A}>o c CD and

A A, thenNi=

lim Es [Ai] Es [A].

Proof. For any compact subset B c_ D and (x, y) E D x D, define

0
o

1

if x E B or y E B,
if x and y do not belong to the same
connected component of D \ B,
otherwise.

XB D x D -- R is measurable and IXBI -- 1. It is easy to see that for any
(x, y) e D x D, lim_ XA (X, y) XA(X, y).

Note that for any B C CD,

Es[B] fD(f(x) gB(x))2dx,

where

f(x)

D
XB(X, y)f(y)dy

’D XB(X, y)dy

ifxB,

otherwise.

Since lin_, XA -XA, by the Lebesgue Dominated Theorem,

lim /D A (X, y) dy I’D HA (X, y)dy, and

lira /D XA (X y)f(y) dy /D HA (X, y)f(y) dy
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for any x E D; hence

lim gA(X) gA(X).

Applying the Lebesgue Dominated Theorem again we obtain

lim Es[A] lim f(f(x) gA (x))2dx
JD

.[.(f(x) gA(x))2dx

Es [A]. [3

PROPOSITION 2.3 (Lower semicontinuity). If {Ai} C CD and limi_ Ai A E
CD in (CD, dH), then

lim inf Es [Ai] >_ Es [A].

Proof. For any B1,B2 CD such that B1 C B2, Es[B1] _> Es[B2]. Let Bn
Ui=n Ai. Then B1 _D B2 _D B3 _D.... Hence

A=NBi= limBi.
i=1

By Lemma 2.2,

lim Es[Bn]-- Es[A].

Since Bn D_ Am for m _> n, Es[Bn] <_ Es[A,]; thus

liminfEs[An] >_ liminfEs[Bn]- Es[A]. 13

3. Properties of the segmentation. In this section, we examine the segmen-
tations of the domain D by using piecewise linear line segments. For simplicity we
restrict our discussions to the domain D [0, L] [0, L]. When a piecewise linear F
gives a locally minimal Eo[r], meaning that Eo[r] cannot be reduced through a small
perturbation of F (in the topology induced by the Hausdorff metric), there are some
restrictions as to the number of edges, regions, etc.

We devote essentially the entire section to prove the following two facts: if a
piecewise linear F is a local minimum of the energy Eo[.] then (i) the number of
connected components in D \ F must be bounded by some constant depending only on
D, a and maxD If], and so are the numbers of edges and junctions (see Definition 3.2)
in F (Proposition 3.8); (ii) the angle between any two adjacent linear segments must
be sufficiently close to (Proposition 3.12).

These two facts are central to our main existence and regularity results, which
we prove by obtaining a piecewise C global minimizer from a sequence of locally
minimizing piecewise linear Fj’s.

DEFINITION 3.1. F CD is called piecewise linear if
N

F= Uli
i--1
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for some finite collection {li}N=1, where each li C D is a linear segment, no li is part
of the boundary OD, and for any two different i, j <_ N, li and ly intersect at most a
common endpoint of li and lj. (11,12,..., 1y) i8 called a piecewise linear representation
ofF.

Note that the angle between any two adjacent segments is allowed to be r. For
each piecewise linear F there are infinitely many ways of choosing/i’s, and hence there
are infinitely many different piecewise linear representations. Denote

SL(D) {F E CD IF is piecewise linear}.

Before any further discussion we define the following terms related to F.
DEFINITION 3.2. Let F E SL(D) and let (/,/2,...1N) be a piecewise linear

representation of F. Define the following terms related to F and its piecewise linear
representation.

region. A region defined by F is a connected component of D \ F.
node, A node of F is an endpoint of any linear segment li.
junction. A junction of F is a node that satisfies any of the following:

1. It is on OD; or
2. it connects to at least 3 linear segments; or
3. it connects to only one linear segment (tip of a crack).

edge. An edge of F is defined as the closure of any connected component of F \
{the junctions of F}.

edge-element. An edge-element of F is a linear segment li.
boundary-component. A boundary-component defined by F is the closure of any

connected component of OD \ {the junctions of F}.
For any representation of F, we also define

R(F) Number of regions defined by F,
n(F) Number of nodes in the representation of F,
J(F) Number of junctions in F,
E(F) Number of edges in F,
e(F) Number of edge-elements in the representation of F,
B(F) Number of boundary-components defined by F.

Note that among all the terms defined, only nodes, edge-elements, n(F), and e(F)
actually depend on the piecewise linear representation of F.

DEFINITION 3.3. Let F SL(D). An edge " in F is called a crack if the two
sides of’ belong to the same connected component of D \ F.

PROPOSITION 3.4. Let F SL(D) and F* be derived from F by removing all
cracks in F. Then Eo[F*] <_ Eo[F]. The equality Eo[F*] Eo[F] holds only when
F* F, i.e., F is crack-free. Hence

inf Eo[F] inf Eo[F].
FSL(D) FSL(D)

F is crack-free

Proof. Notice that Es (F*) Es (F), and obviously EL (F*) _< EL (F) with the
equality being true only when F* F. D

LEMMA 3.5 (Euler). For any crack-free F e SL(D), an edge " of F is called a
simple loop if it contains no junction. Let/(F) be the number of edges of F that are
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simple loops and c(F) be the number of connected components of F 2 0D. Then

E(r) + B(r) R(r) J(r) -c(r) +/(r) + 5(r),
(r) + B(r) R(r) n(r) -c(r) + 5(r),

where 5(F) 1 if there is no junction on OD, and ti(F) 0 otherwise.
Proof. The theorem of Euler states that if a simply connected domain is divided

into some simply connected subdomains, then

e-r-n---l,

where e is the number of edges, r is the number of regions, and n is the number of
nodes.

Notice that in our case, the definition of junctions is slightly different from the
definition of nodes in the theorem of Euler. In our definition, whenever an edge forms
a closed loop, we do not consider that there is a junction on the edge. In the theorem
of Euler, however, such an edge is considered to contain one node. Thus, if c(F) 1,
then

e E(r)+ B(r),
r R(r),
n J(r)+ 5(r).

Therefore,

E(r) + B(r) R(r) J(r) -1 + 5(r).

If c(F) > 1, applying the theorem of Euler to each connected component of F t20D.
Summing the equalities up, we have

E(r) + B(r) R(r) J(r) -c(r) + t(r) + 5(r).

For the second part of our lemma, compensating for/(F) is not needed because a line
segment cannot form a closed loop. Hence

e(r) + B(r) R(r) n(r) -c(r) + 5(r).

Let A(ft) denote the area of f for any region ft.
LEMMA 3.6. Let f C D be any connected piecewise C domain. Let O EU B,

where B Of NOD and E 0[2 \ B. Suppose A(ft) <_ A(D)/2. Then

Proof. Recall that D --[0, L] x [0, L]. We consider two cases. If IE]

_
L, then it

follows from the isoperimetric inequality that

IEI / 4L- IBI IO(D \ )l-> V/4rA(D \ t) >_ x/L.

Hence 31El > (4- v/)L + IEI B.
Suppose IE[ < L. Then each connected component of E either does not intersect

OD, or the two intersecting points lie on the same side of OD or two adjacent sides
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of OD. It is easy to see that whatever happens, we always have IEI _> IBI/x/ >_
]BI/3.

LEMMA 3.7. Let F SL(D) and be a region defined by F. If 7 C_ Ot is an
edge of r such that I1

Eo IF] > Eo IF \ 7].

Proof. If 7 is a crack, then obviously

Eo IF] > Eo [F \ 7].

So we assume that 7 is not a crack. Thus 7 separates two different regions and Ft*.
Let ca, ca*, and cain. be the average of f(x) over gt, t*, and U gt*, respectively.
Then,

Therefore, Eo [F] > Eo IF \ 7].
PROPOSITION 3.8. There exists a constant Ko Ko(D, a, max If I). > 0 such that

for any r e SL(D), if R(F) + E(F) + B(F) + J(r) > Ko, then Eo[r \ ?] < Eo[r] for
some edge 7 of F.

Proof. Let F e SL(D) and t be a region defined by F with A(gt) < A(D)/2.
Then IEI > IBI/3 where 0t E U B as in Lemma 3.6. Hence

1 1101 > 1 V/,4A() 1 V"A()IEI >_ (IEI + IBI)

Choose 0 < b < A(D)/2 so that for all 0 < s <_ b,

10
> a0 s,

where a0 4maxD Ifl=/a. It follows from Lemma 3.7 that if A(Ft) < b and 7 is
an edge of F, then Eo[F \ 7] < Eo[r] whenever 171 > /-ff/20.

Let A c SL(D) denote the set of F’s such that Eo[F \ 7] > Eo[r] for any edge
7 of F. For any F the above implies that given any region Ft defined by F with
A(2) < b and 0gt E t2 B, the edge part E comprises at least 10 edges of F. Let R+
be the number of regions defined by F which have area > b. Obviously R+ < A(D)/b.
Since each edge corresponds to only two regions while except for those with area > b
each region corresponds to at least ten edges, we have

E(F) > l(R(F)- R+) > 5R(F) 5A(D)
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Applying the same argument to junctions, namely, each junction corresponds to at
least three edges or boundaries, while each edge or boundary corresponds to at most
two junctions, we have

3
E(r) + B(r) > J(r).

Combining the two inequalities, we obtain

E(r) + B(r)- R(r)- J(r)

E(r)+ 5B(r)- R(r)+ 5 E(r)+ B(r) ]g(r)
> E(r)- R(r)

> R(r) hA(D)
3b

On the other hand, Lemma 3.5 gives us

E(r) + B(r) R(r) J(r) -c(r) +/(r) + 5(r),

where/(F) is the number of edges that are simple loops in F. Since any region defined
by F cannot be enclosed by such a simple loop if the area of the region is _< b, it
implies/(F) _< A(D)/b and therefore

E(r) + B(r)- R(r)- J(r) < 1 + A(D)/b.

Hence R(r) < C, where CR 8A(D)/b + 3/2.
The rest follows easily. For any F e Jr, since E(r)+ B(r) > j(r) we have

= (E(r)+ B(r)) < E(r)+ B(r)- J(r)
3

(E(r)+ B(r)- J(r)- R(r)) + R(r)
A(D)

<-1+
b

+R(r).

Hence both E(r) and B(r) are uniformly bounded. So J(r) < }(E(r)+ B(r)) must
also be uniformly bounded. This proves the proposition. [:]

COROLLARY 3.9. Let

SL0(D) {F e SL(D)I R(F + E(r)+ B(r)+ J(r) < K0}.
Then

inf Eo[F] inf Eo IF].
reSI(D) reSIo(D)

We now introduce a new subset of SL(D). Let SL(D, re, s) C SL(D) denote
the set of F’s, which have a piecewise linear representation such that n(F) _< m and
le[ _< for any edge-element e of F. We have the following lemma.

LEMMA 3.10. SL(D,m,e) c CD i8 a compact subset in {C, dH} for any m > 0
and > O.
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Proof. We establish a bound for e(F) + B(F) for F E SL(D, m, e). Since except
for those that contain at least one corner of D, each region corresponds to at least
three edge-elements or boundaries while each edge-element or boundary corresponds
to no more than two regions, so

3
\ /

Hence,
1 (e(F) + B(r)) < e(r) + B(r) R(F) + 4 n(r) c(r) + 5(r) + 4 < n(r) + 4.
3

Therefore e(r)+B(r) < 3m+12. We now conclude the compactness of SL(D, m, ) by
showing that the limit of {F}, where F E SL(D, m, ), must also be in SL(D, m, ).
Let

ni

Fi
j=l

N e for any j k is either empty or a node inis an edge-element and ejwhere ej
F. Because n are bounded for all i, we may without loss of generality assume that
n n* for all i, or we may replace the sequence F by a subsequence.

Choose a subsequence Fkl, Fk2, Fk3,... of {F}>0 such that for all j _< n*

lim k
io eJ ej.

Then for any j _< n* either e is a linear segment with leVI < e or a single point.

Now let F* be the limit of {F}. Then F* [Jj=l ej. It is clear that F* e SL(D).
Notice that if eo is a single point for some j0 then we still have F* [.J. o e*. So
we may without loss of generality assume that all e are line segments. If (e) is a
piecewise linear representation of F* then we have F* SL(D, m, ). Suppose (e) is
not a piecewise linear representation of F. Then the following must occur: for some

* *N may be a linear segmentmay lie in the interior of some ei, or ej eii = j, a node of ej
itself. However, given either of the above cases we can always subdivide e U e into
smaller edge-elements without adding any new nodes. So by this procedure we obtain
a piecewise linear representation of F. Since no new nodes are added, all nodes in this
representation are limit points of nodes of in F, so n(r) < m and F SL(D, m, ).
This implies the compactness of SL(D, m, ).

PROPOSITION 3.11. For any m > 0 and > O, there exists a F* SL(D,m,e)
SLo(D) such that

Eo[r*] inf Eo[r].
FeSL(D,m,e)

Proof. Notice that for any sequence {Fn } c SL(D, m, ) such that Fn--*I, we have
E(r) < liminfnEL(Fn). The existence of F* E SL(D,m,s) follows immediately
from the compactness of SL(D,m,s) and the lower semicontinuity of the energy
Es(r). r* e SL0(D) follows from Proposition 3.8.

PROPOSITION 3.12. Suppose F0 SL(D, m,s) and e2, e2 are any two adjacent
edge-elements of F0 that intersect at a nonjunction node. Let 0

_ _
be the angle

between el and e2. If

I- Ol > Mo(ll +
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2

e_, e_,2
P

FIG. 1. A small perturbation of F.

where M0 8maxD ifl2/(x, then

Eo[r0] > inf Eo[r].
FESL(D,m,e)

Proof. Suppose that el and e2 intersect at the node P. Let ftl and gt2 be the
regions separated by the edge containing el and e2, as illustrated in Fig. 1.

Consider a new Fh E SL(D, m, ), which is obtained from Fo by slightly perturb-
ing el and e2, also shown in Fig. 1. As Fo becomes Fh, the node P becomes Ph so
that the line segment PPh satisfies [PPhl h and it bisects the angle 0. Let the

be fth. Thendomain formed by the polygon el e2e2e

(As usual, for any domain ft c D, ca is the mean value of f(x) over ft.) Elementary
trigonometry gives

0
A(fth) (lell-I" le21)hsin 0

and leil levi- hcos + o(h), i 1,2.

Because

A(I U h)CSlUS2h A(fI )C" fl I-J’h
fdx fa fdx O(A(2h)),

it is immediate that C’IU"h --C"1 O(A(fh)). Similarly, ca2\ah -ca2 O(A(fh)).
We have therefore
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Hence,

_< 4sup Ifl2A(h) + o(h),
D

(f ca2\ah)2dx fa (f ca2)2dx
2\

_< 4sup Ifl2A(ah) + o(h).
D

Eo[rhI Eo[r0] < 8sup Ifl2A(h) 2ahcos + o(h)
D

Ssup I1 I11 + I1 hsin 2ohcos + o(h)
D

aMo lell+ le21 h sin 2ah cos + o(h).

Let Mo 8suPD If12/a. If Ir 01 > Mo(lell + le21), then

Eo[r] Eo[r0]
lim sup
h--0+ h

_< cMo I11 + I1 sin 2ocos

/ 1
/ /<sin [-01-2tan

2

sin I-01-
0.

Therefore Eo[FhI < Eo[F0] for sufficiently small h

4. Approximation. In this section we will be looking at more general segmen-
tations of D, namely, those formed by piecewise C F. The key idea in this section is
to show that for any locally minimizing piecewise linear F, the restriction on the angle
between any two adjacent linear segments of F stated in Proposition 3.12 implies that
each edge of F can be approximated well by a C1,1 curve. Using this fact we prove
our existence result (Proposition 4.6).

We call a curve a simple Ck curve if there exists a Ck map c [0, 1]----R2 with
c’(t) 0 for all t e [0, 1] such that c(tl) ? c(t2) for any tl e [0, 1], t2 e (0, 1) and
t etc.

DEFINITION 4.1. [’ E CO is called piecewise C if
N

for some finite collection {’i}/N=I where each / C D is a simple C curve and for
any and j i, both / NOD and /j N /j are either empty or contain one or two
endpoints of’i. (9/1, ’2,..., /N) i8 called a piecewise C representation of F.
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Denote

SI(D) {F E CD IF is piecewise C1}.
It is obvious that SL(D) c SI(D). We have the following generalization of Defini-
tion 3.2.

DEFINITION 4.2. Let F E SI(D). We define the following terms related to F.
region. A region defined by F is a connected component of D \ F.
junction. A junction of F is a point in D where some % and OD meet, or where

at least three different / ’s meet.
edge. An edge of F is defined as the closure of any connected component of F \

{junctions of F}.
boundary. A boundary defined by F is the closure of a connected component of

OD \ {junctions of F}.
Notice that none of the terms defined above depend on the representation of F.

The following are also independent of the representation of F:

R(F) Number of regions defined by F;
J(F) Number of junctions in F;
E(F) Number of edges in F;
B(F) Number of boundaries defined by F.

LEMMA 4.3. It holds that

inf
resl(D)

Proof. It is obvious that

Eo[F] inf Eo[F].
reSL(D)

inf Eo[F] _< inf Eo[F].
reSl(D) reSL(D)

But since any F S (D) can be approximated to arbitrary degree of accuracy, it is
easy to see that infres(D) Eo[F] _> infresL(D) Eo[F].

LEMMA 4.4. For any > O,

inf Eo[F] lim inf Eo IF].
FeSL(D) m--,x reSL(D,m,e)

Proof. Notice that any linear segment can be broken up and viewed as the union
of linear segments of length _< s. Therefore,

SL(D) U SL(D, m, ) lim SL(D, m, s).
m--cx

The lemma follows immediately.
Lemmas 4.3 and 4.4 indicate that in order to minimize Eo[r] for F Sl(D), we

can first minimize Eo[r] over SI(D, m, ) SL0(D) and consider the limit of Eo[r]
aS m --/ (:x:).

LEMMA 4.5. Let f(t) [a,b) R2 be a piecewise constant map such that
f(t) X for t Its, t+l), where a to < t < < tn b. Suppose
for any 0 <_ < n and there exists a constant M such that
for any 0 <_ i < n- 1. Then there is a F(t) [a, b) R2, which has the following
properties:
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1. F(t) is C1.
2. IF’(t)l <_ 6M.
3. IF(t)- f(t)l <_ 8Me.

4. F(t)dt I(t)dt.
Proof. Consider

a=t-0<t- <...<n=b,

where for any 0 < < n, t- (t + t+1)/2. Let F(t) be a cubic spline approximation
of f(t) on [a, b] defined as follows: for t e [, +1), where 0 _< i < n- 1,

Xi Xi+l (2(t )3El(t)
(i+1 i)3 3(i+1 i)(t i)2)

__
Xi,

and for t e [n-, n]

El(t) Xn-1.

Clearly, F1 () X and F() 0 for any < n; hence Fl(t) is C
For any t e [a, b], if t e Its, t+l), then either f(t) X or f(t) Z+l. Notice

that if t E Its, t+l) then

0 _< 3({+ {)(t- {)2 2(t- {i)3 ({i+1 {i)3.

Hence we have

[F(t) IXi Xi+II 16(t_ [i)2 [i)(t(i+ i)3 6(-i+

_< Ix x+l

2.3Mli

=6M.

Let F t F1 t + 5 where

5 f: (f(t) F (t))dt.
b-a
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then F’(t) F (t) and

IF(t)- f(t)l <_ [F(t) Fl (t)l + IF1 (t)
<_ 161 + 4Me

< flf(t) Fl(t)ldt +4Me
b-a

< 8Me.

Hence F(t) satisfies the listed properties.
PROPOSITION 4.6. Let {Fi}>0 be a sequence in CD such that F E eL(D, m, s),

where lim__,oo m oo and lim-oo O. Suppose

Eo[r] inf Eo[r].
FESL(D,mi,e)

Then there exists a F* E CD, which is limit point of {Fi}i>o such that F* satisfies the
following properties.

1. It holds that

N*

with N* <_ 2K0, where Ko Ko(D, a, max Ifl) is defined in Proposition 3.8 and each
"j is a simple C curve.

2. For any j

_
N* let Tj(s) denote the unit tangent vector of /j parametrized

by the arc length s of 9/j. Then,

where Co Co D a, max If I) is a constant.
3. For any and j i, both " ;30D and " V " are either empty or contain

some endpoints of i. Hence F* S1 (D).
4.

Eo[F*] inf Eo[F].
reel(D)

Proof. Let Fi U?I ’j where /j are the edges of Fi. According to Corollary 3.9,
since mi _< Ko, we may without loss of generality assume that mi No because we
can always find an No _< Ko such that there are infinitely many i’s for which mi No.

Now, fix a j and consider the family {/j}i>o. Define fi by

8

t(s) 1(0) + f(t)dt,

where s is the arc length parameter of / and 0 <_ s _< l --Ij I. Since is piecewise
linear, fi is piecewise constant. Because Fi minimizes Eo[F] in eL(D, mi, si), Propo-
sition 3.12 implies that fi(t) satisfies the conditions stated in Lemma 4.5 for some
constant M i(D,a, maxlfl). Hence there is a C function Fi(t) defined on [0,/]
such that

IF(t)- f,(t)l _< 8Mi, IF’(t)l _< 6M, and
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For a given i let -j be the parametrized curve

6/(s) /(0) + F(t)dt

for 0 _< s _< l. Since IF(t)l is a uniformly bounded sequence of functions, there exists
a subsequence {}>0 of {}>0 that converges uniformly to some (s) which is

either C or in the degenerate case, a single point. Let F* NotAj=l-. If "jo is a single
point for some jo, then we still have F* t.Jj#jo-y. So without loss of generality we
may assume that -y; is not a single point for all j, and that lim_ - -;.

We now prove that F* E $(D) by showing that it has a piecewise C represen-
tation. If (-;) is a piecewise C representation of F* then we are done. Suppose it is

not a piecewise C representation of F*. Then there must be some n 7 m such that
the set - N-n contains a point x that is not an endpoint of both - and "n, or there
is an x "y fq OD such that x is not an endpoint of / for some n. We show that in
the former case x must be an endpoint of either - or n" If not, since /n f’l /m for
any i contains only endpoints of both - and "Y;n, .7, and ";n must be tangent to each
other at x (they cannot cross each other at x, otherwise - and -y will intersect for
sufficiently large i). For any a > 0, let 6 6(a) dH(’7 fq B,(x), 9/ Be(x)).

Since / and , are C and tangent to each other at x, we can make 5/a arbi-
trarily small by choosing a sufficiently small a > 0.

Let p, P2 be the endpoints of Ba (x) fq ’Yn and q, q2 of Ba(x) f’l "m" Since pl, p2,

ql, and q2 are all on OB,(x), we assume that on OBa(x), q is in between p and q2,

while q2 is in between P2 and ql. This is shown in Fig. 2. Consider p, p /, and
q, q e "m which satisfy

lim p p, lim p P2

and

lim q ql, .lim q q2.

Let

F t2 {line segments Pql and P2q2 };

’ e SL(D,m + n, s) for some n > 0. Denote the portion of -y/ between p and p
by /n and the portion of m between q and q by m" Let ft be the region enclosed
by pi2q /m andpq]. Since for sufficiently large i,

dH(n,m) < 25, I1 ha, and Iml < 3a,

we have

A(ft) _< 25max{,m} -< 65a.

Therefore,

IEs[  \ Es[r ll _< C1A(fti) <_ 6Cla
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FIG. 2. A case in which / is tangent to n"

and

Eo[i \ n]- Eo[r] < 6C1,a + 2- Inl < 6C1,a + 2- a.

Since 5/a can be made arbitrarily small by choosing a sufficiently small a > 0, we can
choose an a > 0 such that

a
6C1a - 2- a <

2

Thus for sufficiently large,

Eo[i \ n] < Eo[r]
a

2"

But

lim Eo[r] inf Eo[r] < inf Eo[r]
i---o FES (D) FESL(D,m,e)

for any No > 0 and s > 0. This is a contradiction. Hence any x E * N-n must be an
endpoint of either / or 9’. The same argument shows that any x E OD must
be an endpoint of , and that if - has a self-intersection at x then x must be an
endpoint of

So we may now refine each , into / U,,k such that each endpoint of ,k is
and endpoint of some -, and that every x E /,k /n,t must be an endpoint of both

/,k and ,t. Each /,k is simple. Furthermore, since the total number of endpoints
of all - is bounded by K0, the number of ,k is bounded by 2K0. So (’,k) is a

piecewise C representation of F*.
It is clear that F* Uf,k satisfies properties 1, 3 of Proposition 4.6. Because

each ’,k is simple, property 2 follows immediately from Lemma 4.5. We now prove
property 4. Since lim__, F F*, we have

liminfEs[F] _> Es[r*].
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The proof of property 1 also shows that

lim EL [Fi] _> EL [F*].

Therefore,

inf Eo[r] < Eo[r*] < liminfEo[r] inf Eo[r].
resl(D) i-, resl(D)

5. Conclusion.
THEOREM 5.1. Let f(x) E L(D) where D [0, L] x [0, L]. Then there exists a

F* E Sl(D) such that Eo[r*] infresl(D)Eo[r]. Moreover, every such F* satisfies
the following properties.

1. F* is crack-free and there exists a constant g g(D, a, maxD If[) such that

n(r*) + E(r*) + J(r*)+ B(r*) < K.

2. Every edge in F* is C1.
3. Suppose / /(s) is an edge ofF* parametrized by the arc length. Let T(s)

/(s) be the unit tangent vector of /. Then

IT(s) T(s=)l < Cols .1,

where Co 18 maxD Ifl2/.
4. Every junction in D connects to exactly three edges such that the angle

between any two edges is 2r/3. Every junction on OD connects one edge to OD such
that the edge meets OD perpendicularly.

Before proving Theorem 5.1, we first examine the effect a small perturbation of F
will have on Eo[F]. Let F* S(D) and c F* be a piece of C curve parametrized
by its arc length s,

"(s)" [0,/] R2.

Consider a perturbation of (s) with a sufficiently small h > 0"

/h (S) /(S) ha(s)So,

where a(s) C[0, l] and S0 is a unit vector pointing to a fixed side of on the
support of a(s). This can be achieved if the support of a(s) is sufficiently small. We
have

I(=)1= IT(s) ha’(s)Sol 1 2ha’(s)gl(s) + o(h),

where gl(s)= (So,T(s)) with (. ,.) being the inner product in R2. Hence

I(=)1 1 ha’(s)g(s)+ o(h).

Denote the region on the left side of (with respect to the orientation of -(s)) by "L
and the region on the right side of /by R. Let h be the domain sandwiched by
and /h,

t, {.(s)- ta(s)So O <_ s <_ l, 0 <_ t <_ h}
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Then

A(th) IJ(9/(s)ldtds O(h),

where J(9/(s)) is the Jacobian of

[J(9/(s)), det ( 9/’(s)-ta’(s)So ) det (T(s) )-a(s)So -a(s)So a(s)g2(s).

LEMMA 5.2. Let Fh (F* \ 9/) J 9/h. Then

E.[r1 Eo[r*] F(t(s))g(s)a(s)dtds-h gl(s)a’(s)ds + o(h),

where f(x) (cna c)(2f(x) cn c).
Proof. Without loss of generality, we assume that h C R. Calculations in the

proof of Proposition 3.12 have shown that

CLh CL L Ckh C R

where eL, R O(A(h)) O(h).

fLOu(f CLu)2dx fL(f CL)2dx

(f co eL)2dx + (f c ei)2dx (f cac
L h L

L L h

(I o)dz + o(h).
h

Similarly,

(f-c’’’")2dx- (f-c")2dx=- (f-c’’)2dx+(h)"

Therefore

Es [r"] Es [r*]

h

2} [J(9/t(s))ldtds + o(h)

2} a(s)g2(s)dtds + o(h)

h F(9/t(s))g2(s)a(s)ds + o(h).



910 YANG WANG

This proves the lemma.
Proof of Theorem 5.1. It is clear from Proposition 4.6 that there exists a

F* E $1(O) such that E(r*) infresl(D)E(r), and that for each such F* it must
satisfy property 1. We show that F* satisfies properties 2-4.

First we prove that the unit tangent vector of every C curve in F* must satisfy
Lipschitz condition. Property 3 will follow easily from property 2, which we will prove
later. Let 7(s): [0,/]---R2 be an edge of F* parametrized by its arc length. Using the
same notations as in Lemma 5.2, we have

Eo[r] Eo[r*] F(7t(s))g2(s)a(s)dtds ah gl(s)a’(s)ds + o(h).

Let N(s) be the unit normal vector of 7(s) pointing to the region tL. Suppose
1 > IT(s1) T(so)l > Clsl sol where so, Sl e [0,1] are sufficiently close. Choose
So g(so). Then gl(s0)= (So, T(so) 0 and

C
Ig1(81)1--I(S0, T(81)1 > -181 801.

Let supp(a(s)) C_ [so, sl]. So

Eo[r] Eo[r*] F(7t(s))g2(s)a(s)dtds ah gl(s)a’(s)ds + o(h)

h G(t)g2(t) dt gl (8) at(s) ds + o(h),
o o

where G(s) fo f: F(Tt(s)) dt. Note that

G(t)g2(t) dt < IG(t)g2(t)l dt < 8 max Ill218 8o1.D
o o

So if C > 18maxD Ifl2/a then

max (fsSG(t)g2(t)dt-agl(s)) min (SG(t)g2(t)dt)s[o,l] e[o,81] o

(s sl

(t)g2(t)dt-Ogl(81))- (siG(t)]2(t)dto

18 maxD if[2> ] 0] smx ]f]l 0]
2a D

mx[ 0 > 0.
D

Therefore we can find an a(s) e C([0,/]) such that Eo[r] < Eo[r*] by choosing a
sufficiently small h. This is impossible. Hence IT(sl)-T(so)l < (18 maxD

Next we prove that property 4 must be satisfied by F*. Let P be any junction in
F* such that P OD; assume that two edges 71 and 72 meet at P at angle 0
Consider P D such that ]PP h and PP bisect angle 0, as illustrated in Fig. 3.
Let A 7 andB 2 be sufficiemly close to P and AP BP a. Wefirst
assume that both 71 and 2 are locally linear around P. Denote the domain enclosed
by the polygon APBP by . Elementary trigonometry shows that

IAP’I IBP’I a h cos + o(h),
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FIG. 3. Close-up of a junction.

Let

A() ahsin .
(F*\ {line segment AP, BP}) t2 {line segmentsFh PP, AP, BP}.

Calculations in the proof of Proposition 3.12 have shown that

Es IFhI Es [F*] < CiA(t) C1ah sin _0
2’

Thus,

(Eo[Fh] Eo [F*] <_ 61asin+a 1-2cos h+o(h).

If 0 < < 2/3 then we can choose sufficiently small a and h so that Eo[Fh]-Eo[F*] <
0. This contradicts the fact that F* minimizes Eo[F]. Thus, the angle at which /1
and 2 meet must be 2/3 or more.

In general, and 2 are not locally linear. Let the length of between A and
P be s and let the length of 2 between B and P be s2. Because both and 2 are
C and the unit tangent vectors parametrized by their respected arc length satis
the Lipschitz condition, for 1, 2 we have

a (s) ds

(0) ds + ((s) (0))ds

s- Cosds

2

hence si -a O(a2). Similarly, we can show that the area enclosed by 1 and AP
and that by and BP are both O(aa). Thus all arguments used in the locally linear
case will not be affected. So 0 2r/3.
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Therefore at any junction P E D, the angle at which every two edges meet should
be no less than 2r/3. Consequently, the junction must connect exactly three edges
and the angle at which every two edges meet must be 2r/3.

Suppose P OD is a junction. Let 0 < _< /2 be the angle at which an edge
9/meets OD. As in the P OD case, we may assume that 9/is locally linear at P.
Consider A 9/and B OD such that the line segment AB is perpendicular to the
boundary. Assume that IPAI h; thus IABI h sin0. Let

(F*\ {line segment PA}) U {line segments AB}.Fh

Then

C1 h2Eo [FhI Eo [F*] _< - sin 0 cos 0 (1 sin 0)h + o(h)
_< -(1 sin )h + o(h).

Hence 0 /2, i.e., 9/must meet OD perpendicularly.
Property 2 can be proved by using essentially the same idea. If two C curves

meet at a nonjunction point such that they form a corner at that point, then we can
decrease Eo by cutting the corner. We omit the details of the proof here.

THEOIEM 5.3. Let f(x) be continuous on D [0, L] x [0, L]. Suppose F* e Sl(D)
and

Eo[F*] inf Eo[F].
reSl(D)

Then F* S2(D). Moreover, let 9/be any edge ofF* and x 9/be a nonjuction point.
Then

am(x) (car caL (car + caL 2f(x)

where 9/is oriented with L and R being the region on its le and right, respectively,
and (x) is the cuature of at x.

Proof. Again, we use the same notations as in Lemma 5.2. Let (s): [0,1] R2

be any edge of F* parametrized by its arc length s. Then according to Lemma 5.2,

Eo[r] Eo[r*] F(t(s))g:(s)a(s) dtds ah gl(s)a’(s) ds + o(h).

Denote Fo(s) (ca ca)(2f(7(s)) ca cas). Then because f(x) is continuous,
F(t(s))- Fo(s)O as h0. Thus

Eo[r1 Eo[r*] h (Fo(s)g2(s)a(s) ag(s)a’(s)) ds + o(h).

Hence

0,

F(t)g2(t)dt)a’(s) ag (s)a’(s) } ds O.
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Because a(s) can be any function in C([0,/]) as long as So points to a fixed side of
on the support of a(s), it implies

F(t)g2(t)dt + ogl (8) constant

on any interval [b, c] C (0, l) in which So points to a fixed side of -. Thus on [b, c],
gl(s) (So, T(s)} is C1. Since So is arbitrary, T(s) is C and hence (s) is C2. Let
x (so) where so e [0,/] and choose So N(so) where N(s) is the unit normal
vector of (s) pointing to the region gtL. Then

a(So,-a(s)N(s)) a(So,T’(s)) ag’(s) -F(s)g2(s).

It is clear that So N(so) implies g2 (so) 1; hence

(a- ca,.)(c +c- 2:(x)).
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